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Abstract

Factor analytic models are widely used in social sciences. These models have also proven

useful for sparse modeling of the covariance structure in multidimensional data. Normal prior

distributions for factor loadings and inverse gamma prior distributions for residual variances are

a popular choice because of their conditionally conjugate form. However, such prior distribu-

tions require elicitation of many hyperparameters and tend to result in poorly behaved Gibbs

samplers. In addition, one must choose an informative specification, as high variance prior dis-

tributions face problems due to impropriety of the posterior distribution. This article proposes

a default, heavy tailed prior distribution specification, which is induced through parameter ex-

pansion while facilitating efficient posterior computation. We also develop an approach to allow

uncertainty in the number of factors. The methods are illustrated through simulated examples

and epidemiology and toxicology applications.
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1. INTRODUCTION

Factor models have been traditionally used in behavioral sciences, where the study of latent factors

such as anxiety and aggression arises naturally. These models also provide a flexible framework for

modeling multivariate data by a few unobserved latent factors. In recent years factor models have

found their way into many application areas beyond social sciences. For example, latent factor

regression models have been used as a dimensionality reduction tool for modeling of sparse covari-

ance structures in genomic applications (West, 2003; Carvalho et al., 2008). In addition, structural

equation models and other generalizations of factor analysis are increasingly used in epidemiological

studies involving complex health outcomes and exposures (Sanchez et al, 2005). There has been a

recent interesting application of factor analysis for reconstruction of gene regulatory networks and

unobserved activity profiles of transcription factors (Pournara and Wernisch, 2007).

Improvements in Bayesian computation permit the routine implementation of latent factor

models via Markov chain Monte Carlo (MCMC) algorithms. One typical choice of prior distribution

for factor models is to use normal and inverse gamma prior distributions for factor loadings and

residual variances respectively. These choices are convenient, because they represent conditionally-

conjugate forms that lead to straightforward posterior computation by a Gibbs sampler (Arminger,

1998; Rowe, 1998; Song and Lee, 2001).

Although conceptually straightforward, routine implementation of Bayesian factor analysis faces

a number of major hurdles. First, it is difficult to elicit the hyperparameters needed in specifying

the prior distribution. For example, these hyperparameters control the prior mean, variance and

covariance in the factors loadings. In many cases, prior to examination of the data, one may have

limited knowledge of plausible values for these parameters, and it can be difficult to convert subject

matter expertise into reasonable guesses for the factor loadings and residual variances. Prior elic-

itation is particularly important in factor analysis, because the posterior distribution is improper

in the limiting case as the prior variance for the normal and inverse-gamma components increases.

In addition, as for other hierarchical models, use of a diffuse, but proper prior distribution does

not solve this problem (Natarajan and McCulloch, 1998). Even for informative prior distribu-

tions, Gibbs samplers are commonly very poorly behaved due to high posterior dependence in the
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parameters leading to extreme slow-mixing.

To simultaneously address the need for default prior distributions and dramatically more effi-

cient and reliable algorithms for posterior computation, this article proposes a parameter expansion

approach (Liu and Wu, 1999). As noted by Gelman (2004), parameter expansion provides a useful

approach for inducing new families of prior distributions. Gelman (2006) used this idea to propose

a class of prior distributions for variance parameters in hierarchical models. Kinney and Dunson

(2007) later expanded this class to allow dependent random effects in the context of developing

Bayesian methods for random effects selection. Liu, Rubin and Wu (1998) used parameter expan-

sion to accelerate convergence of the EM algorithm, and applied this approach to a factor model.

However, to our knowledge, parameter expansion has not yet been used to induce prior distributions

and improve computational efficiency in Bayesian factor analysis.

As a robust prior distribution for the factor loadings, we use parameter expansion to induce t

or folded-t prior distributions, depending on sign constraints. The Cauchy or half-Cauchy case can

be used as a default in cases in which subject matter knowledge is limited. We propose an effi-

cient parameter-expanded Gibbs sampler involving generating draws from standard conditionally-

conjugate distributions, followed by a post-processing step to transform back to the inferential

parameterization. This algorithm is shown to be dramatically more efficient than standard Gibbs

samplers in several examples. In addition, we develop an approach to allow uncertainty in the

number of factors, providing an alternative to methods proposed by Lopes and West (2004) and

others.

