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3.1 Overview 

Suppose that a spatially distributed variable is of interest, which in theory is defined at every 
point over a boundedstudyregionofinterest, 0 c Rd, whered = 2or3. We suppose further 
that this variable has been observed (possibly with error) at each of n distinct points in 0, and 
that from these observations we wish to make inferences about the process that governs 
how this variable is distributed spatially and about values of the variable at locations 
where it was not observed. The geostatistical approach for achieving these objectives is to 
assume that the observed data are a sample (at then data locations) of one realization of 
a continuously indexed spatial stochastic process (random field) Y( ·) = {Y(s) : s E 0}. 
Chapter 2 reviewed some probabilistic theory for such processes. In this chapter, we are 
concerned with how to use the sampled realization to make statistical inferences about the 
process. In particular, we discuss a body of spatial statistical methodology that has come to 
be known as "classical geostatistics." Classical geostatistica"l methods focus on estimating 
the first-order (large-scale or global trend) structure and especially the second-order (small
scale or local) structure of Y(·), and on predicting or interpolating (kriging) values of Y(-) 
at unsampled locations using linear combinations of the observations and evaluating the 
~erformance of these predictions by their (unconditional) mean squared errors. However, 
if the process Y is sufficiently non-Gaussian, methods based on considering just the first 
two moments of Y may be misleading. Furthermore, some common practices in classical 
geostatistics are problematic even for Gaussian processes, as we shall note herein. 

Because good prediction of Y(·) at unsampled locations requires that we have at our dis-
posal e_stimates of the structure of the process, the estimation components of a geostatistical 
analy~ls necessarily precede the prediction component. It is not clear, however, which struc
~e, first-order or second-order, should be estimated first. In fact, an inherent circularity 
:Sts:"-t~ properly estimate either structure, it appears we must know the other. We note 
al~ likelihood-based methods (see Chapter 4) quite neatly avoid this circularity problem, 

ough they generally require a fully specified joint distribution and a parametric model 

'29 
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for the covariance structure (however, see Irn, Stein, and Zhu, 2007). The classical solution 
to this problem is to provisionally estimate the first-order structure by a method that ig
nores the second-order structure. Next, use the residuals from the provisional first-order fit 
to estimate the second-order structure, and then finally reestimate the first-order structure 
by a method that accounts for the second-order structure. This chapter considers each of 
these stages of a classical geostatistical analysis in tum, plus the kriging stage. We begin, 
however, with a description of the geostatistical model upon which all of these analyses 
are based. 

3.2 Geostatistical Model 

Because only one realization of Y( ·) is available, and the observed data are merely an 
incomplete sample from that single realization, considerable structure must be imposed 
upon the process for inference to be possible. The classical geostatistical model imposes 
structure by specifying that 

Y(s) = JJ-(s) + e(s), (3.1) 

where JJ-(s) = E[Y(s)], the mean function, is assumed to be deterministic and continuous, 
and e( ·) = {e(s) : s E D} is a zero-mean random "error" process satisfying a stationarity as
sumption. One common stationarity assumption is that of second-order stationarity, which 
specifies that 

Cov[e(s), e(t)] = C(s- t), for all s, tED. (3.2) 

In other words, this asserts that the covariance between values of Y(·) at any two locations 
depends on only their relative locations or, equivalently, on their spatial lag vector. The func
tion C ( ·) defined in (3.2) is called the covariance function. Observe that nothing is assumed 
about higher-order moments of e(-) or about its joint distribution. Intrinsic stationarity, 
another popular stationary assumption, specifies that 

1 

2var[e(s)- e(t)] = y(s- t), for all s, tED. (3.3) 

The function y(-) defined by (3.3) is called the semivariogram (and the quantity 2y(-) 
is known as the variogram). A second-order stationary random process with covariance 
function C ( ·) is intrinsically stationary, with semivariogram given by 

y(h) = C(O) - C(h), (3.4) 

but the converse is not true in general. In fact, intrinsically stationary processes exist for 
which var[Y(s)] is not even finite at any s E D. An even weaker stationarity assumption 
is that satisfied by an intrinsic random field of order k (IRF-k), which postulates that 
tain linear combinations of the observations known as kth-order generalized · LCrE~mentsl 

have mean zero and a (generalized) covariance function that depe:qds only on the 
lag vector. IRF-ks were introduced in Chapter 2, to which we refer the reader for 
details. 

Model (3.1) purports to account for large-scale spatial variation (trend) through the 
function JJ-(·), and for small-scale spatial variation (spatial dependence) through the 
e ( ·). In practice, however, it is usually not possible to unambiguously identify and 
these two components using the available data. Quoting from Cressie (1991, p. 114), 
person's deterministic mean structure may be another person's correlated error 
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Consequently, the analyst will have to settle for a plausible, but admittedly nonunique, 
decomposition of spatial variation into large-scale and small-scale components. 

In addition to capturing the small-scale spatial variation, the error process e(-) in (3.1) 
accounts for measurement error that may occur in the data collection process. This mea
surement error component typically has no spatial structure; hence, for some purposes it 
may be desirable to explicitly separate it from the spatially dependent component. That is, 
we may write 

e(s) = ry(s) + E(s), (3.5) 

where ry( ·) is the spatially dependent component and E( ·) is the measurement error. Such a 
decomposition is discussed in more detail in Section 3.5. 

