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Abstract

When multiple data owners possess records on different subjects with the same set of
attributes—known as horizontally partitioned data—the data owners can improve analyses by
concatenating their databases. However, concatenation of data may be infeasible because of con-
fidentiality concerns. In such settings, the data owners can use secure computation techniques
to obtain the results of certain analyses on the integrated database without sharing individual
records. We present secure computation protocols for Bayesian model averaging and model
selection for both linear regression and probit regression. Using simulations based on genuine
data, we illustrate the approach for probit regression, and show that it can provide reasonable
model selection outputs.
Key Words: Bayesian model averaging; Data confidentiality; Disclosure limitation; Markov
chain Monte Carlo; Regression; Variable selection.

1 Introduction

In many contexts, data owners can improve statistical analysis by concatenating records from

different databases. For example, genomics researchers at different universities or labs may seek to

combine their small samples, so as to increase the precision of statistical models; local educational

agencies might want to combine their students’ data to have greater representation of the general

student population; and, several companies may seek to pool data on their customers to improve

marketing analyses. These settings are examples of horizontally partitioned data, i.e., multiple data

owners possess records on different subjects with the same set of attributes. Often, however, the

data owners are not willing or even legally permitted to combine their databases because of concerns

about the confidentiality of data subjects’ identities and sensitive attributes. These concerns can

persist even after stripping records of unique identifiers like names, addresses, and tax identification

numbers (Willenborg and de Waal, 2001).
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Recently, researchers in computer science and statistical science have developed techniques that

allow data owners to perform analyses on the combined data without actually sharing individual

records. These techniques include secure linear regression analyses (Du et al., 2004; Karr et al.,

2005), secure data mining with association rules (Kantarcioglu and Clifton, 2002; Vaidya and

Clifton, 2002; Evfimievski et al., 2004), secure model based clustering (Vaidya and Clifton, 2003;

Lin et al., 2005), secure logistic regression (Slavkovic et al., 2007), and secure adaptive regression

splines (Ghosh et al., 2007). The literature on privacy-preserving data mining (Agrawal and Srikant,

2000; Lindell and Pinkas, 2000) contains related results.

In this article, we develop secure Bayesian model selection and model averaging for normal

linear regression and probit regression with horizontally partitioned data. In Section 2, we review

Bayesian model choice and secure computation protocols. In Section 3 and 4, we present the

protocols for secure Bayesian model selection and model averaging for linear regression and probit

regression, respectively. In Section 5, we apply the protocols for secure model selection for probit

regression to data on the predictors of abnormal heart conditions. In Section 6, we conclude with

a brief summary.

2 Background: Bayesian Model Choice and Secure Computation

2.1 Bayesian Model Choice

To fix ideas of Bayesian model averaging (BMA) and model selection, we present an overview of

BMA for normal linear regression. Let Y = (Y1, . . . Yn)′ be a vector of univariate response variables,

and let x1, x2, . . . ,xp be the set of corresponding p covariates. Let γ =

(γ1, . . . γp)
T ∈ Γ be a vector of indicator variables, such that γj = 1 when xj is included as a

column in the design matrix Xγ and γj = 0 otherwise. Thus, all 2p models can be represented by

the possible configurations of γ. For any model γ, the linear regression of Y on X is

Y | X, α,βγ, φ,γ ∼ N(1α + Xγβγ, In/φ), (1)

where 1 is a vector of ones of length n, α is the intercept, βγ is the vector of regression coefficients,

φ is the precision parameter (reciprocal of the error variance), and In is an n × n identity matrix.

After specifying the choice of prior probabilities for models, p(γ), and prior distributions for

model-specific parameters, p(θγ|γ), the marginal likelihood of Y under model γ is obtained by
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integrating the likelihood of Y with respect to the prior distribution of model-specific parameters;

that is,

p(Y | X, γ) =

∫
p(Y | X, θγ, γ)p(θγ | X, γ)dθγ, (2)

where θγ = (α,βγ, φ). The posterior probability of any model γ is given by

p(γ | X,Y) =
p(Y | X, γ)p(γ)∑

γ∈Γ p(Y | X, γ)p(γ)
. (3)

For model selection, one can choose the γ with the highest posterior probability, the median

probability model of Barbieri and Berger (2004) which includes all covariates xj with p(γj = 1 |

X,Y) ≥ 0.5, or a set of high probability models.

An alternative to relying on a single model or a set of high probability models is to carry out

inference and predictions based on all models using BMA. Under BMA, the posterior distribution

of any quantity of interest is given by a weighted average of model-specific posterior distributions,

with weights determined by the posterior probabilities of models. The importance of variable xj is

often summarized by its marginal posterior inclusion probability,

p(γj = 1 | X,Y) =
∑

γ∈Γ:γj=1

p(γ | X,Y). (4)

For regression problems with 20 to 25 explanatory variables, exhaustive exploration of the

model space is possible, if exact or approximate marginal likelihoods are available (Clyde et al.,

2011). When marginal likelihoods are intractable, one can use methods based on MCMC (Chib,

1995; Carlin and Chib, 1995) or those based on importance sampling, bridge sampling, and path

sampling (Meng and Wong, 1996; Gelman and Meng, 1998). For higher dimensional model spaces,

typically model search algorithms are used with the idea of exploring promising regions of the space,

and BMA is based on the subset of visited models instead of the model space in its entirety.

For further reviews of BMA and Bayesian variable selection, see Hoeting et al. (1999); Della-

portas et al. (2002); Clyde and George (2004) and the references therein. Heaton and Scott (2010)

describe recent developments in computational strategies for BMA in the context of linear models.
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2.2 Secure Summation

Most secure summation protocols assume that the participating parties are “semi-honest:” each

follows the agreed-on computational protocols properly, but may retain the results of intermediate

computations. This assumption rules out scenarios where one or more parties abuse the protocol

to learn information about another party’s individual data values. We assume that the results

of analyses of horizontally partitioned data are shared among all participating data owners and

possibly disseminated to the broader public.