Section 2 defines the model and parameter expansion approach when the number of factors

is known. Section 3 presents a comparison of the traditional and the parameter expanded Gibbs

sampler, based on the results of a simulation study, when the number of factors is known. Section

4 extends this approach to allow unknown number of factors. Section 5 contains two applications,

one to data from a reproductive epidemiology study and the other to data from a toxicology study.

Section 6 discusses the results.
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2. BAYESIAN FACTOR MODELS

2.1 Model Specification and Standard Prior Distributions

The factor model is defined as follows:

yi = Ληi + ǫi, ǫi ∼ Np(0,Σ), (1)

where Λ is a p× k matrix of factor loadings, ηi = (ηi1, . . . , ηik)
′ ∼ Nk(0, Ik) is a vector of standard

normal latent factors, and ǫi is a residual with diagonal covariance matrix Σ = diag(σ2
1 , . . . , σ

2
p).

The introduction of the latent factors, ηi, induces dependence, as the marginal distribution of yi

is Np(0,Ω), with Ω = ΛΛ′ + Σ. In practice, the number of factors is small relative to the number

of outcomes (k << p). Small values of k relative to p lead to sparse models for Ω containing many

fewer than p(p+ 1)/2 parameters. For this reason, factor models provide a convenient and flexible

framework for modeling of a covariance matrix, particularly in applications with moderate to large

p.

For simplicity in exposition, we leave the intercept out of expression (1). The factor model

(1) without further constraints is not identifiable. One can obtain an identical Ω by multiplying

Λ by an orthonormal matrix P defined so that PP′ = Ik. Following a common convention to

ensure identifiability (Geweke and Zhou, 1996), we assume that Λ has a full-rank lower triangular

structure. The number of free parameters in Λ,Σ is then q = p(k + 1) − k(k − 1)/2, and k must

be chosen so that q ≤ p(p + 1)/2. Although we focus on the case in which the loadings matrix is

lower triangular, our methods can be trivially adapted to cases in which structural zeros can be

chosen in the loadings matrix based on prior knowledge. For example, the first p1 measurements

may be known to measure the first latent trait but not to measure the other latent traits. This

would imply the constraint that λjl = 0, for j = 1, . . . , p1 and l = 2, . . . , k.

To complete a Bayesian specification of model (1), the typical choice specifies truncated normal

prior distributions for the diagonal elements of Λ, normal prior distributions for the lower triangu-

lar elements, and inverse-gamma prior distributions for σ2
1 , . . . , σ

2
p. These choices are convenient,

because they represent conditionally-conjugate forms that lead to straightforward posterior com-
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putation by a Gibbs sampler (Arminger, 1998; Rowe, 1998; Song and Lee, 2001). Unfortunately,

this choice is subject to the problems mentioned in Section 1.

2.2 Inducing Prior Distributions Through Parameter Expansion

In order to induce a heavier tailed prior distribution on the factor loadings to allow specification

of a default, proper prior distribution, we propose a parameter expansion (PX) approach. The

basic PX idea involves introduction of a working model that is over-parameterized. This working

model is then related to the inferential model through a transformation. Generalizing the approach

proposed by Gelman (2006) for prior distribution specification in simple ANOVA models, we define

the following PX-factor model:

yi = Λ∗η∗
i + ǫi, η∗

i ∼ Nk(0,Ψ), ǫi ∼ Np(0,Σ) (2)

where Λ∗ is p × k working factor loadings matrix having a lower triangular structure without

constraints on the elements, η∗
i = (η∗i1, . . . , η

∗
ik)

′ is a vector of working latent variables, Ψ =

diag(ψ1, . . . , ψk), and Σ is a diagonal covariance matrix defined as in (1). Note that model (2) is

clearly over-parameterized having redundant parameters in the covariance structure. In particular,

marginalizing out the latent variables, η∗
i , we obtain yi ∼ Np(0,Λ

∗ΨΛ∗′+Σ). Clearly, the diagonal

elements of Λ∗ and Ψ are redundant.

