Luke Tierney

Department of Statistics & Actuarial Science
University of lowa

July 11, 2019

L

f

«O>» «(Fr «Zr «E» Q>

Introduction fi

R is a language for data analysis and graphics.

@ Originally developed by Ross lhaka and Robert Gentleman, R is now
maintained and developed by the R core group.

@ R is based on the S language developed by John Chambers and others
at Bell Labs.

@ R is widely used in the field of statistics and beyond, especially in
university environments.

@ R has become the primary framework for developing and making
available new statistical methodology.

e Many (over 13,000) extension packages are available through CRAN
or similar repositories.

Luke Tierney (U. of lowa) R Bytecode RIOT 2019 2/11

Background fm

@ The standard R evaluation mechanism

e parses code into an abstract syntax tree (AST) when the code is read;
e evaluates code by interpreting the ASTs.

Compilation to some form of bytecode reduces interpreter overhead
and allows for some other optimizations.

e Bytecode compilation is used in many languages, e.g. Python and
Ruby.

The first release of the compiler occurred in R 2.13.0 (2011).
Significant improvements were released in R 3.2.0 (2015).
Just-in-time compilation was made the default in R 3.4.0 (2017).

Further improvements are in development.

Luke Tierney (U. of lowa) R Bytecode RIOT 2019 3/11

Compiler Operation i

@ The compiler can be called explicitly to compile single functions or
files of code:
e cmpfun compiles a function;
e cmpfile compiles a file to be loaded by loadcmp.
o It is also possible to have package code compiled when a package is
installed; this is now the default.
@ Alternatively, the compiler can be used in a JIT mode where

e functions are compiled on first or second use;
e loops are compiler before they are run.

Luke Tierney (U. of lowa) R Bytecode RIOT 2019 4/11

Compiler Operation and VM Design fm

@ The current compiler includes a number of optimizations, such as
constant folding;

e special instructions for most SPECIALs, many BUILTINSs;

e inlining some simple .Internal calls;

e maintaining intermediate scaler results on the stack without boxing.

@ The compiler is currently most effective for code used on scalar data
or short vectors where interpreter overhead is large relative to actual
computation.

@ The current VM design is stack-based; a register-based design may be
adopted in the future.

Luke Tierney (U. of lowa) R Bytecode RIOT 2019 5/11

R Code

f <- function(x) {
s <- 0.0
for (y in x)
s <-s +y

L1:

L2:

VM Assembly Code

LDCONST 0.0
SETVAR s
POP

GETVAR x
STARTFOR y L2
GETVAR s
GETVAR y
ADD

SETVAR s
POP

STEPFOR L1
ENDFOR

POP

GETVAR s
RETURN

«O>» B> «=r «=)»

DA

R Code

f <- function(x) {
s <- 0.0
for (i in seq_along(x))
s <- s + x[i]

VM Assembly Code

GETVAR x
SEQALONG
STARTFOR.OP i L2
L1: GETVAR s
GETVAR x
STARTSUBSET_N <expr> L3
GETVAR_MISSOK i
VECSUBSET
L3: ADD

Register-based loop body

L1: GETVAR s R1
STARTSUBSET_N x <expr> L3
VECSUBSET x i R2

L3: ADD R1 R2 s

«AO> «F)>r «=)r « =)

DA

Some Performance Results

Timings for some simple benchmarks on an x86_64 Ubuntu laptop:

Benchmark AST Comp. Speedup Exper. Speedup

sum 11.91 2.10 5.7 1.68 7.1
conv 9.07 1.31 6.9 0.85 10.7
ddot 34.59 5.75 6.0 4.10 8.4
rem 8.06 1.14 7.1 1.00 8.1

e AST, Comp. are for R 3.6.0
@ Exper. includes use of unboxed variable bindings.

@ Preliminary experiments:

o a register-based design may provide another 2x speedup.
e simple C code generation from either stack-based or register-based
code may provide another 3-5x speedup.

Luke Tierney (U. of lowa) R Bytecode RIOT 2019

8/11

Notes and Future Directions fi

@ A major goal: miminize semantic changes.

e Developing the compiler helped clarify some semantics.

e Testing against all CRAN and BioConductor packages was also very
helpful.

e In the few cases where semantic differences remain, the compiled
semantics are probably better.

@ Compilation was a major motivation for adding namespaces to R, and
for locking bindings in namespaces.
e At default optimization level only calls to functions found through
namespaces are optimized unconditionally.
e In other cases, guard instructions are sued to fall back to the AST
interpreter.
@ At this point only function bodies are compiled.
e Default arguments will be interpreted.
e Function calls use the (slow) interpreter mechanism'.

e This matches up well with (unfortunately) common one big function
approach.

Luke Tierney (U. of lowa) R Bytecode RIOT 2019 9/11

Notes and Future Directions

@ Some useful VM strategies:

caching bindings from the innermost environment frame;
using a typed stack to allow unboxed scalars;

allowing unboxed scalar values in variable bindings;
separate instructions for one and two index subscripting.

@ Other directions to explore:

More efficient function calls.

Reducing/avoiding lazy evaluation overhead when possible.
Intra-procedural optimizations and inlining.

Declarations (sealing, scalars, types, strictness).

Machine code generation using LLVM or other approaches.
Incorporating ideas from Justin Talbot, Renjin, and pgR on
delaying/fusing computations.

Trace compilation?

Luke Tierney (U. of lowa) R Bytecode RIOT 2019

10/11

Notes and Future Directions fi

@ Debuging/profiling issues:
o Currently turning on debugging for a compiled function switches to the
interpreted version.
e There is some VM level profiling support but it could be a lot better.

@ Maintainability is a major concern

e The compiler is written in R as a literate program using noweb.

e The VM is not nearly as well documented.

o The VM uses threaded code when gcc is used (based on macros from
Piumarta and Riccardi, 1998).

e Generating machine code might complicate it further (or not).

e The AST interpreter could be simplified to serve as a cleaner language
specification.

Luke Tierney (U. of lowa) R Bytecode RIOT 2019 11/11

	Introduction
	Background
	Compiler Operation
	A Simple Example
	Some Performance Results
	Notes and Future Directions