Following the presentations in Karr et al. (2005) and in Ghosh et al. (2007), consider K > 2 semi-

honest data owners, such that owner a has a value va. The owners wish to compute v =
∑K

a=1 va

so that each owner a learns only the minimum possible about the other owners’ values, namely the

value of v(−a) =
∑

ℓ6=a vℓ. A variant of secure summation protocols (Benaloh, 1987) can be used to

perform this computation.

One owner is designated the master owner and numbered 1. The remaining owners are numbered

2, . . . , K. To begin, owner 1 generates a random number R from a uniform distribution (−m, m),

where m is much larger than |va| for all a and not revealed to other owners. Owner 1 adds R to

its local value v1 and sends s1 = (R + v1) to owner 2. Since R is chosen randomly owner 2 learns

essentially nothing about the actual value of v1.

For the remaining owners a = 2, . . . , K − 1, the algorithm is as follows. Owner a receives

sa−1 = (R+
∑a−1

t=1 vt) from which it learns essentially nothing about the actual values of v1, . . . , va−1.

Owner a then computes and passes on to owner a+1 the quantity sa = (sa−1+va) = (R+
∑a

t=1 vt).

Finally, owner K adds vK to sK−1, and sends the result sK to owner 1. Owner 1, which knows R,

then calculates v by subtraction, v = (sK − R) and shares this value with the other owners.

Many secure summation techniques assume that owners know 0 < v < m and use arithmetic

mod m when passing sums. The arithmetic mod m reduces the amount of information leaked

about R in the protocol and helps protect v1 in particular. However, in the contexts we care

about it is likely that owners will not know if some v > 0 or not, and arithmetic mod m does not

determine the sign of v. Thus, this adapted protocol sacrifices some security for flexibility.
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3 Secure BMA for Linear Regression

To illustrate secure BMA for linear regression, we use a discrete uniform prior distribution for the

model space, which assigns equal probabilities to all models,

p(γ) =
1

2p
. (5)

The protocol can be easily extended to more general beta-binomial prior distributions on the model

space. We first show how to implement secure BMA with the popular Zellner’s g-prior (Zellner,

1986; Liang et al., 2008), and then extend the approach to the Zellner-Siow prior (Zellner and Siow,

1980). For these models, the secure BMA on horizontally partitioned data results in mathematically

equivalent results as BMA based on the concatenated data.

Throughout the rest of the article, we assume that the data owners have unique records. If this

is not reasonable, the data owners can use secure record linkage (Churches and Christen, 2004)

to identify and delete duplicates before initiating the protocol. We also assume that owners are

willing to share their sample sizes. If needed, the owners could use secure summation to compute

the total sample size n.

3.1 Secure BMA with Zellner’s g-prior

The Zellner’s g-prior specification for model selection typically includes an improper prior distri-

bution for the intercept α and precision φ, and a multivariate normal prior distribution for the

regression coefficients βγ in each model γ, conditional on φ, so that

p(α, φ | X, γ) ∝ 1/φ

βγ | X, γ, φ ∼ N

(
0,

g

φ
(Xγ

′Xγ)−1

)
. (6)

Several choices for g have been proposed in the literature. We use the unit information prior with

g = n. Without loss of generality, we assume all columns of X have mean zero.

The Zellner’s g-prior is popular for model selection because it leads to a closed form expression

for the marginal likelihood p(Y | X, γ) for any model γ, namely

p(Y | X, γ) ∝ (1 + g)
n−pγ −1

2 × {1 + g(1 − Rγ
2)}−

(n−1)
2 TSS−

(n−1)
2 . (7)
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Here, pγ =
∑

j γj is the dimension of model γ, and TSS =
∑n

i=1(Yi − Ȳ )2. For model γ, SSRγ =

β̂γ

′
Xγ

′
Y, where β̂γ = (Xγ

′Xγ)
−1

Xγ
′Y and α̂ are the ordinary least squares estimates of βγ and

α, respectively. Finally, the coefficient of determination, Rγ
2 = SSRγ/TSS. Note that Xγ does not

include the column of ones corresponding to the intercept. Hence, to calculate SSRγ, nȲ2 does

not need to be subtracted from β̂γ

′
Xγ

′Y.

For any new design point X⋆, we can predict its corresponding response variable Y⋆ using the

expected value under the posterior predictive distribution under BMA. We have

E(Y⋆ | Y,X,X⋆) =
∑

γ∈Γ

E(Y⋆ | Y,X,X⋆, γ)p(γ | Y,X,X⋆), (8)

where E(Y⋆ | Y,X,X⋆, γ) = E[α|Y,X, γ]1+X⋆E[βγ|Y,X, γ], and E[α|Y,X, γ] and E[βγ|Y,X, γ]

denote the posterior means of the regression coefficients under model γ. For the g-prior, the

E[α|Y,X, γ] = Ȳ, and the E[βγ|Y,X, γ] = g
1+g β̂γ.

To implement secure BMA with the Zellner’s g-prior, we need all the components of (7). Since

n is known, the owners can compute the column means of the covariates and Y via p + 1 secure

summation steps. Given Ȳ , each owner can compute their share of TSS, and the components can

be added via another secure summation. After subtracting off the column means to form their

share of the centered design matrix X, the owners need to compute X′X and X′Y. Since each

element of these matrices can be expressed as a sum, the owners can apply element-wise secure

summation to obtain the required matrices.

For any model γ, Xγ
′Xγ is the pγ × pγ matrix formed by collecting the rows and columns

of X′X corresponding to unit entries in the vector γ. One can similarly obtain Xγ
′Y by taking

entries of X′Y corresponding to γj = 1. From these, each owner can compute SSRγ = β̂γ

′
Xγ

′
Y.

The owners now have all the ingredients to calculate Rγ
2, and hence the marginal likelihood in (7).