The stationarity assumptions introduced above specify that the covariance or semivar
iogram depends on locations s and t only through their lag vector h = s - t. A stronger 
property, not needed for making inference from a single sampled realization but important 
nonetheless, is that of isotropy. Here we describe just intrinsic isotropy (and anisotropy); 
second-order isotropy differs only by imposing an analogous condition on the covariance 
function rather than the semivariogram. An intrinsically stationary random process with 
semivariogram y( ·) is said to be (intrinsically) isotropic if y(h) = y(h), where h = (h'h)112; 

that is, the semivariogram is a function of the locations only through the (Euclidean) dis
tance between them. If the process is not isotropic, it is said to be anisotropic. Perhaps the 
most tractable form of anisotropy is geometric anisotropy, for which y(h) = y((h' Ah) 112) 

where A is a positive definite matrix. Isotropy can be regarded as a special case of geomet
ric anisotropy in which A is an identity matrix. Contours along which the semivariogram 
is constant (so-called isocorrelation contours when Y(-) is second-order stationary) are d
dimensional spheres in the case of isotropy and d -dimensional ellipsoids in the more general 
case of geometric anisotropy. 

The objectives of a geostatistical analysis, which were noted in general terms in Section 3.1, 
can now be expressed more specifically in terms of model (3.1). Characterization of the 
spatial structure is tantamount to the estimation of J..L( ·) and either C (·)or y (·).The prediction 
objective can be reexpressed as seeking to predict the value of Y(so) = J..L(so) + e(so) at an 
arbitrary site so . 

3.3 Provisional Estimation of the Mean Function 

The first stage of a classical geostatistical analysis is to specify a parametric model, J..L(s; {3), 
for the mean function of the spatial process, and then provisionally estimate tills model by 
a method that requires no knowledge of the second-order dependence structure of Y(·). 
The most commonly used parametric mean model is a linear function, given by 

(3.6) 

where X(s) is a vector of covariates (explanatory variables) observed at s, and f3 is an 
unrestricted parameter vector. Alternative choices include nonlinear mean functions, such 
as sines/ cosines (with unknown phase, amplitude, and period) or even semiparametric or 
nonparametric (locally smooth) mean functions, but these appear to be used very rarely. 
£One possible approach to spatial interpolation is to place all of the continuous variation 

0 the process into the mean function, i.e., assume that the observations equal a true but 
~own continuou~ mean ~ction plus independent and identically distributed errors, 

se nonparametr1c regressiOn methods, such as kernel smoothers, local polynomials, or 
Although nonparametric regression methods provide a viable approach to spatial 
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interpolation, we prefer for the following reasons the geostatistical approach when s refers 
to a location in physical space. First, the geostatistical approach allows us to take advantage 
of properties, such as stationarity and isotropy, that do not usually arise in nonparametric 
regression. Second, the geostatistical approach naturally generates uncertainty estimates 
for interpolated values even when the underlying process is continuous and is observed 
with little or no measurement error. Uncertainty estimation is problematic with nonpara
metric regression methods, especially if the standard deviation of the error term is not large 
compared to the changes in the underlying function between neighboring observations. It 
should be pointed out that smoothing splines, which can be used for nonparametric regres
sion, yield spatial interpolants that can be interpreted as kriging predictors (Wahba, 1990). 
The main difference, then, between smoothing splines and kriging is in how one goes about 
estimating the degree of smoothing and in how one provides uncertainty estimates for the 
interpolants. 

The covariates associated with a points invariably include an overall intercept term, equal 
to one for all data locations. Note that if this is the only covariate and the error process 
e( ·) in (3.1) is second-order (or intrinsically) stationary, then Y( ·) itself is second-order 
(or intrinsically) stationary. The covariates may also include the geographic coordinates 
(e.g., latitude and longitude) of s, mathematical functions (such as polynomials) of those 
coordinates, and attribute variables. For example, in modeling the mean structure of April 
1 snow water equivalent (a measure of how much water is contained in the snowpack) 
over the western United States in a given year, one might consider, in addition to an overall 
intercept, latitude and longitude, such covariates as elevation, slope, aspect, average wind 
speed, etc., 'to the extent that data on these attribute variables are available. If data on 
potentially useful attribute variables are not readily available, the mean function often 
is taken to be a polynomial function of the geographic coordinates only. Such models are 
called trend surface models. For example, the first -order (planar) and second -order (quadratic) 
polynomial trend surface models for the mean of a two-dimensional process are respectively 
as follows, where s = (s1, s2): 

J.L(s ; (3) = f3o + ,81s1 + f3zsz , 

J.L(s; (3) = f3o + ,81s1 + f3zsz + .Busi + .B12s1s2 + ,822si_ . 

Using a "full" qth-order polynomial, i.e., a polynomial that includes all pure and mixed 
monomials of degree ~ q, is recommended because this will ensure that the fitted surface 
is invariant to the choice of origin and orientation of the (Euclidean) coordinate system. 

It is worth noting that realizations of a process with constant mean, but strong spatial 
correlation, frequently appear to have trends; therefore, it is generally recommended that 
one refrain from using trend surfaces that cannot be justified apart from examining the 
data. 