In order to relate the working model parameters in (2) to the inferential model parameters in

(1), we use the following transformation:

λjl = S(λ∗ll)λ
∗
jlψ

1/2
l , ηil = S(λ∗ll)ψ

−1/2
l η∗il for j = 1, . . . , p, l = 1, . . . , k (3)

where S(x) = −1 for x < 0 and S(x) = 1 for x ≥ 0. Then, instead of specifying a prior distribution

for Λ directly, we induce a prior distribution on Λ through a prior distribution for Λ∗,Ψ. In
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particular, we let

λ∗jl
iid
∼ N(0, 1), j = 1, . . . , p, l = 1, . . . ,min(j, k), λ∗jl ∼ δ0, j = 1, . . . , (k − 1), l = j + 1, . . . , k,

ψ−1
l

iid
∼ G(al, bl), l = 1, . . . , k, (4)

where δ0 is a measure concentrated at 0, and G(a, b) denotes the gamma distribution with mean

a/b and variance a/b2.

The prior distribution is conditionally-conjugate, leading to straightforward Gibbs sampling,

as described in Section 2.3. In the special case in which k=1 and λjl = λ, λ∗jl = λ∗, the induced

prior distribution on Λ reduces to the Gelman (2006) half-t prior distribution. In a general case,

we obtain a t prior distribution for the off-diagonal elements of Λ and half-t prior distributions for

the diagonal elements of Λ upon marginalizing out Λ∗ and Ψ. Note that we have induced prior

dependence across the elements within a column of Λ. In particular, columns having higher ψl

values will tend to have higher factor loadings, while columns with low ψl values tend to have low

factor loadings. Such a dependence structure is quite reasonable because factors which tend to have

higher precision will have their corresponding factor loadings inflated. On the other hand loadings

for factors with low precision will be automatically smaller. We have considered proper prior

distributions for the working parameters in this paper. Alternatively improper prior distributions

can be used, but then one would need to perform technical calculations to ensure that the chain

corresponding to the inferential parameters has the desired posterior distribution as its stationary

distribution (Meng and van Dyk, 1999).

2.3 Parameter Expanded Gibbs Sampler

After specifying the prior distribution one can then run an efficient, blocked Gibbs sampler for

posterior computation in the PX-factor model. Note that the chains under the overparameterized

model actually exhibit very poor mixing, reflecting the lack of identifiability. It is only after

transforming back to the inferential model that we obtain improved mixing. We have found this

algorithm to be highly efficient, in terms of rates of convergence and mixing, in a wide variety of
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simulated and real data examples. The conditional distributions are described below.

Model (2) can be written as yij = z′ijλ
∗
j + ǫij, ǫij ∼ N(0, σ2

j ), where zij = (η∗i1, . . . , η
∗
ikj

)′,

λ∗
j = (λ∗j1, . . . , λ

∗
jkj

)′ denotes the free elements of row j of Λ∗, and kj = min(j, k) is the number of

free elements. Let π(λ∗
j) = Nkj

(λ∗
0j ,Σ0λ

∗

j
) denote the prior distribution for λ∗

j , the full conditional

posterior distributions are as follows:

π
(
λ∗

j |η
∗,Ψ,Σ,y

)
= Nkj

((
Σ−1

0λ
∗

j

+ σ−2
j Z′

jZj

)−1(
Σ−1

0λ
∗

j

λ∗
0j + σ−2

j Z′
jYj

)
,
(
Σ−1

0λ
∗

j

+ σ−2
j Z′

jZj

)−1
)
,

where Zj = (z1j , . . . , znj)
′ and Yj = (y1j , . . . , ynj)

′. In addition, we have

π(η∗
i |Λ

∗,Σ,Ψ,y) = Nk

((
Ψ−1 + Λ∗′Σ−1Λ∗

)−1
Λ∗′Σ−1yi,

(
Ψ−1 + Λ∗′Σ−1Λ∗

)−1
)
,

π(ψ−1
l |η∗,Λ∗,Σ,y) = G

(
al +

n

2
, bl +

1

2

n∑

i=1

η∗il
2

)
,

π(σ−2
j |η∗,Λ∗,Ψ,y) = G

(
cj +

n

2
, dj +

1

2

n∑

i=1

(yij − z′ijλ
∗
j )

2

)
,

where G(al, bl) is the prior distribution for ψ−1
l , for l = 1, . . . , k, and G(cj , dj) is the prior distribution

for σ−2
j , for j = 1, . . . , p.

