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Abstract

For the problem of model choice in linear regression, we introduce a Bayesian adap-
tive sampling algorithm (BAS), that samples models without replacement from the
space of models. For problems that permit enumeration of all models BAS is guaran-
teed to enumerate the model space in 2p iterations where p is the number of potential
variables under consideration. For larger problems where sampling is required, we pro-
vide conditions under which BAS provides perfect samples without replacement. When
the sampling probabilities in the algorithm are the marginal variable inclusion proba-
bilities, BAS may be viewed as sampling models “near” the median probability model
of Barbieri and Berger. As marginal inclusion probabilities are not known in advance
we discuss several strategies to estimate adaptively the marginal inclusion probabilities
within BAS. We illustrate the performance of the algorithm using simulated and real
data and show that BAS can outperform Markov chain Monte Carlo methods. The
algorithm is implemented in the R package BAS available at CRAN.

Key words: Bayesian model averaging; Inclusion probability; Markov chain Monte
Carlo; Median probability model; Model uncertainty; Sampling without replacement

1 INTRODUCTION

We consider the problem of model uncertainty in linear regression with p potential predictors

x1, x2, . . . , xp. In this setting, models Mγ may be represented as a vector of binary variables

γ = (γ1, . . . γp)
T ∈ {0, 1}p ≡ Γ where γj is an indicator of whether xj is included as a column
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in the n × pγ design matrix Xγ under model Mγ. The normal linear model conditional on

Mγ is expressed as

Y | α, βγ, φ, Mγ ∼ N(1nα + Xγβγ, In/φ) (1)

where Y = (Y1, . . . Yn)′, 1n denotes a vector of ones of length n, α is the intercept, βγ

represents the regression coefficients and φ is the precision (the inverse of the error variance)

with In denoting the n × n identity matrix.

A key component in the Bayesian formulation of the model choice problem is the posterior

distribution over models given by

p(Mγ | Y) =
p(Y | Mγ)p(Mγ)

∑

γ∈Γ p(Y | Mγ)p(Mγ)
(2)

where p(Y | Mγ) =
∫

p(Y | θγ, Mγ)p(θγ | Mγ)dθγ is proportional to the marginal likelihood

of Mγ obtained by integrating the joint likelihood with respect to the prior distribution over

all parameters θγ = (α, βγ, φ) given Mγ and p(Mγ) is the prior probability of the model.

The joint posterior distribution over models and model specific parameters provides the

basis for decisions regarding model choice. Bayesian model averaging (BMA) utilizes the

full joint posterior distribution and incorporates model uncertainty in posterior inferences,

see Hoeting et al. (1999); Clyde and George (2004) for overviews of BMA. For a specific

quantity of interest ∆, the posterior distribution under BMA is

p(∆ | Y) =
∑

γ∈Γ

p(∆ | Mγ ,Y)p(Mγ | Y) (3)

with model averaged expectations of the form

E[∆ | Y] =
∑

γ∈Γ

E[∆ | Mγ,Y]p(Mγ | Y). (4)

When it is necessary to report a single model, a common strategy is to select the highest

posterior probability model, γHPM which corresponds to maximizing a 0-1 utility for a correct

selection. Other variable selection procedures can be formally motivated by decision theoretic
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considerations, where the optimal model, γ∗, maximizes posterior expected utility. If the

goal is to select the best predictive model under squared error loss, Barbieri and Berger

(2004) show that for a sequence of nested models, the median probability model γMPM:

(γj)MPM ≡







1 if P(γj = 1 | Y) ≡ πj ≥ 1/2

0 otherwise
(5)

is optimal. While the median probability model is not optimal under squared error loss for

general design matrices in regression, Barbieri and Berger (2004) suggest that in practice

the median probability model γMPM is often preferable to the highest posterior probability

model γHPM. The median probability model is also the centroid estimator, which minimizes a

Hamming loss function (Carvalho and Lawrence 2008). Carvalho and Lawrence (2008) argue

that the centroid estimator does a better job of capturing the character of the distribution

than the highest probability model. For general designs, the optimal model for prediction

under squared error loss is the model whose predictions are closest to those under BMA;

when multicollinearity is present this model and the median probability model may be quite

different.

When the number of variables p is greater than 25-30, enumeration of all possible models

in Γ is generally intractable, and sampling or search methods are necessary, irrespective of

whether the goal is to determine an optimal model, or to make inferences and predictions

based on BMA. The BMA package in R utilizes deterministic sampling using the leaps and

bounds algorithm (Furnival and Wilson 1974; Hoeting et al. 1999) which attempts to find

the q “best” models of a given dimension. Because leaps considers all dimensions, this can

be inefficient in large problems. Stochastic search variable selection, SSVS, (George and

McCulloch 1997) and the related MC3 algorithm (Raftery et al. 1997) are popular Markov

Chain Monte Carlo (MCMC) algorithms that can be viewed as providing a (dependent)

stochastic sample of models from the posterior distribution on Γ. While easy to implement

(SSVS is a Gibbs sampler, while MC3 is a random-walk Metropolis sampler), these early

algorithms may mix poorly when covariates are highly correlated; more advanced algorithms

for the variable selection problem that utilize other proposals include adaptive MCMC (Nott
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and Kohn 2005), Swendsen-Wang (Nott and Green 2004) and Evolutionary Monte Carlo

(Liang and Wong 2000; Wilson et al. 2010; Bottolo and Richardson 2008).

Historically, the conjugate Normal-Gamma family of prior distributions has received

widespread attention for model choice in linear models (Raftery et al. 1997; Smith and Kohn

1996; George and McCulloch 1997) as marginal likelihoods can be evaluated analytically. Of

these, Zellner’s g-prior (Zellner 1986) remains perhaps the most popular conventional prior

distribution with marginal likelihoods that may be expressed as a simple function of the

model R2. Mixtures of Zellner’s g-prior, such as the Zellner-Siow Cauchy prior (Zellner and

Siow 1980) or the hyper-g prior of Liang et al. (2008) retain the computational simplicity of

the original g-prior, but resolve many of the inconsistencies that arise from using a fixed g.

For such mixtures, marginal likelihoods may be obtained as a one dimensional integral with

respect to a prior on g, which is available in closed form for the hyper-g prior or may be

approximated via a one dimensional numerical integration or a Laplace approximation in the

case of the Zellner-Siow prior (see the review article by Liang et al. (2008) for computational

and theoretical details).