The standard method for fitting a provisional linear mean function to geostatistical data 
is ordinary least squares (OLS). This method yields the OLS estimator /3oLs of (3, given by 

n 

~ "'"" T 2 f3oL s = argmin L..)Y(s;) - X(si) (3] . 
i=l 

Equivalently, /3oLs = (XTx)-1XTY where X = [X(s1), X(s2), ... , X(sn)f andY = [Y(s1), 
Y(sz), . . . , Y(sn)V, it being assumed without loss of generality that X has full column 
rank. Fitted values and fitted residuals at data locations are given by Y = XT /3oL s and 
e = Y - Y, respectively. The latter are passed to the second stage of the geostatisti
cal analysis, to be described in the next section. While still at this first stage, however, 
the results of the OLS fit should be evaluated and used to suggest possible alternative 
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mean functions. For this purpose, the standard arsenal of multiple regression methodol
ogy, such as transformations of the response, model selection, and outlier identification, 
may be used, but in an exploratory rather than confirmatory fashion since the indepen
dent errors assumption upon which this OLS methodology is based is likely not satisfied 
by the data. 

As a result of the wide availability of software for fitting linear regression models, OLS 
fitting of a linear mean function to geostatistical data is straightforward. However, there 
are some practical limitations worth noting, as well as some ~echniques/ guidelines for 
overcoming these limitations. First, and in particular for polynomial trend surface models, 
the covariates can be highly multicollinear, which causes the OLS estimators to have large 
variances. This is mainly a numerical problem, not a statistical one, unless the actual value 
of the regression coefficients is of interest and it can be solved by centering the covariates 
(i.e., subtracting their mean values) or, if needed, by orthogonalizing the terms in some 
manner prior to fitting. Second, the fitted surface in portions of the spatial domain of 
interest where no observations are taken may be distorted so as to better fit the observed 
data. This problem is avoided, however, if the sampling design has good spatial coverage. 
Finally, as with least squares estinlation in any context, the OLS estinlators are sensitive 
to outliers and thus one may instead wish to fit the mean function using one of many 
available general procedures for robust and resistant regression. If the data locations form 
a (possibly partially incomplete) rectangular grid, one robust alternative toOLS estinlation 
is median polish (Cressie, 1986), which iteratively sweeps out row and column medians 
from the observed data (and thus is implicitly based on an assumed row-column effects 
model for the first-order structure). However, the notion of what constitutes an outlier can 
be tricky with spatially dependent data, so robust methods should be used with care. 

3.4 Nonparametric Estimation of the Semivariogram 

The second stage of a geostatistical analysis is to estinlate the second-order dependence 
structure of the random process Y(-) from the residuals of the fitted provisional mean 
function. To describe this in more detail, we assume that e( ·) is intrinsically stationary, in 
which case the semivariogram is the appropriate mode of description of the second-order 
dependence. We also assume that d = 2, though extensions to d = 3 are straightforward. 

Consider first a situation in which the data locations form a regular rectangular grid. 

Let h1 = ( ~ ~~) , . .. , hk = ( ~:~) represent the distinct lags between data locations (in 

units of the grid spacings), with displacement angles ¢ u = tan- 1(huz! hu1) E [0, n) (u = 
1,: · ·, k) . Attention may be restricted to only those lags with displacement angles in [0, n) 
Without any loss of information because y(h) is an even function. For u = 1, ... , k, let 
N(h.u). represent the number of tinles that lag hu occurs among the data locations. Then the 
empmcal semivariogram is defined as follows: 

' (h)- 1 ~ 2 Y u - 2N(hu) L.. {e(s;)- e(s j)} 
sr-S j=hu 

(u = 1, . . . , k), 

whe:e e(s;) is the residual from the fitted provisional mean function at the ith data location 
and 1s ~us the ith element of the vector e defined in the previous section. We call y(hu) the 
uth ordmate of the empirical semivariogram. Observe that y(hu) is a method-of-moments 
~of estim~tor of y (hu). Under model (3.1) with constant mean, this estinlator is unbiased; 

e mean 1s not constant in model (3.1), the estimator is biased as a consequence of 
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FIGURE 3.1 
A polar partition of the lag space. 

estimating the mean structure, but the bias is not large in practice (provided that the mean 
structure that is estimated is correctly specified). 

When data locations are irregularly spaced, there is generally little to no replication of 
lags among the data locations. To obtain quasireplication of lags, we first partition the lag 
space H = {s- t: s, t E D} into lag classes or "bins" H1, ... , &, say, and assign each lag 
with displacement angle in [0, rr) that occurs among the data locations to one of the bins. 
Then, we use a similar estimator: 

(u = l, ... ,k). (3.7) 

Here hu is a representative lag for the entire bin Hu, and N( Hu) is the number of lags that fall 
into Hu. The bin representative, hu, is sometimes taken to be the centroid of Hu, but a much 
better choice is the average of all the lags that fall into Hu. The most common partition of 
the lag space is a "polar" partition, i.e., a partitioning into angle and distance classes, as 
depicted in Figure 3.1. A polar partition naturally allows for the construction and plotting 
of a directional empirical semivariogram, i.e., a set of empirical semivariogram ordinates 
corresponding to the same angle class, but different distance classes, in each of several 
directions. It also allows for lags to be combined over all angle classes to yield the ordinates 
of an omnidirectional empirical semivariogram. The polar partition of the lag space is not 
the only possible partition; however, some popular software for estimating semivariograms 
use a rectangular partition instead. 

Each empirical semivariogram ordinate in the case of irregularly spaced data locations is 
approximately unbiased for its corresponding true semivariogram ordinate, as it is when 
the data locations form a regular grid, but there is an additional level of approximation or 
blurring in the irregularly spaced case due to the grouping of unequal lags into bins. 