Hence, the proposed PX Gibbs sampler cycles through simple steps for sampling from normal

and gamma full conditional posterior distributions under the working model. After discarding a

burn-in and collecting a large number of samples, we then simply apply the transformation in (3) to

each of the samples as a post-processing step that produces samples from the posterior distribution

under the inferential parameterization. Convergence diagnostics and inferences then rely entirely

on the samples after post-processing, with the working model samples discarded.

3. SIMULATION STUDY WHEN THE NUMBER OF

FACTORS IS KNOWN

We look at two simulation examples to compare the performance of the traditional and our PX

Gibbs sampler. We routinely normalize the data prior to analysis.
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3.1 One Factor Model

In our first simulation, we consider one of the examples in Lopes and West (2004). Here p =

7, n = 100, the number of factors, k = 1, Λ = (0.995, 0.975, 0.949, 0.922, 0.894, 0.866, 0.837)′ and

diag(Σ) = (0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30). We repeat this simulation for 100 simulated data

sets. To specify the prior distributions, for the traditional Gibbs sampler we choose N+(0, 1)

(truncated to be positive) prior distributions for the diagonals and N(0, 1) prior distributions

for the lower triangular elements of Λ respectively. For the PX Gibbs sampler we induce half-

Cauchy and Cauchy prior distributions, both with scale parameter 1, for the diagonals and lower

triangular elements of Λ respectively. In order to induce this prior distribution we take N(0, 1) prior

distributions for the free elements of Λ∗ and G(1/2, 1/2) prior distributions for the diagonal elements

of Ψ. For the residual precisions σ−2
j we take G(1, 0.2) prior distributions for both samplers. This

choice of hyperparameter values provides a modest degree of shrinkage towards a plausible range of

values for the residual precision. For each simulated data set, we run the Gibbs sampler for 25,000

iterations, discarding the first 5,000 iterations as burn-in.

The Effective Sample Size (ESS) gives the size of an independent sample with the same variance

as the MCMC sample under consideration (Robert and Casella, 2004), and is hence a good measure

of mixing of the chain. We compare the ESS of the variance covariance matrix Ω across the 100

simulations. We find that the PX Gibbs sampler leads to a tremendous gain in ESS for all elements

in Ω. This is evident from Figure (1). It is important to note that the target distributions of

the MCMC algorithms for the typical prior distribution and the PX-induced prior distribution are

not equivalent, so that in some sense the ESS values are not directly comparable. That said, our

focus is on choosing a default prior distribution that has good properties in terms of posterior

computation, and it is reasonable from this perspective to compare the ESS for the two different

approaches. If substantive belief is available allowing one to follow a subjective Bayes approach and

choose informative prior distributions, our recommended PX approach can still be used, though

one should be careful to choose the hyperparameters based on the prior distributions induced after

transforming back to the inferential model (Imai and van Dyk, 2005). We have attempted to

choose prior distributions under the two approaches that are roughly comparable in terms of scale,

8



avoiding use of diffuse, but proper prior distributions. Such prior distributions are expected to

lead to very poor computational performance and unreliable estimates and inferences, because the

limiting case corresponds to an improper posterior distribution. The use of induced heavy-tailed

prior distributions after data standardization seems to provide a reasonable objective Bayes solution

to the problem, which results in substantially improved computational performance.

3.2 Three Factor Model

For our second simulation, we have p = 10, n = 100, and the number of factors, k = 3. To make

the problem more difficult, we set some of the loadings as negative and introduce more noise in the

data.