MCMC methods are often used as a model search strategy for identifying high probability

models for selection or model averaging. When marginal likelihoods are available, these

quantities are often used in place of the MCMC model frequencies for ranking or selecting

models (George and McCulloch 1997) or model averaging over a subset of models (Raftery

et al. 1997) as they provide exact Bayes factors for comparing any two models or exact

(conditional) model probabilities for a restricted set of models. In this context, Clyde (1999)

suggested that sampling models without replacement from the model space may be a more

efficient strategy than re-sampling models if the Monte Carlo frequencies of model visits are

not utilized in estimation. In this paper, we construct a novel algorithm that samples models

subject to the constraint of producing no duplicates. We give conditions under which this

provides perfect samples without replacement from the posterior distribution over models.

For models where these conditions do not hold, we develop a Bayesian adaptive sampling

(BAS) algorithm which provides sequential learning of the marginal inclusion probabilities,

while sampling without replacement.
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The paper is arranged in the following manner. In Section 2, we discuss sampling without

replacement from the space of models and show how to construct an adaptive, stochastic

sampling without replacement algorithm. In Section 3, we discuss several strategies to

provide sampling probabilities which are used to initialize the algorithm. In Section 4, we

compare BAS to MCMC in a simulation study and show that BAS can outperform MCMC

algorithms on several criteria. Sections 5 and 6 illustrate the method in two real data sets:

the U.S. crime data, where enumeration is feasible, and the moderate dimension protein

construct data (Clyde et al. 1996) where exhaustive search is not possible. In Section 7 we

conclude with recommendations and a discussion of possible extensions.

2 SAMPLING WITHOUT REPLACEMENT

Sampling without replacement from a finite population such as the space of models Γ can

be implemented in a variety of ways. The most straightforward sampling mechanism is to

draw a simple random sample without replacement (SRSWOR) of size T from Γ, assigning

equal probabilities to all models in Γ. Although conceptually simple, it is quite likely that

many high posterior probability models will not be included in the sample of models unless

T is large relative to |Γ|.
An improvement over SRSWOR can be achieved by drawing a random sample without

replacement of size T from Γ where the probability of sampling a model depends on a

measure of the model’s “importance” or “size”. In such probability proportional to size (PPS)

sampling, one constructs “size” variables for all models in the model space (ideally such that

they are highly correlated with product of the marginal likelihood and prior probability of

each model), and then samples models with probabilities proportional to their “size”. After a

model is sampled, its size contribution is subtracted off and the size variables of the remaining

models are re-normalized, and the next model is selected using the new size variables. A

complicating factor in implementing PPS sampling is that the sampling frame which specifies

all models and “size” variables cannot be listed exhaustively prior to sampling, as this is of

the same computational complexity as enumerating the model space. In what follows, we

present a novel way to sample from the model space via PPS sampling that bypasses the
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need to construct the sampling frame.

2.1 Sampling without Replacement on Binary Trees

The Bayesian Adaptive Sampling (BAS) algorithm is designed to sample models without

replacement such that the probability of a model being sampled is proportional to some

probability mass function f(γ) with known normalizing constant. In BAS, the model space

Γ is represented by a binary tree with γ1 at the top node followed by γ2, . . . γp respectively,

as shown in Figure 1 with p = 3. Two branches arise from each node j, with the left and

right branches given by γj equal to 0 and 1 respectively. Each model in Γ is represented as

a unique path among 2p possible paths in the binary tree. This form facilitates computing

the re-normalized probabilities without listing all 2p models in advance and permits direct

sampling without replacement from the re-normalized probabilities on the tree. We illustrate

the algorithm first in the case with p = 3 before giving a more formal description of the

algorithm.

2.2 Illustration

Suppose that we want to take samples without replacement from a product Bernoulli distri-

bution of the form f(γ) =
∏p

j=1 ρ
γj

j (1 − ρj)
1−γj . We may draw the first model γ(1) directly

by generating each γj as an independent Bernoulli with probability ρj . In order to sample

without replacement, every time a new model is sampled, one needs to account for its mass

by subtracting off its probability from f(γ) to ensure that there is no duplication and then

draw a new model from the re-normalized probability distribution. Figure 1 provides an il-

lustration of sampling without replacement for p = 3 where the model space contains 2p = 8

models and ρ1 = 3/4, ρ2 = 1/2 and ρ3 = 1/4.

Figure 1 (a) shows the first model γ(1) = (0, 0, 0) being sampled (the branches with a

solid line). Next Figure 1 (b) shows that the mass of the sampled model has been subtracted

off leading to the re-normalized distribution on the tree. Note only the sampling probabilities

along the path of the sampled model require updating to 24/29, 4/5 and 1 for j = 1, 2, and

3 respectively, while the probabilities for the other branches remain unchanged from their
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initial values. The sequence of plots show that as all models below a node are sampled,

the branch receives zero probability. The last plot at t = 8 (Figure 1 (h)), shows that the

last model γ(8) = (0, 1, 0) is sampled with probability 1, thus completely enumerating the

model space. We have shown the probabilities for all the branches at each iteration for

illustrative purposes only; in the implementation they are not calculated/updated until a

node is sampled.

We now give a general description of how the updating of the distribution is achieved.

2.3 Algorithm for Sampling without Replacement on Binary Trees

Any probability mass function may be written as a sequence of conditional and marginal

distributions of the form

f(γ) =

p
∏

j=1

f(γj | γ<j) (6)

where the notation γ<j indicates the subset of inclusion indicators {γk} for k < j. Similarly

we will let γ≥j = {γk} for k ≥ j. For j = 1, f(γ1 | γ<1) ≡ f(γ1) is the marginal distribution

of γ1. Because the γj are binary, we may re-express (6) as

f(γ | ρ) =

p
∏

j=1

(ρj|<j)
γj (1 − ρj|<j)

1−γj (7)

where ρj|<j ≡ f(γj = 1 | γ<j) and ρ is the collection of all {ρj|<j}. After sampling a model

from (7), the distribution on the remaining models is of the same form as (7), but with a

new ρ. The updating of the sampling probabilities, ρ is given by the following theorem:

Theorem 1. Let St denote the set of sampled models at time t and let Γt represent the

remaining unsampled models such that Γt ∪ St = Γ and Γt ∩ St = ∅ with S0 ≡ ∅. Let

f(γ | ρ(t)) denote the current probability mass function of the form given by (7), where ρ(t)

is the set of probabilities {ρ(t)
j|<j} such that f(γ | ρ(t)) assigns probability one to Γt. To begin,

we initialize ρ(0) = ρ.