How many bins should be used to obtain the empirical semivariogram, and how large 
should they be? Clearly, there is a trade-off involved: The more bins that are used, the smaller 
they are and the better the lags in Hu are approximated by hu, but the fewer the number 
of observed lags belonging to Hu (with the consequence that the sampling variation of the 
empirical semivariogram ordinate corresponding to that lag is larger). One popular rule of 
thumb is to require N(hu) to be at least 30 and to require the length of hu to be less than 
half the maximum lag length among data locations. But, there may be many partitions that 
meet these criteria, and so the empirical semivariogram is not actually uniquely defined 
when data locations are irregularly spaced. Furthermore, as we shall see in the simulation 
below, at lags that are a substantial fraction of the dimensions of the observation domain, 
9 (hu) may be highly variable even when N(hu) is much larger than 30. The problem is that 
the various terms making up the sum in (3.7) are not independent and the dependence can 
be particularly strong at larger lags. 
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FIGURE 3.2 
Empirical semivariograms of simulated data obtained via three R programs. 

One undesirable feature of the empirical semivariogram is its sensitivity to outliers, a 
consequence of each of its ordinates being a scaled sum of squares. An alternative and 
more robust estimator, due to Cressie and Hawkins (1980), is 

(u = 1, ... ,k) . 

As an example, let us consider empirical semivariograms obtained from three programs 
available in R with all arguments left at their default values. Specifically, we simulate an 
isotropic Gaussian process Y with constant mean and exponential semivariogram with 
sill and range parameters equal to 1 on a 10 x 10 square grid with distance 1 between 
neighboring observations. (See Section 3.5 for definitions of the exponential semivariogram 
and its sill and range parameters.) Figure 3.2 shows the resulting empirical semivariograms 
using the command variog from geaR, the command est. variogram from sgeostat, 
and the command variogram from gstat. The first two programs do not automatically 
impose an upper bound on the distance lags and we can see that the estimates of y at the 
longer lags are very poor in this instance, even though, for example, for est. variogram 
from sgeostat, the estimate for the second longest lag (around 10.8) is based on 80 pairs of 
observations and the estimate for the third longest lag (aound 9.5) is based on 326 pairs. 
For variogram in gstat, the default gives a largest lag of around 4.08. Another important 
difference between the gstat program and the other two is that gstat, as we recommend, 
uses the mean distance within the bin rather than the center of the bin as the ordinate 
on the horizontal axis. For haphazardly sited data, the differences between the two may 
often be small, but here we fi.."'"ld that for regular data, the differences can be dramatic. In 
particular, gstat and sgeostat give the same value for y at the shortest lag (0.6361), but 
gstat gives the corresponding distance as 1, whereas sgeostat gives this distance as 0.6364. 
In fact, with either program, every pair of points used in the estimator is exactly distance 
1 a~art, so the sgeostat result is quite misleading. It would appear that, in this particular 
setting, the default empirical variogram in gstat is superior to those in geoR and sgeostat. 
However, even with the best of programs, one should be very careful about using default 
~a:a~eter values for empirical semivariograms. Furthermore, even with well-chosen bins, 
It 15 ~portant to recognize that empirical semivariograms do not necessarily contain all t the information in the data about the true semivariogram, especially, as noted by Stein 
1999, Sec. 6.2), for differentiable processes. 
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3.5 Modeling the Semivariogram 

Next, it is standard practice to smooth the empirical semivariogram by fitting a parametric 
model to it. Why smooth the empirical semivariogram? There are several reasons. First, it 
is often quite bumpy; a smoothed version may be more reliable (have smaller variance) and 
therefore may increase our understanding of the nature of the spatial dependence. Second, 
the empirical semivariogram will often fail to be conditionally nonpositive definite, a prop
erty which must be satisfied to ensure that at the prediction stage to come, the prediction 
error variance is nonnegative at every point in D. Finally, prediction at arbitrary locations 
requires estimates of the semivariogram at lags not included among the bin representatives 
h1, ... , hk nor existing among the lags between data locations, and smoothing can provide 
these needed estimates. 

To smooth the empirical semivariogram, a valid parametric model for the semivariogram 
and a method for fitting that model must be chosen. The choice of model among the col
lection of valid semivariogram models is informed by an examination of the empirical 
semivariogram, of course, but other considerations (prior knowledge, computational sim
plicity, sufficient flexibility) may be involved as well. The following three conditions are 
necessary and sufficient for a semivariogram model to be valid (provided that they hold 
for all 8 E 8, where 8 is the parameter space for 8): 

1. Vanishing at 0, i.e., y(O; 8) = 0 

2. Evenness, i.e., y( -h; 8) = y(h; 8) for all h 

3. Conditional negative definiteness, i.e., 2.:::7=1 2.:::}=1 a; a iY(s;- si; 8) _:::: 0 for all n, all 
s1, ... , Sn, and all a1, ... , an such that 2.:::7=1 a; = 0 