Λ′ =




0.89 0.00 0.25 0.00 0.80 0.00 0.50 0.00 0.00 0.00

0.00 0.90 0.25 0.40 0.00 0.50 0.00 0.00 −0.30 −0.30

0.00 0.00 0.85 0.80 0.00 0.75 0.75 0.00 0.80 0.80




diag(Σ) = (0.2079, 0.1900, 0.1525, 0.2000, 0.3600, 0.1875, 0.1875, 1.0000, 0.2700, 0.2700).

We carried out the simulations exactly as in the previous simulation study. From Figure (2) we

find that the gain is not as dramatic as in the previous example. This is not surprising for the

following reason.

The idea behind parameter expansion is to introduce auxiliary variables in the original model

to form a parameter expanded working model. Thus the working model has an extra set of pa-

rameters, and parameters under the original model are obtained by a pre-defined set of reduction

functions operating on the extra parameters. The improvement in mixing occurs because of the ex-

tra randomness introduced via the auxiliary variables. Gelman (2006) also mentions that parameter

expansion diminishes dependence among parameters and hence leads to better mixing.

The off-diagonal elements in the covariance matrix Ω represent the correlations between the

outcomes as the data are standardized. When some of the outcomes are highly correlated, the

corresponding elements in Ω are close to one. In such a scenario the likelihood is close to degenerate
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and the posterior samples under the traditional Gibbs sampler are poorly behaved, exhibiting

extreme high autocorrelation for those parameters. Thus in those cases there is a tremendous gain

in using the PX approach. On the other hand when the posterior correlation under the traditional

Gibbs sampler is low to begin with, there is not much room for improvement using the PX approach,

and hence we find a more modest gain.

It should be clarified that the modest improvement in the second example is not due to a fall

off in the PX Gibbs performance as dimension increases. Instead, the gain for the first example

was attributable to small values for some of the residual variances, leading to very high posterior

dependence in the factor loadings. The second example had more moderate residual variances. To

verify that the method is scalable to higher dimensions, we repeated the simulation in a case taken

from Lopes and West (2004) with p = 9, k = 3, and with some of the outcomes highly correlated,

implying low residual variance. In this case, we again observed a tremendous gain in mixing.

We note that the additional computation time needed for the PX approach over the traditional

approach is negligible, so that it is reasonable to focus on computational efficiency for the same

number of MCMC iterates.

4. BAYESIAN MODEL SELECTION FOR UNKNOWN

NUMBER OF FACTORS

4.1 Path Sampling With Parameter Expansion

To allow an unknown number of factors k, we choose a multinomial prior distribution, with Pr(k =

h) = κh, with κh = 1/m, for h = 1, . . . ,m. We then complete a Bayesian specification through

prior distributions on the coefficients within each of the models in the list k ∈ {1, . . . ,m}. This is

accomplished by choosing a prior distribution for the coefficients in the m factor model having the

form described in Section 2, with the prior distribution for Λ(h) for any smaller model k = h obtained

by marginalizing out the columns from (h+ 1) to m. In this manner, we place a prior distribution

on the coefficients in the largest model, while inducing prior distributions on the coefficients in each

of the smaller models.
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Bayesian selection of the number of factors relies on posterior model probabilities, Pr(k =

h |y) = {κh π(y | k = h)}/{
∑m

l=1 κl π(y | k = l)} where the marginal likelihood under model k,

π(y | k = h), is obtained by integrating the likelihood
∏

i Np(yi;0,Λ
(k)Λ(k)′ + Σ) across the prior

distribution for the factor loadings Λ(k) and residual variances Σ. We still need to consider the

problem of estimating Pr(k = h |y) as the marginal likelihood is not available in closed form.

Note that any posterior model probability can be expressed entirely in terms of the prior odds

O[h : j] = {κh/κj} and Bayes factors BF[h : j] = {π(y | k = h)/π(y | k = j)} as follows:

Pr(k = h |y) =
O[h : j] ∗ BF[h : j]∑m
l=1O[l : j] ∗ BF[l : j]

(5)

Lee and Song (2002) use the path sampling approach of Gelman and Meng (1998) for estimating

log Bayes factors. They construct a path using a scalar t ∈ [0, 1] to link two models M0 and M1.