Given the model-specific marginal likelihoods and posterior means, the owners can perform model

averaging, variable selection, or prediction.

For exhaustive model space explorations, the data owners can calculate the marginal likelihoods

and predictions for all possible models to carry out exact secure BMA. For larger model spaces

where enumeration of the marginal likelihoods of all models is computationally infeasible, BMA

over the entire model space can be approximated by BMA over a subset of promising models visited

by the model search algorithm under consideration. As the model search algorithm proceeds and a

new model γ is sampled, the algorithm can calculate its corresponding marginal likelihood simply
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by taking the appropriate submatrices of X′X and X′Y. The model search does not require extra

rounds of secure summation.

3.2 Secure BMA with Zellner-Siow Prior

Zellner’s g-prior is attractive for variable selection problems because it lends itself to exact marginal

likelihood calculations. However, it suffers from what is commonly referred to as the “information

paradox.” The Bayes factor for comparing two models γ and γ∗ is defined as the ratio of the

corresponding marginal likelihoods, p(Y | X, γ)/p(Y | X, γ∗). If R2
γ

for a model γ goes to 1,

indicating that there is overwhelming evidence in the data in favor of the model, one would hope

that the Bayes factor for the model γ with respect to the null model (which includes only the

intercept) goes to infinity. However, it can be shown that the Bayes factor goes to a constant as

R2
γ
→ 1 (Zellner, 1986; Berger and Perichhi, 2001).

The Zellner-Siow prior (Zellner and Siow, 1980) is a modification of the g-prior that does

not exhibit the information paradox (Liang et al., 2008). It treats g as random, assigning an

Inverse-Gamma prior distribution on g with shape parameter 1/2 and scale parameter n/2. This

corresponds to a multivariate Cauchy prior distribution on the regression coefficients. The marginal

likelihood associated with this prior distribution is given by

p(Y | X, γ) ∝ TSS−
(n−1)

2 ×

∫ ∞

0
(1 + g)

n−pγ −1

2 {1 + g(1 − Rγ
2)}−

(n−1)
2 p(g)dg, (9)

where p(g) = (n/2)1/2

Γ(1/2)
e−n/2g

g3/2 corresponds to the prior on g. Unfortunately, this is not a closed form

expression. However, Liang et al. (2008) derive a Laplace approximation (Tierney and Kadane,

1986) for the generic integral

∫ ∞

0
(1 + g)(n−pγ−1+2b)/2{1 + g(1 − Rγ

2)}−
(n−1)

2 e−n/2gga−3/2dg. (10)

Setting a = b = 0 leads to an approximation for the integral in (9).

With the Zellner-Siow prior, we have E[α|Y,X, γ] = Ȳ and E[βγ|Y,X, γ] = E[ g
g+1 |Y,X, γ]β̂γ.

Setting a = 1, b = −1 in (10) leads to an expression for E[ g
1+g |Y,X, γ], which in turn can be used

for calculating the posterior mean of the regression coefficients and for predictions. The Laplace

approximation involves solving a cubic equation in g with coefficients of g involving a, b, n, pγ and

R2
γ
. All of the component quantities can be obtained via secure summation as in Section 3.1.
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4 Secure BMA for Probit Regression

We now describe secure BMA for probit regression. Let Yi be a binary response variable for the

ith data subject, and let Xi be a p × 1 vector denoting the subject’s covariates. Throughout this

section, the first column of the design matrix is assumed to be a vector of ones corresponding to

the intercept. The probit regression for model γ is given by

P (Yi = 1|Xi, βγ, γ) = Φ(Xi
′
γ
βγ), (11)

where Φ is the standard normal cumulative distribution function. We first discuss the formidable

operational challenges to exact BMA for probit regression, and then propose an approximate BMA

that is more feasible in practice.

4.1 Exact BMA With Data Augmentation

In (11), conjugate prior distributions for βγ are not available. As a result, expressions for the

marginal likelihoods needed for BMA generally are not in closed-form. However, the data augmen-

tation approach of Albert and Chib (1993) enables the use of Gibbs sampling (Gelfand and Smith,

1990). In particular, let Z = (Z1, . . . , Zn)′ be a vector of latent variables such that, for all i,

Zi|Xi, βγ, γ
ind
∼ N(Xi

′
γ
βγ, 1)

Yi = 1 if Zi > 0, Yi = 0 if Zi ≤ 0.

For the prior distribution for β, we use

βj |γj , τj
ind
∼ N(0, γjτj), j = 1, 2, . . . p, (12)

so that βj has a degenerate prior distribution with all its mass at zero when γj = 0 and has a

N(0, τj) prior distribution otherwise.

We choose independent prior distributions on βj primarily for computational convenience, as

is often done in practice (Holmes and Held, 2006; Ghosh and Clyde, 2011). It is possible to use

dependent priors for the regression coefficients, for example a g-prior with a non-orthogonal design

matrix. Unlike for linear models, we are not aware of research indicating beneficial theoretical prop-

erties of g-priors for probit regression models. Regardless of the use of independent or multivariate
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normal priors, marginal likelihoods are not available in closed form in either case.

To illustrate the exact BMA with data augmentation, we use a discrete uniform prior distri-

bution for γ. Then, conditional distributions for the stochastic search Gibbs sampler (George and

McCulloch, 1993) for drawing samples from the posterior distribution

p(γ, β, Z|Y ,X) are as follows. For i = 1, . . . , n, we have

Zi|γ, β, Y ,X ∼





N+(Xi

′
γ
βγ, 1) if Yi = 1

N−(Xi
′
γ
βγ, 1) if Yi = 0

(13)

where N+ and N− denote normal densities truncated to be positive and negative, respectively. Let

γ−j = (γ1, . . . γj−1, γj+1, . . . γp)
′, and β−j =

(β1, . . . , βj−1, βj+1, . . . βp)
′. For j = 1, . . . , p, we have

γj |γ−j , β−j , Z, Y ,X ∼ Ber(ρj) (14)

βj |γ, β−j , Z, Y ,X ∼ N(γjµ̂j , γj τ̂j), (15)

where τ̂j = (τ−1
j +

∑n
i=1 x2

ij)
−1

, µ̂j = τ̂j
∑n

i=1 xijZ
∗
i , and Z∗

i = Zi −
∑

l 6=j xilβl. Here, N(u; µ, σ2)

is the normal density with mean µ and variance σ2 evaluated at u, ρj = N(0; 0, τj)/{N(0; µ̂j , τ̂j) +

N(0; 0, τj)},

What steps are needed to implement the secure Gibbs sampler in horizontally partitioned data?