Often, the empirical semivariogram tends to increase roughly with distance in any given 
direction, up to some point at least, indicating that the spatial dependence decays w~th 
distance. In other words, values of Y( ·)at distant locations tend to be less alike than values 
at locations in close proximity. This leads us to consider primarily those semivariogram 
models that are monotone increasing functions of the intersite distance (in any given di
rection). Note that this is not a requirement for validity, however. Moreover, the modeling 
of the semivariogram is made easier if isotropy can be assumed. The degree to which this 
assumption is tenable has sometimes been assessed informally via "rose diagrams" (Isaaks 
and Srivastava, 1989) or by comparing directional empirical semivariograms. It is necessary 
to make comparisons in at least three, and preferably more, directions so that geometric 
anisotropy can be distinguished from isotropy. Moreover, without some effort to attach un
certainty estimates to semivariogram ordinates, we consider it dangerous to assess isotropy 
based on visual comparisons of directional empirical semivariograms. Specifically, direc
tional empirical semivariograms for data simulated from an isotropic model can appear to 
show clear anisotropies (e.g., the semivariogram in one direction being consistently higher 
than in another direction) that are due merely to random variation and the strong correla
tions that occur between estimated semivariogram ordinates at different lags. More formal 
tests for isotropy have recently been developed; see Guan, Sherman, and Calvin (2004). 

A large variety of models satisfy the three aforementioned validity requirements (in R2 

and R3 ), plus monotonicity and isotropy, but the following five appear to be the most 
commonly used: 

• Spherical 

y(h; 8 ) = { 81 u~- ;:i) for 0 _:::: h _:::: Bz 
81 for h > Bz 
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• Exponential 

y(h;B) = 81{1- exp(-h / 8z}} 

• Gaussian 

• Matern 

(h·B) = 8 ( 1 - (h / 8z)vKv(h f8z)) 
Y , 1 2v-lr(v) 

where Kv(·) is the modified Bessel function of the second kind of order v 

• Power 

These models are displayed in Figure 3.3. For each model, 81 is positive; similarly, 82 is 
positive in each model except the power model, for which it must satisfy 0 ~ 82 < 2. In the 
Matern model, v > 0. It can be shown that the Matern models with v = 0.5 and v --+ oo 
coincide with the exponential and Gaussian models, respectively. 

Several attributes of an isotropic semivariogram model are sufficiently important to single 
out. The sill of y(h; B) is defined as limh-Hx> y(h; B) provided that the limit exists. If this limit 
exists, then the process is not only intrinsically stationary, but also second-order stationary, 
and C(O; B) coincides with the sill. Note that the spherical, exponential, Gaussian, and 
Matern models have sills (equal to 81 in each of the parameterizations given above), but the 
power model does not. Furthermore, if the sill exists, then the range of y(h; B) is the smallest 
value of h for which y(h; B) equals its sill, if such a value exists. If the range does not exist, 
there is a related notion of an effective range, defined as the smallest value of h for which 
y(h; B) is equal to 95% of its sill; in this case, the effective range is often a function of a single 
parameter called the range parameter. Of those models listed above that have a sill, only the 
spherical has a range (equal to 82); however, the exponential and Gaussian models have 
effective ranges of approximately 382 and ../382, respectively, with 82 then being the range 
parameter. Range parameters can be difficult to estimate even with quite large datasets, in 
particular when, as is often the case, the range is not much smaller than the dimensions of 
the observation region (see Chapter 6). This difficulty is perhaps an argument for using the 
power class of variograms, which is essentially the Matern class for v < 1 with the range 
set to infinity, thus, avoiding the need to estimate a range. 

The Matern model has an additional parameter v known as the smoothness parameter, as 
the process Y( ·)ism times mean square differentiable if and only if v > m. The smoothrless 
of the semivariogram near the origin (i.e., at small lags) is a key attribute for efficient spatial 
prediction (Stein, 1988; Stein and Handcock, 1989). Finally, the nugget effect of y(h; B) is 
defined as limh-+O y(h; B). The nugget effect is zero for all the models listed above, but a 
n~nzero nugget effect can be added to any of them. For example, the exponential model 
Wlth nugget effect 83 is given by 

if h = 0 
if h > 0. 

(3.8) 

One rationale for the nugget effect can be given in terms of the measurement error model 
(3.5). If IJ( ·) in that model is intrinsically stationary and mean square continuous with a 
nuggetless exponential semivariogram, if E(·) is an iid (white noise) measurement error 
proce~s with variance 83, and if ry(-) and E (.) are independent, then the semivariogram of 

) will coincide with (3.8). 
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Gaussian semivariograms correspond to processes that are extre~ely smooth-too mud 
so to generally serve as good models for natural processes. For differentiable spatial pre 
cesses, a Matern model with v > 1, but not very large, is generally preferable. Hov. 
ever, if one has an underlying smooth process with a sufficiently large nugget effect, 
may sometimes not matter much whether one uses a Gaussian or Matern model. Sphe 
ical semivariograms are very popular in the geostatistical community, but less so amon 
statisticians, in part because the semivariogram is only once differentiable in e2 at 8z == · 
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which leads to rather odd looking likelihood functions for the unknown parameters. There 
can be computational advantages to using semivariograms with a finite range if this 
range is substantially smaller than the dimensions of the observation domain, but even 
if one wants to use a semivariogram with finite range for computational reasons, there 
may be better alternatives than the spherical semivariogram (Furrer, Genton, and Ny
chka, 2006). 