They use the same idea as outlined in an example in Gelman and Meng (1998) to construct their

path. To compute the required integral they take a fixed set of grid points for t, t ∈ [0, 1] and then

use numerical integration to approximate the integration over t.

Let M0 and M1 correspond to models with (h− 1) and h factors respectively. The two models

are linked by the path: Mt : yi = Λtηi + ǫi, Λt = (λ1,λ2, . . . ,λ(h−1), tλh), where λi is the ith

column of the loadings matrix. Thus t = 0 and t = 1 correspond to M0 and M1. Then for a set of

fixed and ordered grid-points, t(0) = 0 < t(1) < · · · < t(S) < t(S+1) = 1, we have

l̂og(BF[h : (h− 1)]) =
1

2

S∑

s=o

(t(s+1) − t(s))(Ū(s+1) + Ū(s)) (6)

where U(Λ,Σ, η, y, t) =
∑n

i=1(yi −Λtηi)
′Σ−1(0p×(h−1),λh)ηi and Ū(s) is the average of

{U(Λ(j),Σ(j), η(j), y, t(s)), j = 1, 2, . . . J} over the J MCMC samples from p(Λ,Σ, η|y, t(s)).

An important challenge in Bayes model comparisons is sensitivity to the prior distribution. It

is well known that Bayes factors tend to be sensitive to the prior distribution, motivating a rich

literature on objective Bayes methods (Berger and Pericchi, 1996). Lee and Song (2002) rely on

highly-informative prior distributions in implementing Bayesian model selection for factor analysis,

an approach which is only reliable when substantial prior knowledge is available allowing one to
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concisely guess a narrow range of plausible values for all of the parameters in the model. Our

expectation is that such knowledge is often lacking, motivating our use of default, heavy-tailed

prior distributions, a strategy motivated by a desire for Bayesian robustness.

We modify their path sampling approach to allow use of our default PX-induced prior distri-

butions. To do this we run our PX Gibbs sampler for each of the grid points and calculate the

parameters under the inferential model simply using (3) and use those to estimate the log Bayes

factors as given in (6). We will refer to our approach as path sampling with parameter expansion

(PS-PX). Firstly PS-PX eliminates the need to use strongly informative prior distributions. Sec-

ondly, model selection based on path sampling is computationally quite intensive. Since PS-PX

uses prior distributions with good mixing properties one needs to run the chains for considerably

fewer iterations making the procedure much more efficient.

4.2 Simulation Study

Here we consider the same two sets of simulations as in Section 3, but now allowing the number

of factors to be unknown. Let m denote the maximum number of factors in our list. For the

simulation example considered in Section 3.1, we take m to be 3, which is also the maximum

number of factors resulting in an identifiable model. We repeat the simulation for 100 simulated

datasets and analyze them using PS-PX, taking 10 equi-spaced grid points in [0, 1] for t. We use

the same prior distributions for the parameters within each model as in Section 3.1. The correct

model is chosen 100/100 times. We also calculate the BIC for all the models in our list for each

dataset based on the maximum likelihood estimates of Λ and Σ. The BIC also chooses the correct

model 100/100 times.

For the simulation example in Section 3.2 the true model has three factors and the maximum

number of factors resulting in an identifiable model is 6. But here we take m = 4. We recommend

focusing on lists that do not have large number of factors as sparseness is one of the main goals

of factor models. Thus fitting models with as many factors as permitted given identifiability

constraints goes against this motivation. We carry out the simulations exactly as in the previous

simulation study. Here both PS-PX and the BIC choose the correct model 100/100 times again.
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5. APPLICATIONS

5.1 Male Fertility Study

We first illustrate the effect of our parameter expanded Gibbs sampler on mixing when the number

of factors is fixed. We have data from a reproductive epidemiology study. Here the underlying

latent factor of interest is the latent sperm concentration of subjects. Concentration is defined

as sperm count/semen volume. There are three outcome variables: concentration based on i.

an automated sperm count system, ii. manual counting (technique 1) and iii. manual counting

(technique 2) respectively. We consider the log-transformed concentration as the assumption of

normality is more appropriate on the log scale. Here the maximum number of latent factors that

results in an identifiable model is one. The model that we consider generalizes the factor analytic

model to include covariates at the latent variable level, given as follows:

yij = αj + λjηi + ǫij, ηi = β′xi + δi where ǫij ∼ N(0, τj
−1), δi ∼ N(0, 1) (7)