Each data owner needs to sample the values of Zi in its database from (13), which is trivial given

γ and βγ. To sample γ and β, the owners must securely compute all τ̂j and µ̂j . Each τ̂j can be

computed with a single round of secure summation. However, for each cycle of the Gibbs sampler,

the owners must use a new round of secure summation to compute each µ̂j . These depend on Z

and β, which change with each cycle. Furthermore, the data owners must use common draws of

γ and βγ at any cycle. This can be done by designating one owner to sample and share values of

these parameters at each cycle.

Since Gibbs samplers typically require thousands of cycles to ensure convergence, an exact

secure BMA for probit regression requires a very large number of secure computation steps. This is

computationally expensive and, arguably, impractical for many problems. Furthermore, the large

number of intermediate results increases the risk of a breach in data confidentiality.
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4.2 Secure BMA Using Normal Approximation

To get around the computational challenges of exact BMA for probit regression, we propose to use

a normal approximation to the likelihood. For i = 1, . . . , n, we use

Yi | γ,Xi, βγ, φ∼N(Xiγ
′βγ, 1/φ). (16)

Using the Zellner-Siow prior distribution, the secure BMA can proceed as described in Section 3.2.

The key benefit of the approximation is that only one round of secure computations is needed. How-

ever, unlike the protocol for linear regression, this protocol for probit regression is not guaranteed

to conform mathematically to the BMA based on the concatenated data.

To investigate the performance of the approximate secure BMA empirically, we perform two

simulation studies: one with an enumerable model space of 27 models and the other with a non-

enumerable model space of dimension 257. Outputs for both exact and approximate secure methods

do not depend on how the data are horizontally partitioned: the secure summation protocol guar-

antees the results will be exactly the same for the concatenated data. Thus, for each simulation

study, we illustrate the results using a single data set.

4.2.1 Enumerable Model Space

In this section we compare the results of the approximate secure BMA protocol to the results of

exact BMA on the Pima Indians Diabetes data (Ripley, 1996) provided in the library MASS in R.

For i = 1, . . . , 532, let Yi = 1 if the ith woman had diabetes and Yi = 0 otherwise. There are

seven covariates: npreg (number of times pregnant), glu (plasma glucose concentration in a glucose

tolerance test), bp (diastolic blood pressure), skin (triceps skin fold thickness), bmi (body mass

index), ped (diabetes pedigree function), and age (in years). We center and scale the design matrix

so that the column means equal zero and the column standard deviations equal one. We compare

the results on (i) the set of top ten models, (ii) marginal posterior inclusion probabilities, which

are used to assess the importance of predictors, and (iii) predictive performance of BMA, based on

training the methods on a training sample and calculating misclassification rates on a test sample.

To implement exact BMA via data augmentation, we assign the prior distribution in (12). We

specify τj = 1 for j = 1, . . . , p = 8 (including the intercept). It is reasonable to use the same

value of τj for all j because the predictors are standardized. This is commonly done in variable
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selection methods like ridge regression and lasso, so that all the coefficients can be interpreted on

the same scale. We use τj = 1 based on experience from variable selection with linear regression

that indicates large prior variances have the undesirable effect of overwhelmingly favoring the null

model (Liang et al., 2008).

Posterior computation proceeds using the Gibbs sampler outlined in Section 4.1. We run the

Gibbs sampler for 10,000 iterations, discarding the first 500 iterations as burn-in. We repeat the

process 10 times to assess variability due to simulation.

For the approximate approach, the model space is small enough to enumerate fully; we do not

need MCMC simulation. For each of the 27 models (the intercept is included in all models), we

calculate the marginal likelihood using the Laplace approximation described in Section 3.2, and

hence the marginal posterior inclusion probabilities. Computations are done with the R package

BAS (Clyde, 2010).
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Figure 1: Top 10 models identified for the Pima Indians Diabetes data, using the exact secure
BMA approach using a probit likelihood and the approximate approach using a normal likelihood;
here models are represented by rows with the top model shown in the first row, predictors are
represented by columns, and black regions denote predictors that were absent from a particular
model.
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Method npreg glu bp skin bmi ped age

Exact 0.95 1.00 0.07 0.10 1.00 0.97 0.39
(0.004) (0.0) (0.004) (0.007) (0.002) (0.004) (0.010)

Approx 0.96 1.00 0.08 0.08 1.00 0.99 0.36

Table 1: Estimates of marginal posterior inclusion probabilities for the Pima Indians Diabetes data,
using the exact approach using a probit likelihood and the approximate approach using a normal
likelihood; the mean and standard deviation (in parentheses) are reported based on 10 runs of the
Gibbs sampler for the exact approach.

Figure 1 shows that the top models identified by the exact and approximate methods are very

similar with respect to both the predictors that they contain and their posterior probabilities.

Table 1 displays the corresponding estimates of posterior inclusion probabilities for each covariate,

along with their counterparts from the normal approximation; these are in close agreement. The

standard deviations across the ten runs are small, indicating that the number of MCMC iterations

is adequate for the estimates to have stabilized.