Any valid isotropic semivariogram model can be generalized to make it geometrically 
anisotropic, simply by replacing the argument h with (h' Ah) 112 , where A is a d x d pos
itive definite matrix of parameters. For example, a geometrically anisotropic exponential 
semivariogram in R2 is given by 

Thus, for example, if 83 = 0 and 84 = 4, the effective range of the spatial correlation is 
twice as large in the E-W direction as in the N-5 direction, and the effective range in all 
other directions is intermediate between these two. The isotropic exponential semivari
ogram corresponds to the special case in which 83 = 0, 84 = 1. Anisotropic models that 
are not geometrically anisotropic-so-called zonally anisotropic models-have sometimes 
been used, but they are problematic, both theoretically and practically (see Zimmerman 
(1993)). 

Two main procedures for estimating the parameters of a chosen semivariogram model 
have emerged: weighted least squares (WLS) and maximum likelihood (ML) or its variant, 
restricted (or residual) maximum likelihood (REML). The WLS approach is very popular 
among practitioners due to its relative simplicity, but, because it is not based on an un
derlying probabilistic model for the spatial process, it is suboptimal and does not rest on 
as firm a theoretical footing as the likelihood-based approaches (though it is known to 
yield consistent and asymptotically normal estimators under certain regularity conditions 
and certain asymptotic frameworks) (see Lahiri, Lee, and Cressie (2002)). Nevertheless, at 
least for nondifferentiable processes, its performance is not greatly inferior to those that are 
likelihood-based (Zimmerman and Zimmerman, 1991; Lark, 2000). The remainder of this 
section describes the WLS approach only; likelihood-based approaches are the topic of the 
next chapter. 

The WLS estimator of () in the parametric model y (h; 0) is given by 

A • "" N(hu) A 2 
() = argmm ~ [ (h ·())j2[y(hu)- y(hu;O)] 

UEU y U! 

(3.9) 

where all quantities are defined as in the previous section. Observe that the weights, 
N(hu)/[y(hu;B)]Z, are small if either N(hu) is small or y(hu;O) is large. This has the ef
fect, for the most commonly used semivariogram models (which are monotone increasing) 
and for typical spatial configurations of observations, of assigning relatively less weight to 
ordinates of the empirical semivariogram corresponding to large lags. For further details 
on the rationale for these weights, see Cressie (1985), although the argument is based on 
an assumption of independence between the terms in the sum (3.9), so it may tend to give 
too ~uch weight to larger lags. Since the weights depend on(), the WLS estimator must be 
obtamed iteratively, updating the weights on each iteration until convergence is deemed 
to have occurred. 
t Comparisons of two or more fitted semivariogram models are usually made rather in
~rmally. ~the models are non-nested and have the same number of parameters (e.g., 

e sphencal and exponential models, with nuggets), the minimized weighted residual 
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sum of squares (the quantity minimized in (3.9)) might be used to choose from among the 
competing models. However, we are unaware of any good statistical arguments for such 
a procedure and, indeed, Stein (1999) argues that an overly strong emphasis on making 
parametric estimates of semivariograms match the empirical semivariogram represents a 
serious flaw in classical geostatistics. 

3.6 Reestimation of the Mean Function 

Having estimated the second-order dependence structure of the random process, there 
are two tacks the geostatistical analysis may take next. If the analyst has no particular 
interest in estimating the effects of covariates on Y(-), then he/she may proceed directly to 
kriging, as described in the next section. If the analyst has such an interest, however, the 
next stage is to estimate the mean function again, but this time accounting for the second
order dependence structure. The estimation approach of choice in classical geostatistics is 
estimated generalized least squares (EGLS), which is essentially the same as generalized 
least squares (GLS) except that the variances and covariances of the elements of Y, which 
are assumed known for GLS, are replaced by estimates. Note that second-order stationarity, 
not merely intrinsic stationarity, of e( ·) must be assumed here to ensure that these variances 
and covariances exist and are functions of lag only. 

A sensible method for estimating the variances and covariances, and one which yields 
a positive definite estimated covariance matrix, is as follows. First, estimate the common 
variance of the Y(si)s by the sill of the fitted semivariogram model, y(h; 0), obtained at the 
previous stage; denote this estimated variance by l:(O). Then, motivated by (3.4), estimate 
the covariance between Y(si) and Y(sf) fori =I= j as l:(si- sf) = l:(O)- y(si- si;O). 
These estimated variances and covariances may then be arranged appropriately to form an 
estimated variance-covariance matrix 

The EGLS estimator of {3, fJEGLS is then given by 

The sampling distribution of fJEGLS is much more complicated than that of the OLS or 
GLS estimator. It is known, however, that fJEGLS is unbiased under very mild conditions, 
and that, if the process is Gaussian, the variance of fJEGLS is larger than that of the GLS 
estimator were () to be known, i.e., larger than (XT 17-1x)-1 (Harville, 1985). (Here, by 
"larger," we mean that the difference, var(fJEGLs) - (XT 17-1 X)-1, is nonnegative definite.) 
Nevertheless, for lack of a simple satisfactory alternative, the variance of fJEGLs)s usually 
estimated by the plug-in estimator, (XT ..t'-1x)-1 . 

If desired, the EGLS residuals, Y- XfJEcLs, may be computed and the semivariogram 
reestimated from them. One may even iterate between mean estimation and semivariogram 
estimation several times, but, in practice, this procedure usually stops with the first EGLS 
fit. REML, described in Chapter 4, avoids this problem by estimating () using only linear 
combinations of the observations whose distributions do not depend on {3. 