7



For t = 1, . . . , T , let γ(t) denote the model sampled at the tth step where

γ
(t)
j | γ

(t)
<j ∼ Ber

(

ρ
(t−1)
j|<j

)

and set St = St−1 ∪ {γ(t)}. Let

f(γ
(t)
≥j | γ

(t)
<j, ρ

(t−1)) =

p
∏

k=j

(

ρ
(t−1)
k|<k

)γ
(t)
k

(

1 − ρ
(t−1)
k|<k

)1−γ
(t)
k

(8)

denote the sampling probability of the nodes γ
(t)
k for k ≥ j of the current branch γ(t). For

j = 1, . . . , p, the conditional probabilities ρ
(t−1)
j|<j for the branch γ(t) are updated to

ρ
(t)
j|<j =

ρ
(t−1)
j|<j − f(γ

(t)
≥j | γ

(t)
<j, ρ

(t−1)γ
(t)
j

1 − f(γ
(t)
≥j | γ

(t)
<j , ρ

(t−1))
(9)

while for all other branches

ρ
(t)
j|<j = ρ

(t−1)
j|<j . (10)

Then f(γ | ρ(t)) assigns zero mass to any previously sampled models γ ∈ St and probability

one to the remaining space of models Γt = Γt−1 − {γ(t)}.

The proof is given in the Supplemental Materials. The key idea of the proof and algorithm

is showing that the ρ
(t)
j|<j are the conditional inclusion probabilities for the new model space.

Recall that the inclusion probabilities by definition satisfy ρ
(t)
j|<j ≡

∑

γ≥j
f(γ≥j | γ<j , ρ

(t))γj.

To update the old inclusion probabilities to the new restricted space Γt = Γt−1 − {γ(t)}, we

subtract the mass of γ
(t)
≥j times γ

(t)
j in the numerator and re-normalize by dividing by the

mass of the new smaller space:

ρ
(t)
j|<j =

∑

γ≥j
f(γ≥j | γ

(t)
<j , ρ

(t−1))γj − f(γ≥j)
(t) | γ

(t)
<j, ρ

(t−1))γ
(t)
j

∑

γ≥j
f(γ≥j | γ

(t)
<j, ρ

(t−1)) − f(γ
(t)
≥j | γ

(t)
<j, ρ

(t−1))
.

Using the definition of ρ
(t−1)
j|<j , it is straightforward to show that this simplifies to (9), thus
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proving that f(γ | ρ(t+1)) gives the probability distribution on the new model space after

removing the current sampled model.

The updated probabilities ensure that all previously sampled models receive probability

zero and that all models will be sampled in T = 2p steps. For all other branches that do

not include γ(t), the ρ
(t)
j|<j will remain unchanged from the value at the previous iteration

ρ
(t−1)
j|<j . The benefit of this representation is that only the ρj|<j’s along the paths of sampled

models need to be stored (which is less than O(St)) and only the ρ
(t)
j|<j on the path of the

current sampled model need to be updated at each iteration. By representing the model

space as a recursive set of linked lists and effective use of pointers we may efficiently traverse

and update probabilities only when required. Pseudo code for the algorithm is given in the

Supplemental Materials.

2.4 Sampling without Replacement from Posterior Distributions

In theory any posterior distribution may be decomposed in the form given by (6) allowing

us to generate “perfect” samples without replacement from Γ. In practice, the sequence of

conditional probabilities are generally unknown unless there is additional structure in the

problem, such as posterior independence (Clyde 1999) as in the case of design matrices with

orthogonal columns or limited dependence such as a Markov property. Otherwise in the

general case, the computational complexity of finding all conditional probabilities for the

initial ρ is equivalent to that of enumerating the space.

Nevertheless, we can sample without replacement from a sequence of distributions that

are “close” to our target. In the next section, we construct an adaptive algorithm for sampling

without replacement from the space of models.

3 BAYESIAN ADAPTIVE SAMPLING

Motivated by the optimality of the median probability model of Barbieri and Berger (2004)

and the equivalent centroid model of Carvalho and Lawrence (2008), we sample without

replacement using {ρj|<j = πj}, where πj is the marginal posterior inclusion probability of
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variable j. Under a posterior model of independence for the inclusion indicators γj, the size

variables formed with the posterior marginal inclusion probabilities are perfectly correlated

with the true posterior model probabilities. While perfect correlation does not hold generally,

the model of independence using the current estimates of posterior inclusion probabilities

provides a first order approximation to the posterior model probabilities, and, as we prove

in Theorem 2 in the Supplemental Materials, is the closest product Bernoulli model to the

posterior distribution, where closest is defined in terms of Kullback-Leibler divergence.

If the ensemble of models suggests that a variable is important/unimportant as measured

by the marginal inclusion probability, then proposing to include/exclude it based on the

marginal inclusion probabilities may be a more efficient way to identify other good models.

In the extreme, with a pair of perfectly correlated non-null predictors, the marginal inclusion

probabilities will be close to 0.5; sampling with the inclusion probabilities will permit one to

make global moves easily and visit the multiple modes.

The marginal posterior inclusion probabilities are unknown prior to sampling (except in

the orthogonal case above). We start with an initial estimate and then adaptively update

the values using the marginal likelihoods from the sampled models. We first describe the

updating scheme, and then suggest possible choices for the initial sampling probabilities.