To evaluate predictions, we split the data randomly into training and test samples. We choose

the size of the training and test samples based on the Pima.tr and Pima.te in the library MASS

in R (Ripley, 1996). The training sample consists of a randomly selected subset of 200 subjects

and the test sample contains the remaining 332 subjects. We repeat this 10 times leading to 10

different random splits of the data to assess variability. The average misclassification rates using

the probit and normal likelihoods are 23.89% and 22.95%, and the standard deviations (over the

10 random splits) are 1.47% and 1.10% respectively, so the two methods result in similar predictive

performance.

Finally, we investigated the sensitivity of variable selection with respect to the choice of hyperpa-

rameters by repeating analyses using τj = 4 and τj = 10. While the inclusion probabilities changed

somewhat, conclusions regarding the importance of predictors (defining important predictors as

those with marginal inclusion probabilities > 0.5) were not affected.

4.2.2 Non-enumerable Model Space

In this section we carry out a simulation study with p = 57 predictors resulting in a non-enumerable

model space. We create the data set by adding 50 noise variables generated as N(0,1) random

variables to the Pima Indians data. For large model spaces like this, typically the size of the

MCMC sample is a small fraction of the model space. The estimates of model probabilities based
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on Monte Carlo frequencies are no longer reliable because repeated visits to models are rare. Thus,

we compare the methods based on (i) marginal posterior inclusion probabilities and (ii) predictive

performance of BMA. We use the same prior specification as in the enumerable case and run the

Gibbs sampler for 100,000 iterations, discarding the first 500 as burn-in. For the approximate

approach we also cannot enumerate the model space, so that we run a Gibbs sampler for 100,000

iterations with a 500 burn-in. We run both Gibbs samplers 10 times to assess the variability across

runs.

Method npreg glu bp skin bmi ped age noise-13 noise-36

Exact 0.97 1.00 0.08 0.10 1.00 0.97 0.39 0.97 0.93
(0.002) (0.000) (0.001) (0.001) (0.000) (0.001) (0.006) (0.001) (0.001)

Approx 0.98 1.00 0.12 0.13 1.00 0.99 0.47 0.98 0.97
(0.000) (0.000) (0.001) (0.001) (0.000) (0.000) (0.002) (0.000) (0.001)

Table 2: Estimates of marginal posterior inclusion probabilities for the data set with 57 predictors
(created by adding 50 noise predictors to the Pima Indians Diabetes data), using the exact approach
using a probit likelihood and the approximate approach using a normal likelihood; the mean and
standard deviation (in parentheses) are reported based on 10 runs of the Gibbs sampler for both
approaches.

Table 2 displays the estimates of posterior inclusion probabilities for the seven covariates in the

original Pima Indians data and for covariates with marginal inclusion probabilities greater than 0.5.

The estimates from the Gibbs samplers based on the probit model and the normal approximation

are in close agreement for most predictors, and the standard deviations across the ten runs are

reasonably small. Both methods wrongly identified two noise variables as important predictors.

For out of sample prediction, we split the data into ten random splits as before. The average

misclassification rates using the exact and approximate approaches are 23.13% and 22.74%, and

the corresponding standard deviations are 1.81% and 1.95% respectively.

We examined the sensitivity of the variable selection to the choice of τj as in Section 4.2.1.

Once again, the four important predictors in the original Pima data continued to be identified as

important, although the inclusion probabilities changed somewhat. However, when setting τj = 10,

the marginal probability of one of the wrongly identified noise predictors decreased appreciably to

0.54.
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4.3 Secure BMA Using Importance Sampling

In variable selection and model averaging problems for generalized linear models, the Bayesian In-

formation Criterion, abbreviated BIC (Schwarz, 1978), and Laplace approximations to the marginal

likelihood are often used in lieu of exact marginal likelihoods (Tierney and Kadane, 1986; Raftery,

1996; Clyde, 2002). In this section, we develop secure implementations of BMA for probit regression

using both the BIC and a Laplace approximation.

For both we use a similar two-step process. First, because the posterior distribution of γ with

these approximations is expensive to sample from securely, we sample models using the normal

approximation of Section 4.2. Second, we re-weight the corresponding samples from the normal

approximation by using importance sampling. This procedure requires multiple rounds of secure

summation operations, but potentially much fewer rounds compared to the secure data augmen-

tation algorithm. Thus, it strikes a balance in computation and accuracy between the methods in

Section 4.1 and 4.2.

4.3.1 Secure Importance Sampling for BIC Approximation

The BIC approximation does not depend on the specified prior distributions under each model,

so that it offers some robustness to the choice of the prior distributions. This can be particularly

convenient with horizontally partitioned data, as it eliminates the need for the data owners to agree

on a set of common values for prior hyperparameters.

For enumerable model spaces the posterior probabilities p(γ|X,Y) are readily available for the

normal proposal distribution, as well as the probit target distribution, based on the BIC approxi-

mation. We have

p(γ | X,Y) =
exp (−BIC(γ)/2)p(γ)∑

γ∈Γ exp (−BIC(γ)/2)p(γ)
, (17)

where BIC(γ) = −2lγ(β̂γ) + log(n)pγ, lγ() is the log-likelihood, β̂γ is the maximum likelihood

estimate of βγ , and pγ is the number of parameters under model γ. For non-enumerable model

spaces the posterior probabilities are available up to a normalizing constant. Note that even if

the entire model space is enumerated with the approximations in (17), the resulting posterior

probabilities would differ from their counterparts from the data augmentation Gibbs sampler that

uses the specified normal prior for the regression coefficients.