1tial Statistics 

mamongthe 
,ents for such 
is on making 
1. represents a 

process, there 

5 no particular 
ceed directly to 
•t, however, the 
for the second-
1 geostatistics is 
~ as generalized 
~nts of Y, which 
:der stationarity, 
t these variances 

me which yields 
,ate the common 
) , obtained at the 
by (3.4), estimc:_te 
) _ y(si - si;B). 
riately to form an 

that of the OLS or 
7 mild conditions, 
-an that of the GLS 
e 1985). (Here, by 
~egative definite.) 
of /3EGLS is usuallY: 

and 
. with the first 
; e using only 
on {3. 

Classical Geostatistical Methods 41 

3.7 Kriging 

The final stage of a classical geostatistical analysis is to predict the values of Y( -)at desired 
locations, perhaps even at all points, in D. Methods dedicated to this purpose are called 
kriging, after the South African mining engineer D. G. Krige, who was the first to develop 
and apply them. Krige's original method, now called ordinary kriging, was based on the 
special case of model (3.1) in which the mean is assumed to be constant. Here, we describe 
the more general method of universal kriging, which is identical to best linear unbiased 
prediction under model (3.1) with mean function assumed to be of the linear form (3.6). 

Let s0 denote an arbitrary location in D; usually this will be an unsampled location, but 
it need not be. Consider the prediction of Y(so) by a predictor, Y(so), that minimizes the 
prediction error variance, var[Y(so)- Y(s0)], among all predictors satisfying the following 
two properties: 

1. Linearity, i.e., Y(so) = ArY, where A is a vector of fixed constants 

2. Unbiasedness, i.e., E[Y(s0)] = E[Y(s0)], or equivalently ATX = X(s0) 

Suppose for the moment that the semivariogram of Y( ·) is known. Then the solution to this 
constrained minimization problem, known as the universal kriging predictor of Y(s0), is 
given by 

(3.10) 

where 1 = [y(s1- so), ... , y(sn- so)JT, r is then x n symmetric matrix with ijth element 
y(s; - Sj) and xo = X(so)- This result may be obtained using differential calculus and 
the method of Lagrange multipliers. However, a geometric proof is more instructive and 
following is an example. 

Let us assume that the first component of x(s) is identically 1, which guarantees that 
the error of any linear predictor of Y(s0 ) that satisfies the unbiasedness constraint is a 
contrast, so that its variance can be obtained from the semivariogram of Y(-). Let us also 
assume that there exists a linear predictor satisfying the unbiasedness constraint. Suppose 
>.TY is such a predictor. Consider any other such predictor vTY and set J-L = v- A. Since 
E(.~rY) = E (vTY) for all (3, we must have xr 1-L = 0. And, 

var{vrY- Y(so)} = var[J-Lry + {Ary- Y(s0)}] 

= var(J-LrY) + var{Ary- Y(s0)} + 2Cov{J-LrY, ATY- Y(so)} 

2: var{Ary- Y(s0 )} + 2Cov{J-LrY, ATY- Y(s0 )} 

= var{Ary- Y(s0)} + 2J-Lr ( -r A+/)-

If we can choose A such that J-Lr( -r A+/) = 0 for all 1-L satisfying xr 1-L = 0, then A is 
the solution we seek, since we then have var{vry- Y(s0)} 2: var{Ary- Y(s0)} for any 
predictor vry satisfying the unbiasedness constraint. But, since the column space of X is 
~~orthogonal complement of its left null space, this condition holds if and only if - r A+ 1 
18 m the column space of X, which is equivalent to the existence of a vector o: satisfying 
fur)..+ Xo: = -1- Putting this condition together with the unbiasedness constraint yields 

e system of linear equations for A and o: 
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where 0 and 0 indicate a vector and a matrix of zeroes, respectively. If r is invertible and 
X is of full rank, then simple row reductions yields .A as in (3.10). 

The minimized value of the prediction error variance is called the (universal) kriging 
variance and is given by 

(3.11) 

The universal kriging predictor is an example of the best linear unbiased predictor, or 
BLUP, as it is generally abbreviated. If Y( ·)is Gaussian, the kriging variance can be used to 
construct a nominal100(1- a)% prediction interval for Y(so), which is given by 

where 0 < a < 1 and Za;z is the upper ct / 2 percentage point of a standard normal distribu
tion. If Y(·) is Gaussian andy(-) is known, then Y(so)- Y(so) is normally distributed and 
the coverage probability of this interval is exactly 1 -a. 

If the covariance function for Y exists and a- = [ C( s1 - so), ... , C( Sn - so) V, then the 
formula for the universal kriging predictor (3.10) holds with 1 replaced by a- and r by 
E. It is worthwhile to compare this formula to that for the best (minimum mean squared 
error) linear predictor when {3 is known: x6 {3 +a-T x;-1(Y- X{3). A straightforward calcu
lation shows that the universal kriging predictor is of this form with {3 replaced by /3cLS· 
Furthermore, the expression (3.11) for the kriging variance is replaced by 

The first two terms, C(O)- a-T x;-1a-, correspond to the mean squared error of the best linear 
predictor, so that the last term, which is always nonnegative, is the penalty for having to 
estimate {3. 