3.1 Adaptive Updating of the Sampling Inclusion Probabilities

As models are continually sampled, it is appealing to update the sampling inclusion probabil-

ities sequentially with the current estimate of the marginal posterior inclusion probabilities

π̂
(t)
j =

∑

γ∈St
p(Y | Mγ)γj

∑

γ∈St
p(Y | Mγ)

(11)

where St is the set of models that have been sampled at time t. Note that when the number

of iterations is equal to the population size i.e. T = 2p, these estimates recover the true

marginal posterior inclusion probabilities, πj . This is similar in spirit to a desirable finite

sample property called Fisher-consistency (Fisher 1922) where the estimator will recover the

population quantities when applied to the entire population.
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Adaptive updating does come with a price. If we update ρ with π̂(t), we also have to

re-normalize the distribution over the binary tree to obtain the new {ρ(t)
j|<j} that ensure that

previously visited models receive zero probability under the new estimates of πj . Currently,

this is the most expensive step in the algorithm as it requires one to retrace the sequence of

sampled models and adjust the sampling probabilities over previously sampled branches. A

compromise is to sample initially using ρ = ρ(0), then every U iterations update ρ(0) using

π̂(U) if ‖π̂(t) − π̂(t−U)‖2/p > δ for some δ > 0. For large problems, updating periodically

when the marginal inclusion probabilities have changed significantly, rather than at every

iteration balances computational cost with improved sampling probabilities. Also, care must

be taken not to adapt too early, as estimates π̂
(t)
j may be one or zero, if the corresponding

γj is always one or zero in the sample St. In practice, we bound the sampling inclusion

probabilities ρ away from 0 or 1 by constraining ρ
(t)
j|<j ∈ (ǫ, 1− ǫ), so that all models receive

positive sampling probability. We use ǫ = .025 for the bound on the sampling probabilities

and set δ =
√

ǫ (based on the average change) for determining whether the update step

should be performed.

3.2 Choice of Initial Sampling Inclusion Probabilities

We now discuss some choices for the initial sampling probabilities.

3.2.1 Uniform Probabilities

Setting each ρj|<j equal to 1/2 corresponds to equal probability sampling or SRSWOR ini-

tially. The estimated marginal inclusion probabilities using (11) after the first U draws are a

ratio of Horvitz-Thompson estimates (Horvitz and Thompson 1952) and are approximately

unbiased (Thompson 1992, Ch. 6).

3.2.2 P-value Calibration

A simple strategy is to calibrate p-values to Bayes factors and then probabilities using the

results of Selke et al. (2001). Consider testing a single precise null hypothesis of the form

H0 : β = 0 against the alternative H1 : β 6= 0. If the p-value for the test satisfies p < 1/e,
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then Selke et al. (2001) show that a lower bound for the Bayes factor for comparing H0 to

H1 is −e p log(p), leading to an upper bound on p(H1 | Y) = (1 − e p log(p))−1 (under equal

prior odds). In the linear model context, there are multiple tests that one could consider,

and as a rule p-values from these tests provide lower bounds to Bayes factors for testing

βj = 0 conditional on the other βk for k 6= j.

For constructing initial sampling probabilities, we fit the full model to the data and

obtain p p-values, pj, for testing H0j : βj = 0 versus H1j : βj 6= 0 given that the coefficients

for the remaining variables are not zero. Under equal prior odds of inclusion, we use the

Selke et al. bound to calibrate the p-values to posterior probabilities

ρj|<j =



















1/{1 − epj log(pj)} if pj < 1/e ≈ 0.37

1/2 otherwise

(12)

where as pj → 1/e (from below), the upper bound to the probability converges to 1/2. In the

case of orthogonal columns in the design matrix, the p-value calibration provides an upper

bound to the posterior marginal inclusion probabilities. For non-orthogonal designs we find

this p-value calibration still useful. Variables that are important even after adjusting for all

other variables will have small p-values, and hence large values for ρj|<j. In the case of highly

correlated variables, the associated p-values in the full model may be large, as one may not

need to include the variable in the full model given that the other variables are included. For

p-values greater than 1/e, the approximation reverts to uniform sampling initially for those

variables. This actually allows the algorithm to explore the multiple modes associated with

the inclusion of one of the highly correlated pairs of variables. We denote this the “eplogp”

calibration of p-values.

3.2.3 MCMC Estimates

The eplogp calibration is based on p-values from the full model and is an upper bound

to a conditional inclusion probability rather than the marginal inclusion probability. An

alternative strategy for problems with high correlations among the predictors is to run a
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Markov chain to estimates the marginal inclusion probabilities to provide the initial sampling

probabilities for BAS. There are two estimators of model and inclusion probabilities that are

typically used. The first is based on the ergodic average or Monte Carlo frequencies

p̂MC(Mγ | Y) =
1

T

T
∑

t=1

I(M(t) = Mγ) (13)

π̂MC

j =
1

T

T
∑

t=1

γ
(t)
j =

∑

γ∈Γ

γj p̂MC(Mγ | Y) =
∑

γ∈U

γj p̂MC(Mγ | Y) (14)

where U is the set of unique models that were sampled. As T → ∞, both the estimated

model probabilities and inclusion probabilities converge almost surely to p(Mγ | Y) and πj ,

respectively.

The second approach is based on the estimates of model probabilities normalized over

a subset of models (Clyde et al. 1996; George 1999). In (13-14), the probability of any

unsampled model is estimated as zero, while the Monte Carlo frequencies for models in U

are noisy versions of the conditional probabilities of models restricted to U. If we replace the

Monte Carlo relative frequencies with their expectations conditional on γ in U, this leads to

p̂RM(Mγ | Y) ≡ p(Mγ | Y)
∑

γ∈U
p(Mγ | Y )

I(γ ∈ U) =
p(Y | Mγ)p(Mγ)

∑

γ∈U
p(Y | Mγ)p(Mγ)

I(γ ∈ U) (15)

π̂RM

j =
∑

γ∈U

γj p̂RM(Mγ | Y). (16)

While biased under repeated sampling, the re-normalized estimates are both Fisher consis-

tent and asymptotically consistent (Clyde and Ghosh 2010).

4 SIMULATED DATA

We compare BAS to SRSWOR and MCMC methods using simulated data with p = 15 and

n = 100 so that the exact posterior model probabilities may be obtained by enumeration of

the model space. All columns of the design matrix except the ninth were generated from in-
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dependent N(0, 1) random variables and then centered. The ninth column was constructed so

that it’s correlation with the second column was approximately 0.99. The regression parame-

ters were chosen as α = 2, β = (−0.48, 8.72,−1.76,−1.87, 0, 0, 0, 0, 4.00, 0, 0, 0, 0, 0, 0)′ and φ =

1. For the parameters in each model (1), we use Zellner’s g-prior (Zellner 1986; Liang et al.

2008) with g = n,

p(α, φ | γ) ∝ 1/φ, βγ | γ, φ ∼ Npγ

(

0, g(Xγ

′Xγ)−1/φ
)

(17)

and pγ is the rank of Xγ, which leads to the marginal likelihood of a model proportional to

p(Y | Mγ) ∝ (1 + g)
n−pγ−1

2 {1 + g(1 − Rγ

2)}− (n−1)
2 (18)

where Rγ

2 is the usual coefficient of determination; with this scaling, the marginal likelihood

of the null model is 1.0. To complete the prior specification, we use a uniform prior distri-

bution over the model space, p(Mγ) = 1/2p. Under these prior distributions and with the

data generated as above, the posterior marginal inclusion probabilities are close to 0.5 for

predictor variables two and nine, leading to a bimodal posterior distribution over the model

space.