The importance sampling algorithm proceeds by drawing say T models from the proposal dis-
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tribution, i.e., the posterior distribution over models using the linear model and the Zellner-Siow

prior. For enumerable model spaces one can use independent Monte Carlo sampling; for larger

model spaces one can sample models via MCMC. Both of these require only one round of secure

matrix computations, as described in Section 4.2. We next calculate the importance sampling

weights w′
t = wt/

∑T
t=1 wt, where wt is the ratio of the marginal likelihoods for model γ(t) un-

der the target and proposal distributions respectively (the ratio of prior model probabilities under

the target and proposal distributions is 1). To calculate E[h(γ)] under the target distribution,

one would use the usual importance sampling estimator
∑T

t=1 h(γ(t))w′
t. For small to moderate p,

many of the T models will overlap, and weights need to be calculated only for the unique set of

sampled models. This reduces unnecessary rounds of secure matrix computation. For each of the

unique sampled models, the maximum likelihood estimates (MLE) of βγ under the probit model,

the log-likelihood evaluated at the MLE, and hence the BIC, can be computed securely using a

secure IWLS (iteratively weighted least squares) algorithm (Slavkovic et al., 2007).

To illustrate, we first apply the importance sampling algorithm with BIC to the Pima Indians

Diabetes data. Table 3 displays the estimated inclusion probabilities for various values of T . As

expected, with an increase in T , the accuracy of the estimates also increases. For all T , the

secure importance sampling algorithm produces estimates that are reasonably close to the BIC

approximation based on the concatenated data. For example, the inclusion probability of the

covariate age based on BIC is 0.27, and the estimate based on importance sampling is 0.26. In

contrast, the estimate based on the the normal approximation of Section 4.2 alone is 0.36, which

is much higher than 0.27. The maximum number of unique sampled models (over 10 replicates)

for T = 100, 1, 000 and 10, 000 were as small as 11, 20 and 29 respectively. Thus, the algorithm

requires far fewer rounds of secure summations than the exact BMA approach of Section 4.1.

Figure 2 compares the estimates of model probabilities obtained from enumerating the model

space with the BIC approximation to the importance sampling estimates. There is close agreement

between the two estimates, even for a relatively small sample size of T = 100.

We next apply both the importance sampling algorithm with BIC and a Gibbs sampler based

on the BIC approximation to the simulated data with 57 predictors, 7 of which are the predictors

in the Pima Indians Diabetes data and the remaining 50 are noise. Table 4 displays the estimated

inclusion probabilities for various values of T . The inclusion probabilities for the BIC based Gibbs

sampler does not seem to converge until running 100,000 iterations. The importance sampling
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Method npreg glu bp skin bmi ped age

Enumeration-BIC 0.94 1.00 0.05 0.05 1.00 0.95 0.27

IS-BIC: T = 100 0.92 1.00 0.04 0.06 1.00 0.94 0.26
(0.061) (0.000) (0.014) (0.017) (0.002) (0.054) (0.068)

IS-BIC: T = 1, 000 0.94 1.00 0.05 0.05 1.00 0.95 0.27
(0.013) (0.000) (0.005) (0.005) (0.002) (0.017) (0.018)

IS-BIC: T = 10, 000 0.94 1.00 0.05 0.05 1.00 0.95 0.27
(0.003) (0.000) (0.001) (0.001) (0.000) (0.005) (0.003)

Table 3: Estimates of marginal posterior inclusion probabilities for the Pima Indians Diabetes data,
under enumeration using BIC and under importance sampling with BIC (IS-BIC) to the marginal
likelihood, with sample sizes T = 100, T = 1, 000, and T = 10, 000; the mean and standard
deviation (in parentheses) are reported based on 10 runs of the importance sampler for each value
of T .

estimates for 100,000 iterations are in close agreement with the Gibbs sampler. Note that here the

number of unique sampled models is almost as large as the MCMC sample size because models

are rarely sampled twice in large model spaces like this. However, it is still beneficial to use the

importance sampling algorithm compared to the BIC based Gibbs sampler. This is because the

Gibbs sampler needs to cycle through p = 57 inclusion indicators and compute “p” BICs to sample a

single model, whereas the importance sampler needs to calculate the BIC only for the final sampled

model. In short, the BIC based Gibbs sampler has p times more rounds of secure summation.

The importance sampling is also preferable to the data augmentation Gibbs sampler in terms of

having fewer rounds of secure computation. Each iteration of the data augmentation Gibbs sampler

consists of cycling through p inclusion indicators, whereas one iteration of the importance sampler

needs one BIC calculation that usually involved fewer than 10 iterations of the IWLS algorithm.

So, each iteration of the data augmentation Gibbs sampler will typically involve (p − 10) more

rounds of secure computation.

4.3.2 Secure Importance Sampling for Laplace Approximation

In the previous section, the use of BIC was motivated primarily by its robustness to the choice

of the prior distribution rather than its consistency properties in estimating Bayes factors. For

small dimensional model spaces, one can improve upon the BIC approximation by using Laplace

approximations instead. Laplace approximations account for prior distributions, offering consistent

estimates of the Bayes factors under the specified prior distribution.
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Figure 2: Comparison of posterior probabilities of all 27 models for the Pima Indians Diabetes
data, using i) BIC approximation to the marginal likelihood for a probit link function (based on
enumerating all 27 models) and ii) Importance sampling estimates for a single run with T = 100
(unsampled models are automatically assigned an estimate zero).

We use the Laplace approximation developed by Raftery (1996), which requires the MLEs

and the observed Fisher information matrix. Using the prior specification in (12), this Laplace

approximation is

log(p(Y |X, γ)) ≃ lγ(β̂γ) + λγ(β̂γ)+

λγ
′(β̂γ)T (Fγ + Gγ)−1{Ipγ

−
1

2
Fγ(Fγ + Gγ)−1}λγ

′(β̂γ) −
1

2
log |Fγ + Gγ| +

pγ

2
log(2π), (18)

where β̂γ is the MLE of βγ, Fγ is the observed Fisher Information matrix, Gγ is the inverse of

the prior covariance matrix of βγ, and pγ is the number of parameters, all under model γ. For the

chosen independent normal prior with τj = τ for all j, we have

λγ(β̂γ) = −
pγ

2
log(2π) −

pγ

2
log(τ) −

1

2τ
β̂T

γ
β̂γ,

λ′
γ
(β̂γ) = −

1

τ
β̂γ.