In practice, two modifications are usually made to the universal kriging procedure just 
described. First, to reduce the amount of computation required, the prediction of Y(so) 
may be based not on the entire data vector Y, but on only those observations that lie in 
a specified neighborhood around s0 . The range, the nugget-to-sill ratio, and the spatial 
configuration of data locations are important factors in choosing this neighborhood (for 
further details, see Cressie (1991, Sec. 3.2.1)). Generally speaking, larger nuggets require 
larger neighborhoods to obtain nearly optimal predictors. However, there is no simple 
relationship between the range and the neighborhood size. For example, Brownian motion 
is a process with no finite range for which the kriging predictor is based on just the two 
nearest neighbors. Conversely, there are processes with finite ranges for which observations 
beyond the range play a nontrivial role in the kriging predictor (Stein, 1999, p. 67). When 
a spatial neighborhood is used, the formulas for the universal kriging predictor and its 
associated kriging variance are of the same form as (3.10) and (3.11), but with 1 and Y 
replaced by the subvectors, and r and X replaced by the submatrices, corresponding to the 
neighborhood. 

The second modification reckons with the fact that the semivariogram that appears in 
(3.10) and (3.11) is in reality unknown. It is common practice to substitute i = 1(0) and 
1' = T(O) for 1 and r in (3.10) and (3.11), where 0 is an estimate of (J obtained by; say, WLS. 
The resulting empirical universal kriging predictor is no longer a linear function of the data, 
but remarkably it remains unbiased under quite mild conditions (Kackar and Harville, 
1981). The empirical kriging variance tends to underestimate the actual prediction error 
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variance of the empirical universal kriging predictor because it does not account for the 
additional error incurred by estimating e. Zimmerman and Cressie (1992) give a modified 
estimator of the prediction error variance of the empirical universal kriging predictor, which 
performs well when the spatial dependence is not too strong. However, Bayesian methods 
are arguably a more satisfactory approach for dealing with the uncertainty of spatial de
pendence parameters in prediction (see Handcock and Stein (1993)). Another possibility is 
to estimate the prediction error variance via a parametric bootstrap (Sjostedt-de Luna and 
Young, 2003). 

Universal kriging yields a predictor that is a "location estimator" of the conditional 
distribution of Y(so) given Y; indeed, if the error process e( ·) is Gaussian, the universal 
kriging predictor coincides with the conditional mean, E (Y(s0) IY) (assuming y( ·)is known 
and putting a flat improper prior on any mean parameters). If the error process is non
Gaussian, then generally the optimal predictor, the conditional mean, is a nonlinear function 
of the observed data. Variants, such as disjunctive kriging and indicator kriging, have been 
developed for spatial prediction of conditional means or conditional probabilities for non
Gaussian processes (see Cressie, 1991, pp. 278-283), but we are not keen about them, as 
the first is based upon strong, difficult to verify assumptions and the second tends to yield 
unstable estimates of conditional probabilities. In our view, if the process appears to be 
badly non-Gaussian and a transformation doesn't make it sufficiently Gaussian, then the 
analyst should "bite the bullet" and develop a decent non-Gaussian model for the data. 

The foregoing has considered point kriging, i.e., prediction at a single point. Sometimes 
a block kriging predictor, i.e., a predictor of the average value Y(B) =fa Y(s)ds/I BI over 
a region (block) B C D of positive d-dimensional volume I B I is desired, rather than pre
dictors of Y(·) at individual points. Historically, for example, mining engineers were in
terested in this because the economics of mining required the extraction of material in 
relatively large blocks. Expressions for the universal block kriging predictor of Y(B) and 
its associated kriging variance are identical to (3.10) and (3.11), respectively, but with 1 = 
[y(B, s1), ... , y(B , sn)JT,Xo = [X1(B), .. . , X p(B)]Y (where pisthenumberofcovariatesin 
the linear mean function) , y(B, s;) = I B 1-1 fa y(u- s;) du and X j(B) = I B 1-1 fa Xj(u) du. 

Throughout this chapter, it was assumed that a single spatially distributed variable, 
namely Y( ·) , was of interest. In some situations, however, there may be two or more vari
ables of interest, and the analyst may wish to study how these variables co-vary across the 
spatial domain and / or predict their values at unsampled locations. These problems can 
be handled by a multivariate generalization of the univariate geostatistical approach we 
havedescribed.Inthismultivariateapproach,{Y(s) = [Y1(s), . . . , Ym(s)]Y : s E D}represents 
them-variate spatial process of interest and a model Y(s) = f.L(s) + e(s) analogous to (3.1) is 
adopted in which the second-order variation is characterized by either a set of m semivari
ograms and m( m -1) / 2 cross-semivariograms y; 1 (h) = ! var[Y; ( s)-Y1 ( s+ h)], or a set of m co
variance functions and m(m -1) / 2 cross-covariance functions C; 1 (h) = Cov[Y; ( s) , Y1 (s+ h)], 
depending on whether intrinsic or second-order stationarity is assumed. These functions 
can be estimated and fitted in a manner analogous to what we described for univariate 
geostatistics; likewise, the best (in a certain sense) linear unbiased predictor of Y(so) at an 
arbitrary location s0 E D, based on observed values Y(s1), ... , Y(sn), can be obtained by an 
exten~ion of kriging known as co kriging. Good sources for further details are VerHoef and 
Cress1e (1993) and Chapter 27 in this book. 
. While we are strong supporters of the general geostatistical framework to analyzing ·spa

tial d~ta, we have, as we have indicated, a number of concerns about common geostatistical 
practices. For a presentation of geostatistics from the perspective of "geostatisticians" (that 
~esea_rc~ers who can trace their lineage to Georges Matheron and the French School of 

statistics), we recommend the book by Chiles and Delfiner (1999). 
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