For our simulation study we consider two Metropolis-Hastings algorithms. At iteration t,

the MCMC Model Composition or MC3 algorithm of Madigan and York (1995) and Raftery

et al. (1997) uniformly selects a coordinate j at random and then γ∗ is proposed by setting

γ∗
j = 1 − γ

(t)
j with γ∗

k = γ
(t)
k for k 6= j with γ∗ accepted with probability min(1, p(γ∗ |

Y)/p(γ | Y). This is equivalent to the antithetic method A in Nott and Green (2004), who

show that this has smaller asymptotic variances for ergodic averages than the Gibbs sampler.

Because one-at-a time updates may exhibit poor mixing with highly correlated variables, we

consider an additional update proposal that randomly selects a variable included in the

current model γ(t) (if the current model is not the full model or null model) and then swaps

it with a randomly selected variable excluded in the current model. For the Random-Swap

(RS) algorithm we propose a new state using the MC3 proposal with probability ω(γ(t)) and

otherwise use the swap proposal with probability 1 − ω(γ(t)), where ω(γ(t)) = 1 for the full
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and null models and is 1/2 otherwise. This is similar to the reversible-jump MCMC method

of Denison et al. (1998) (DMS) adopted by Nott and Green (2004) for the variable selection

problem. We have not included the Adaptive MCMC (AMCMC) sampler of Nott and Kohn

(2005) in this comparison as we found that there was little difference between it and the

Metropolized Gibbs sampler (a random scan version of MC3) used in an earlier version of

the manuscript; one explanation is that single block AMCMC sampler uses the past samples

to estimate the conditional probability that γj = 1 given the remaining elements γ(−j) and

Y (approximating the full conditional in the Gibbs sampler) which lead to similar mixing

problems as the other one-at-a-time update schemes. The RS sampler which uses a simple

exchange step improves upon the one-at-a-time update schemes allowing one to escape local

modes. Nott and Green (2004) show that the DMS algorithm often does well as their more

complicated (and harder to automate) Swendsen-Wang algorithms.

4.1 Comparison to SRSWOR

We first compare SRSWOR to BAS using the p-value calibration for determining the initial

sampling probabilities ρ. The values for ρ are updated using the current estimates of the

posterior marginal inclusion probabilities every 500 iterations (at most). We ran both algo-

rithms for the same number of iterations, which varied from 1 to 10 percent of the model

space (215 = 32, 678). Figure 2 shows the box-plots of the total posterior probabilities of

unsampled models for BAS and SRSWOR based on 100 repetitions of each algorithm. The

posterior probability of unsampled models decreases linearly for SRSWOR, while with BAS

it appears to decrease exponentially. Because BAS adaptively updates the sampling prob-

abilities potentially every 500 iterations, its running time is longer than SRSWOR. While

SRSWOR can sample 20% of the 215 = 32, 768 models in the same time that BAS can sample

10%, the probability of unsampled models is significantly lower for BAS; around 5% of the

mass remains unsampled for BAS compared to approximately 80% for SRSWOR indicating

that, even when taking into account running time, BAS is much more effective than SRSWOR

at finding high probability models.
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4.2 Comparison to MCMC Algorithms

Next, we compare BAS with the MCMC algorithms MC
3 and RS based on running each

algorithm for the same number of iterations (10% of the model space or 3,276 iterations).

To increase the effective sample size, we also include a thinned version of RS (RS-Thin),

based on running p times longer and saving every pth draw. The results based on running

each algorithm 100 times with different seeds are summarized in Figure 3. Clearly, BAS

outperforms the MCMC algorithms in terms of total posterior mass for the same number of

iterations.

Table 1 and Table 2 show estimates of the bias and mean squared error, respectively,

for estimating the marginal inclusion probabilities, model probabilities and mean of Y using

the different algorithms in the 100 simulated data sets. For scalar quantities, we report the

average bias over the 100 simulations, bias(∆) =
∑100

i=1

(

ˆE[∆|Y]
(i) − E[∆ | Y]

)

/100 while for

a J dimensional vector, e.g. µ, bias is expressed as (
∑J

j (bias(∆j)
2/J)1/2. The mean squared

error for a scalar ∆ is MSE(∆) =
∑100

i=1(
ˆE[∆|Y]

(i)−E[∆ | Y])2/100, while for vector quantities

we report the average MSE of the components. Among the three MCMC algorithms (MC3,

RS, RS-Thin), the estimates based on ergodic averages are almost uniformly better in terms

of bias than estimates based on the re-normalized probabilities; the exception being the

estimates with MC
3 for the two inclusion probabilities corresponding to variables 2 and 9,

whose correlation was 0.99. The addition of the random swap step effectively eliminates

this bias. As expected BAS does exhibit some bias, but this is on the order of 1% for the

inclusion probabilities, with a trend of overestimating larger inclusion probabilities, while

underestimating smaller inclusion probabilities. Interestingly, the bias in SRSWOR is often

of the opposite sign of the other re-normalized estimators, leading to underestimation of

inclusion probabilities. For estimating the mean µ under model averaging BAS has the

smallest bias compared to MC3 and RS (based on the same number of number of iterations).

While the re-normalized estimates under the MCMC algorithms exhibit small variances,

the bias term often dominates the MSE, so that there is no clear winner between the re-

normalized and MC estimators here. While SRSWOR often has less bias than BAS it has

the most variability of any of the methods. On the other hand, BAS has the smallest MSE
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compared to any of the MC
3 and RS estimates for the same number of iterations. While RS-

Thin using ergodic averages generally has the smallest bias overall, if BAS were run for the

equivalent number of proposed model evaluations, BAS would have enumerated the model

space and provided exact estimates. Even without enumeration, BAS often has MSEs that

are better than RS-Thin.