Both β̂γ and lγ(β̂γ) can be obtained via a secure IWLS algorithm. The observed Fisher
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Method npreg glu bp skin bmi ped age noise-13 noise-36
GS-BIC: T = 1, 000 1.00 1.00 0.05 0.00 1.00 0.90 0.20 1.00 0.85

(0.000) (0.000) (0.158) (0.000) (0.000) (0.211) (0.258) (0.000) (0.242)

GS-BIC: T = 10, 000 1.00 1.00 0.10 0.00 1.00 0.80 0.30 1.00 0.90
(0.000) (0.000) (0.211) (0.000) (0.000) (0.350) (0.422) (0.000) (0.211)

GS-BIC: T = 100, 000 0.97 1.00 0.05 0.05 1.00 0.96 0.23 0.96 0.88
(0.000) (0.000) (0.000) (0.001) (0.000) (0.001) (0.002) (0.001) (0.001)

IS-BIC: T = 1, 000 0.96 1.00 0.04 0.07 0.99 0.98 0.23 0.96 0.90
(0.024) (0.000) (0.018) (0.033) (0.013) (0.027) (0.049) (0.028) (0.075)

IS-BIC: T = 10, 000 0.97 1.00 0.04 0.06 1.00 0.96 0.24 0.96 0.90
(0.014) (0.000) (0.007) (0.008) (0.002) (0.017) (0.024) (0.011) (0.026)

IS-BIC: T = 100, 000 0.97 1.00 0.04 0.05 1.00 0.96 0.23 0.95 0.88
(0.005) (0.000) (0.004) (0.003) (0.001) (0.009) (0.006) (0.003) (0.011)

Table 4: Estimates of marginal posterior inclusion probabilities for the data set with 57 predictors
(created by adding 50 noise variables to the Pima Indians Diabetes data), under Gibbs sampling
(GS-BIC) and importance sampling (IS-BIC) with BIC approximation to the marginal likelihood,
for sample sizes T = 1, 000, T = 10, 000, and T = 100, 000; the mean and standard deviation (in
parentheses) are reported based on 10 runs of the samplers for each value of T .

information matrix Fγ is obtained as part of the secure IWLS algorithm. All other quantities

in (18) are functions of the prior hyperparameters, β̂γ, and Fγ. Hence, the calculation does not

involve any more secure summations than the BIC approximation of Section 4.3.1.

For enumerable model spaces, once log(p(Y |X, γ)) are calculated via (18), one can use (3) to

calculate approximate posterior probabilities. For small dimensional model spaces (with respect

to the sample size), these estimates should be in accord with those obtained from the exact data

augmentation Gibbs sampler in Section 4.1. However, because enumeration of model spaces is

generally expensive from the perspective of secure computation, we instead use an importance

sampling algorithm akin to the one in Section 4.3.1, with importance weights now based on the

Laplace approximation instead of the BIC approximation.

Method npreg glu bp skin bmi ped age

Enumeration-LA 0.95 1.00 0.07 0.10 1.00 0.97 0.39

IS-LA: T = 100 0.93 1.00 0.07 0.11 1.00 0.96 0.38
(0.047) (0.000) (0.024) (0.030) (0.003) (0.033) (0.063)

IS-LA: T = 1, 000 0.94 1.00 0.08 0.10 1.00 0.97 0.39
(0.010) (0.000) (0.007) (0.009) (0.002) (0.012) (0.018)

IS-LA: T = 10, 000 0.95 1.00 0.08 0.10 1.00 0.97 0.40
(0.002) (0.000) (0.002) (0.002) (0.000) (0.003) (0.004)

Table 5: Estimates of marginal posterior inclusion probabilities for the Pima Indians Diabetes data,
under enumeration using a Laplace approximation (LA), and under importance sampling with
Laplace approximation (IS-LA) to the marginal likelihood, with sample sizes T = 100, T = 1, 000,
and T = 10, 000; the mean and standard deviation (in parentheses) are reported based on 10 runs
of the importance sampler for each value of T .
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We apply this importance sampling algorithm with Laplace approximation to the Pima Indians

Diabetes data. Table 5 displays the corresponding estimated inclusion probabilities. For all T , the

secure importance sampling algorithm produces estimates that are reasonably close to the Laplace

approximation based on the concatenated data. Moreover, the inclusion probability estimates for all

covariates are very close to the exact estimates from the secure data augmentation Gibbs sampler,

reported in Table 1. This is expected, because the Laplace approximation approximates the Bayes

factors under the correct posterior distribution corresponding to the specified independent normal

prior. The unique number of sampled models for all values of T was less than 29, justifying the use

of a sampling algorithm instead of enumerating the model space, which involves many more secure

summations.

For high dimensional model spaces, when the number of predictors grows with the sample

size, the theoretical justification of the Laplace approximation or a good numerical study of its

performance is not yet available; see Berger et al. (2003). Thus, we do not illustrate the Laplace

approximations for the high-dimensional model space example of dimension 257.

5 Application to SPECT Heart Data

In this section, we apply the methods for secure BMA to genuine data with a moderate number

of covariates and more challenging variable selection task. We use the SPECT heart data (Kurgan

et al., 2001), available from the University of California Irvine Machine Learning Repository. The

data comprise information about 267 patients and their cardiac Single Proton Emission Computed

Tomography (SPECT) images. Based on their SPECT images, a cardiologist classifies the patients

into two categories: normal and abnormal heart conditions. The explanatory variables include 20

binary features extracted from the images using a machine learning algorithm. The goal is to use

these image features to predict the cardiologist’s diagnosis.

We note that the original data include 22 predictors. For purposes of illustration, we removed

two predictors that generate perfect predictions—for either of these predictors, whenever x = 1 we

always have y = 1—because including them makes MLEs numerically unstable. We discuss issues

for secure computation related to such separability further in Section 6.