Quantity Truth BAS MC3 RS RS-Thin SRSWOR

∆ πj eplogp uniform MC RM MC RM MC RM

γ12 0.09 -1.23 -1.35 -0.14 -4.21 0.35 -3.80 0.01 -2.54 1.77
γ14 0.10 -1.14 -1.25 -0.23 -4.23 0.05 -3.89 -0.02 -2.44 0.92
γ10 0.11 -1.14 -1.30 -0.10 -4.23 0.11 -4.02 0.00 -2.56 0.93
γ8 0.12 -0.97 -1.11 0.36 -3.94 -0.51 -3.81 0.08 -2.36 1.45
γ6 0.13 -1.05 -1.27 -0.65 -4.64 0.06 -4.24 0.06 -2.57 0.53
γ7 0.14 -1.04 -1.18 -0.13 -4.41 0.08 -4.12 0.06 -2.53 0.04
γ13 0.15 -1.15 -1.24 -0.49 -4.76 0.28 -4.32 0.11 -2.54 0.41
γ11 0.16 -1.13 -1.28 -0.38 -4.59 -0.10 -4.44 -0.05 -2.60 0.82
γ15 0.17 -0.78 -0.92 -0.58 -4.15 -0.19 -3.74 0.09 -2.24 1.56
γ5 0.48 -0.25 -0.38 -0.29 -0.94 0.46 -1.17 -0.12 -0.55 2.32
γ9 0.51 -0.32 -0.26 -1.79 -2.20 -0.22 -1.53 -0.14 -1.04 2.12
γ2 0.54 0.34 0.27 1.73 0.29 0.35 -0.25 0.14 -0.40 -1.45
γ1 0.74 1.19 0.91 -0.23 3.39 0.41 3.69 0.21 2.10 0.17
γ3 0.91 1.56 1.30 -0.40 3.59 -0.14 4.00 0.06 2.35 -0.73
γ4 1.00 0.00 0.00 0.01 0.01 -0.02 0.01 -0.00 0.01 -0.00

I(γ) - 3.06 3.29 3.72 22.57 2.95 20.57 1.00 9.23 20.26
µ - 6.71 5.95 10.62 19.53 10.75 20.35 1.54 11.88 6.63

Table 1: Bias for simulated data calculated from 100 replicates: the values reported in the
table are Bias ×102 for ∆ = γj, Bias ×105 for ∆ = I(γ), and Bias ×103 for ∆ = µ.

5 U.S. CRIME DATA

We illustrate BAS and the RS algorithm using the US Crime data of Vandaele (1978), which

has been considered by Raftery et al. (1997), among others, as a test-bed for evaluating

methods for model selection and model averaging. There are 15 predictors and following

Raftery et al. (1997), we log transform all continuous variables. For illustration, we use the

g-prior with g = n and uniform distribution over the model space as in the simulation study

in Section 4.
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Quantity Truth BAS MC3 RS RS-Thin SRSWOR

∆ πj eplogp uniform MC RM MC RM MC RM

γ12 0.09 1.23 1.35 2.77 4.27 2.14 3.83 0.65 2.54 6.12
γ14 0.10 1.14 1.26 2.92 4.31 2.59 3.95 0.63 2.44 5.26
γ10 0.11 1.15 1.31 3.06 4.31 2.40 4.07 0.68 2.57 5.58
γ8 0.12 0.97 1.12 2.77 4.01 2.23 3.87 0.76 2.37 6.24
γ6 0.13 1.05 1.28 3.12 4.74 2.72 4.31 0.78 2.58 6.28
γ7 0.14 1.05 1.19 3.45 4.52 2.50 4.17 0.78 2.54 5.26
γ13 0.15 1.15 1.24 3.50 4.87 2.44 4.38 1.00 2.55 6.22
γ11 0.16 1.13 1.29 3.64 4.71 3.01 4.52 0.87 2.61 6.86
γ15 0.17 0.78 0.93 3.92 4.27 3.32 3.84 0.79 2.24 7.93
γ5 0.48 0.27 0.40 3.69 1.41 4.35 1.59 1.21 0.60 14.14
γ9 0.51 0.37 0.39 16.70 5.62 6.93 2.08 2.08 1.07 13.35
γ2 0.54 0.39 0.40 16.56 5.25 6.91 1.46 2.15 0.48 13.05
γ1 0.74 1.20 0.92 4.10 3.55 4.51 3.90 1.30 2.11 11.13
γ3 0.91 1.57 1.31 2.96 3.66 3.42 4.10 0.69 2.36 4.48
γ4 1.00 0.00 0.00 0.01 0.01 0.17 0.01 0.03 0.01 0.00

I(γ) - 3.16 3.40 33.61 25.35 29.43 22.12 10.27 9.57 156.23
µ - 6.75 6.01 28.56 21.15 25.53 21.20 5.93 11.94 51.85

Table 2: Square root of the mean square error (RMSE) from the 100 simulated data sets:
the values reported in the table are RMSE ×102 for ∆ = γj, RMSE ×105 for ∆ = I(γ), and
RMSE ×103 for ∆ = µ.

We ran BAS for 215 iterations with the initial ρj’s determined by the p-value calibration

and adaptively updated the sampling inclusion probabilities ρj at most every 500 iterations.

We ran RS for 15 ·215 iterations with every 15th model saved for RS-Thin. Figure 4 contrasts

the trace-plots of log marginal likelihoods of sampled models from BAS and RS-Thin. The

performance of BAS in terms of finding high probability models is comparable to RS-Thin.

While BAS is designed to sample without replacement, the MCMC algorithm revisits models

according to their posterior probabilities. Both methods find high probability models rela-

tively quickly, but RS-Thin spends a significant time revisiting them (the points in grey),

and never completely explores the space of models, visiting 2, 994 unique models, while BAS

sampled all 32, 768 in 1/15th of the number of iterations. Models not sampled by RS-Thin,

however, generally receive low posterior probability individually, with a total unsampled

mass of 0.037. For this example, BAS has zero variance (and zero bias) for the inclusion

probabilities or other quantities and leaves no lingering questions regarding missed pockets
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of high probability.

6 PROTEIN ACTIVITY DATA

In this example we compare BAS and the thinned RS sampler (RST) on the protein ac-

tivity data previously analyzed by Clyde and Parmigiani (1998). Coding the categorical

variables by indicator variables and considering all main effects and two-way interactions,

and quadratic terms for the continuous variables, the resulting linear model has a total of

p = 88 potential candidate predictors. The corresponding model space of 288 models poses

a challenging model search problem because of high correlations among some variables in

the design matrix (maximum correlation is 0.99, with 17 pairs of variables having correla-

tions above 0.95). Motivated by the difficulty of model search using MCMC in this problem

Clyde et al. (1996) developed an importance sampling algorithm using orthogonal variables

for BMA. Here we return to the problem using the original predictors and the g-prior with

g = n = 96 to compare BAS to RST.

We ran the RS algorithm for 88 · 220 iterations, saving every 88th model for RST. We ran

BAS using four different choices for the initial sampling probabilities: uniform probabilities

(BAS-uniform), the eplogp calibration (BAS-eplogp), and the RST Monte Carlo estimates

of inclusion probabilities (BAS-RST-MC) and the RST re-normalized estimates of inclusion

probabilities (BAS-RST-RM). BAS-uniform and BAS-eplogp were run for 220 iterations each,

while for the combined BAS-RST-MC and BAS-RST-RM methods we used the first 219 models

from RST to estimate marginal inclusion probabilities and then ran BAS for 219 iterations,

using only the models from BAS for subsequent inference. For the four variants of BAS we

updated the sampling probabilities every 10,000 iterations.

We repeated each procedure ten times, and found that the distribution of log marginals

was fairly consistent from run to run (Figure 5) within a method, with BAS-RST-MC exhibit-

ing the greatest variability from run to run. Roughly 65% of the variables have initial sam-

pling inclusion probabilities of 1/2 under BAS-eplogp. Although the maximum log marginal

likelihood for RST is higher than that found by BAS-eplogp or BAS-uniform, the middle 50%

of the distribution for BAS-eplogp was roughly 5 orders of magnitude higher than RST. The
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combination of BAS with the MCMC estimates of initial sampling probabilities consistently

finds higher log-marginal likelihoods than either RST, BAS-uniform, or BAS-eplogp, with the

median log marginal roughly 7 orders of magnitude higher than RST alone. Note that the

models depicted in the 10 boxplots for BAS-RST-MC and BAS-RST-RM do not include any

of the models from the corresponding RST sample that were used to estimate the sampling

probabilities for BAS. In terms of finding high probability models, the combination of MCMC

and BAS is better than either algorithm alone.

It is evident from Figure 5 that there is a difference in the median sampled log marginal

likelihoods which may have a substantial impact on the estimates of marginal inclusion

probabilities. Figure 6 shows pairwise scatterplots of the estimated posterior inclusion prob-

abilities averaged over the 10 simulations. Despite the fact that the RST-RM and RST-MC

estimates are calculated from the same chain, the two estimators are not in perfect agree-

ment, with a number of variables having inclusion probabilities near one or zero for RST-RM

while being closer to 0.5 for RST-MC; suggesting that the chains have not converged. The

SRSWOR estimates of inclusion probabilities appear to be bounded away from both zero

and one (which is consistent with the bias observed in the simulation study). While the

RST-MC estimates had the least bias in the simulation study, a surprising feature is that

the smaller RST-MC estimates are in close agreement with SRSWOR suggesting that the

smaller inclusion probabilities in RS-Thin have not converged. The estimates from BAS-

eplogp are in close agreement with BAS-uniform (not depicted), but much less so with the

other approaches. While BAS-eplogp and RST-MC agree for variables with large inclusion

probabilities, there is poorer agreement for the other variables, where the estimates from

BAS are much smaller. There are striking differences in their estimates for variables 11 and

54, with average estimates of (0.89, 0.14) for BAS-eplogp and (0.50, 0.60) for RST-MC. BAS-

eplogp shows more variation in these inclusion probabilities across runs with estimates often

near one or zero, suggesting multiple modes.

For problems with high correlation, the median probability model (MPM), highest prob-

ability model (HPM) and the model closest to BMA can be very different. Using the average

of the estimates from RST-MC the MPM has 21 variables, including both variables 11 and
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54, and has a log marginal likelihood of around 37.8. The HPM includes 28 variables, with

all variables in the MPM except variable 11 and has a log marginal likelihood of 41.8. De-

spite differences in variables, the predictions under these two models are fairly close, with a

correlation of 0.94. While the model averaged predictions vary somewhat depending on the

sampling method, the models closest1 to BMA tend to be more similar to the HPM than the

MPM in this case.

Next, we compare the performance of BAS and RST based on leave-one-out cross-

validation using model averaging, where the CVRootMSE is defined as

CVRootMSE =

√

√

√

√

1

n

n
∑

i=1

(Yi − Ŷ(i))2 (19)

where Ŷ(i) is the predicted value under BMA based on leaving out the ith observation. For

each case, we computed the prediction averaging over the top 10,000 models (Table 3). While

Table 3: Square root of the cross validation mean squared error (CVRootMSE) for the
protein activity data using SRSWOR, BAS with the four initial inclusion probabilities and
the RS-Thin (RST) algorithm using the ergodic average (MC) and re-normalized probabilities
(RM).

Algorithm SRSWOR BAS BAS BAS-RST BAS-RST RST RST

uniform eplogp MC RM MC RM

CV-RMSE 0.59 0.51 0.67 0.68 0.71 0.69 0.70

BAS-uniform did not find the highest probability models in the full data set, interestingly

it leads to the smallest CVRootMSE of all the cross-validation procedures. Clyde and

Parmigiani (1998), reported a CVRootMSE of 0.527 based on the top models found by

SSVS, however, their estimate is not based on full cross-validation, as the list of models used

in model averaging was obtained by running the MCMC algorithm once for the entire data

(due to computational constraints); case-deletion updates were used to provide CV estimates

of the model probabilities and predictions conditional on the list of models.

1The model that minimizes |
hatYMγ

− ŶBMA‖2 is optimal for selection under squared error loss.
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7 DISCUSSION

In this paper we introduced BAS, a novel sampling without replacement algorithm for the

Bayesian variable selection problem. Unlike MCMC algorithms, BAS is guaranteed to enu-

merate the space of models if the number of iterations is equal to the dimension of the

model space, 2p (computational resources permitting). Where enumeration is not feasible,

BAS seamlessly transitions to a stochastic sampling algorithm. BAS with various choices for

the initial inclusion probabilities is implemented in C in the R package BAS, available from

CRAN or http://www.stat.duke.edu/~clyde/BAS. While we have used the g-prior with

g = n for the examples in this paper, the BAS package also includes mixtures of g-priors such

as the well-known Zellner and Siow (1980) Cauchy prior distribution on βg or the hyper-g

distribution of Liang et al. (2008), as well as alternative prior distributions on the models.