Using the full model space of size 220, we implemented i) the exact data augmentation Gibbs

sampler, ii) the approximate Gibbs sampler for normal approximation, iii) the BIC based Gibbs

sampler, and iv) the BIC based importance sampler. We use a standardized design matrix and the
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same choices of prior distributions as in Section 4. We run each algorithm for 100,000 iterations,

discarding the first 500 samples as burn-in.

Figure 3 displays the inclusion probabilities from the exact BMA and the three approximate

methods. In general there is close agreement on the inclusion probabilities. Defining important

(unimportant) predictors as those with inclusion probabilities greater (less) than 0.5, we can sum-

marize the results from Figure 3 as follows. There are no points in the upper left block of Figure 3,

so that the approximate methods did not wrongly select any unimportant predictors. There are two

points in the lower right block showing that the approximate methods missed these two important

predictors. Both these predictors have relatively low inclusion probabilities (0.56 and 0.64). These

results illustrate that predictors without appreciably large posterior inclusion probabilities under

the probit model may not be identified as important with the approximate methods.
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Figure 3: Comparison of posterior marginal inclusion probabilities for the heart data, using i)
the exact data augmentation Gibbs sampler, ii) the normal approximation based Gibbs sampler
(Gibbs-Normal), iii) the BIC based Gibbs sampler (Gibbs-BIC), and iv) the BIC based importance
sampler (IS-BIC).

We also investigated out of sample predictions for the exact approach and the normal approxi-

mation. We split the data randomly into two parts: training data comprising 80% of the samples

and test data comprising the remainder. The misclassification rate in the test data was 26.41% for

the exact approach and 24.53% for the approximate approach. A different random split of the data
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resulted in rates of 15.09% and 13.21%, respectively.

Finally, we performed sensitivity analysis of variable selection to the choice of prior hyperpa-

rameters. Unlike the Pima data (with 7 or 57 predictors), here the results are sensitive to the

specification of τj . With τj = 4, three of the predictors that were deemed as important when τj = 1

no longer had inclusion probabilities greater than 0.5. These initially had inclusion probabilities in

the range 0.56–0.64. For τj = 10, only one predictor was flagged as important; this had an initial

inclusion probability nearly equal to 1. These results are in accord with the discussion in Liang

et al. (2008): the larger the prior variance on the regression parameters, the more the null model

is favored.

6 Summary

In this article, we have shown that it is possible to perform secure Bayesian model averaging and

Bayesian variable selection for linear and probit regression in the case of horizontally partitioned

data. For normally distributed errors and conjugate priors like Zellner’s g-prior, all quantities

needed for BMA are available as sufficient statistics that can be computed using a secure summation

protocol. Our approach also extends to the popular Zellner-Siow multivariate Cauchy prior for the

regression coefficients. Credible intervals corresponding to the posterior distributions of φ, β, or Y∗

can be constructed via sampling from their corresponding posterior distributions, conditional on

the set of sampled models, without any extra rounds of secure summation. For probit regression, we

illustrated the use of a Gaussian approximation to the likelihood as a tool for BMA, which requires

far fewer rounds of secure summation than the exact data augmentation approach does. While

our focus in this paper has been on probit regression and approximations for it, technically the

normal approximation can be viewed as an approximation to other likelihoods for binary response

variables as well, such as logistic regression, as pointed out by one reviewer. Finally, we illustrated

how the normal approximation can serve as a proposal distribution in importance sampling when

using BIC or Laplace approximations to marginal likelihoods.

It was pointed out by one reviewer that the normal linear regression model assumes homoscedas-

tic variance, which does not hold for the probit model, so that the approximation may not work

well for data with small sample size or high variability in the variances of the response variables.

Clyde (1999) suggests variance-stabilizing transformations for model selection in Bayesian general-

ized linear models, like square-root transformations for Poisson regression, or arcsine square-root
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transformation for binomial regression models with each observation having ni > 1 trials. For

binary regressions in which each observation is based on only one trial, such transformations are

not available. We did further simulations to evaluate the performance of the approximate BMA

of Section 4.2 in small samples with high variability in the variances. The approximate method

tended to identify important predictors reasonably well, except for those with inclusion probability

close to 0.5. In such data, it may be preferable to use the secure BMA approaches with importance

sampling, which entail fewer secure computations than the exact data augmentation Gibbs sampler.

For binary regression models with many predictors, the approximate approaches to secure model

selection can be compromised when the data exhibit separability. In particular, the maximum

likelihood estimates may not converge or can exhibit numerical instability, in which case approaches

based on the BIC cannot be trusted; in such cases, the normal approximation is the only practical

secure BMA approach. For example, when we used the SPECT heart data that includes the

two predictors causing separability, the frequentist standard errors for these two coefficients in a

probit regression model were on the order of 300 times larger than the standard errors for other

predictors’ coefficients, revealing numerical instability of the MLE. We do not see quick practical

fixes to the problems caused by separability in secure BMA for probit regression. However, agencies

can take steps to identify potential separability and adjust analyses accordingly. For example, each

agency can search for separability within their own data and share its findings with other agencies.

If necessary, the agencies collectively can share this information without revealing sources via a

secure data integration protocol like the one of Karr et al. (2005). We note that similar steps could

be taken to identify possibly collinear predictors; these also would be evident from the covariances

in X′X in the normal approximation.

Once the offending variables causing separability have been identified, the agencies can choose

to remove these variables from analysis if it is deemed scientifically relevant to do so. Alternatively,

when the goal of the probit modeling is classification, the agencies could proceed in steps. First, the

agencies remove all cases that are perfectly predicted by the offending variables, e.g., remove the

cases with x = 1 for the two offending predictors in the SPECT heart data. Second, the agencies

remove the offending variables from the model space. Third, the agencies implement secure model

selection on the remaining cases and variables. For classification of new cases, we predict y = 1

when x = 1 for the offending variables, and we use the model from secure BMA when x = 0 for

the offending variables. The accuracy of this two-step approach is a subject for future research.
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