We are working currently on extensions to include generalized linear models using Laplace

approximations for marginal likelihoods.

In the simulation study where we could enumerate to confirm results, using BAS to

sample a fraction of the model space resulted in improved MSE for various quantities of

interest over standard MCMC algorithms, suggesting that in modest problems that preclude

enumeration, BAS has a competitive advantage over the MCMC algorithms considered. In

the higher dimensional example where the random swap MCMC algorithm almost sampled

without replacement, we found that estimates of inclusion probabilities varied greatly across

the different methods. While we can be confident that the variables that had large inclusion

probabilities across all of the methods are likely important predictors, the high correlations

among some of the variables may dilute inclusion probabilities making them less useful

as a posterior summary of variable importance, i.e. an inclusion probability may be small

because the variable is unimportant or because there are several other correlated variables

that “dilute” the posterior mass among the competing variables (George 1999). Although

estimates of inclusion probabilities with BAS are likely biased in this case, BAS was able

to identify a substantial number of models with high marginal likelihoods, and BMA using

BAS had better out of sample performance than the MCMC only methods considered here.

The protein example suggest that the use of MCMC to construct sampling probabili-
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ties for BAS leads to some improvements for exploring higher dimensional problems in the

presence of strong correlations. Incorporating local proposals, as in MCMC, that explore a

neighborhood around a previously sampled model (HPM, MPM, or random selection) may

prove to be beneficial in higher dimensional problems, although it is more difficult to con-

struct while sampling without replacement. For highly correlated design matrices, sampling

from the marginal inclusion probabilities may be inefficient in higher dimensions. Theorem

1 suggests that more efficient sampling designs may be constructed by incorporating depen-

dence in the initial ρ. The sequence of conditional inclusion probabilities could be estimated

from an initial MCMC sample in the spirit of the adaptive MCMC algorithm of Nott and

Kohn (2005) and adapted as sampling progresses, leading to a global approximation to the

joint posterior distribution. Further comparisons with state-of-the art algorithms (Nott and

Green 2004; Liang and Wong 2000; Bottolo and Richardson 2008) that incorporate more

complex global moves will be useful for high dimensional problems.

While estimates from BAS are Fisher consistent, estimators based on re-normalized prob-

abilities, such as (11), used in BAS or with MCMC that ignore the sampling mechanism will

be biased, with the bias going to zero as more models are sampled. In principle, the Horvitz-

Thompson estimator may be used to construct unbiased estimates of the numerator and

denominator of (3) by weighting each model’s marginal likelihood inversely to the proba-

bility that they are included in the sample (similar to importance sampling reweighting in

sampling with replacement). Unfortunately, with MCMC or PPS sampling algorithms the

probability that a model is included in the sample is generally unavailable. Construction of

alternative estimators to adjust for sampling bias and studying their theoretical properties

in higher dimensional problems is another important direction for future work.

Finally, because of the binary tree structure in BAS, it is straightforward to implement

the algorithm in parallel. With 2k available processors, one may enumerate the model

indicators for the first k variables, and then run BAS conditioning on these variables by

setting their inclusion probabilities to γj for j = 1, . . . k in each of the 2k sub-branches.

Using the snow package in R this may be accomplished with the existing code. We expect

significant improvements in speed are also possible with an implementation using modern
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graphics processing units.
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SUPPLEMENTAL MATERIALS

R-package: R-package BAS to perform the adaptive sampling methods described in the

article. The package includes the protein construct data. (GNU zipped tar file,

BAS 0.90.tar.gz)

Data and Code: Data (simulated and real), C and R code for MCMC sampling algorithms,

post-processing samples and creating figures described in the article. (zip file containing

the data, code and a read-me file (readme.pdf), code-rev2.zip)

Proofs and Pseudo code: Proofs of theorems in the paper and Pseudo code for the BAS

algorithm. (proofs+pseudocode.pdf)
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Figure 1: An Illustration of the BAS algorithm for p = 3 with inclusion probabilities plotted
along the branches of the tree; here solid lines and rectangles represent the model sampled
at the tth draw, and dashed rectangles represent models sampled at previous draws.
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Figure 2: Comparison of BAS and SRSWOR based on the same number of iterations for the
simulated data. Box-plots are based on 100 replicates of each algorithm.
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Figure 3: Box-plots of unsampled mass for BAS MC3, RS and RS-Thin based on 100 repli-
cations of each algorithm. The number of iterations for BAS, MC3and RS were equal to 10%
the dimension of the model space (215), while RS-Thin was run 15 times longer, with every
15th model saved.
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Figure 4: Trace plots in the U.S. Crime data for BAS ( 215 iterations) and RS-Thin (15 · 215

iterations, saving every 15th model). Black points correspond to the first visit of a model
while grey points (in RS-Thin) correspond to models that have been revisited by the Markov
chain.

28
32

36
40

Replicates

lo
g(

M
ar

gi
na

l L
ik

el
ih

oo
d)

BAS
eplogp

BAS
uniform RST

BAS
RST−RM

BAS
RST−MC

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

Figure 5: Comparison of the log-marginal likelihood in the protein data of the top 100,000
unique models visited by BAS-eplogp, BAS-uniform, thinned version of Random Swap (RST),
BAS with Monte Carlo estimates of inclusion probabilities from the RST samples (BAS-RST-
MC), and BAS with re-normalized estimates of inclusion probabilities (BAS-RST-RM) from
the RST samples.
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Figure 6: Comparison of estimates of marginal posterior inclusion probabilities for the pro-
tein data using simple random sampling without replacement (SRSWOR), BAS with uni-
form sampling probabilities, (BAS-unif), Monte Carlo estimates from the thinned version of
Random Swap (RST-MC), BAS with RST-MC initial sampling probabilities (BAS-RST-MC),
re-normalized estimates of inclusion probabilities from the thinned Random Swap (RST-RM)
and BAS with initial RST-RM sampling inclusion probabilities (BAS-RST-RM). The points
are based on the average of the 10 replicates from each run.
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