Following the usual convention we restrict the λj ’s to be positive for sign identifiability. We

denote the covariates by xi = (xi1, xi2, xi3)
′. There are altogether three study sites.

xij =






1 if the sample is from site (j+1)

0 otherwise
j = 1, 2. xi3 =






1 if the time since last ejaculation ≤ 2

0 otherwise

The PX model is as follows:

yij = αj
∗ + λj

∗ηi
∗ + ǫij , ηi

∗ = µ∗ + β∗′xi + δi
∗ where ǫij ∼ N(0, τj

−1), δ∗i ∼ N(0, ψ−1) (8)

We have introduced a redundant intercept µ∗ in the second level of the model which improves

the mixing tremendously. As noted by Gelfand et al. (1995), centering often leads to much better

mixing. We relate the PX model parameters in (8) to those of the inferential model in (7) using

the transformations

αj = α∗
j + λ∗jµ

∗, λj = S(λ∗j )λ
∗
jψ

−1/2, β = β∗ψ1/2, ηi = S(λ∗j )ψ
1/2(η∗i − µ∗), δi = ψ1/2δ∗i .

To specify the prior distribution for the traditional Gibbs sampler we choose αj ∼ N(0, 1), λj ∼
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N+(0, 1), τj ∼ G(1, 0.2) for j = 1, 2, 3, β ∼ N(0, 10 ∗ I3). For the PX Gibbs sampler we have

α∗
j ∼ N(0, 1), λ∗j ∼ N(0, 1), τj ∼ G(1, 0.2) for j = 1, 2, 3, µ∗ ∼ N(0, 1), β∗ ∼ N(0, 10 ∗ I3), ψ ∼

G(1/2, 1/2). We run both the samplers for 25,000 iterations excluding the first 5000 as burn-in, and

then compare the performance based on convergence diagnostics such as trace plots and effective

sample size (ESS).

It is evident from Figures (3) and (4) that the PX Gibbs sampler dramatically improves mixing.

ESS.PX/ESS.Traditional for the upper triangular elements of Ω = ΛΛ′ +Σ, starting from the first

row and proceeding from left to right are 162.44, 184.22, 148.47, 143.83, 144.00, 69.98. We use the

Raftery and Lewis Diagnostic to estimate the number of MCMC samples needed for a small Monte

Carlo error in estimating 95% credible intervals for the elements of Ω. The required sample size is

different for different elements and also varies depending on whether we are trying to estimate the

0.025 or 0.975 quantiles for a particular element of Ω. If we take the maximum sample size over

the two quantiles and all the elements then it turns out that the traditional Gibbs Sampler needs

to be run for almost an hour whereas the PX Gibbs sampler will take only a little more than a

minute to achieve the same accuracy. We also look at tools for inference like posterior means and

95% credible intervals for the different parameters in the model. On the basis of the 95% credible

intervals there does not seem to be any significant effect of the covariates like study center and

abstinence time on sperm concentration.

5.2 Rodent Organ Weight Study

We next illustrate the approach to model selection using parameter expansion through application

to organ weight data from a U.S. National Toxicology Program (NTP) 13 week study of An-

thraquinone in female Fischer rats. Studies are routinely conducted with 60 animals randomized

to approximately six dose groups. At the end of the study, animals are sacrificed and a necropsy is

conducted, with overall body weight obtained along with weights for the heart, liver, lungs, kidneys

(combined) and thymus. Although body and organ weights are clearly correlated, a challenge in the

analysis of these data is the dimensionality of the covariance matrix. In particular, even assuming

a constant covariance across dose groups, it is still necessary to estimate p(p + 1)/2 = 21 covari-
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ance parameters using data from only n = 60 animals. Hence, routine analyses rely on univariate

approaches applied separately to body weight and the different organ weights.

Here alternatively we can use a factor model to reduce dimensionality. To determine the ap-

propriate number of factors, we implemented the model selection approach described in Section 4

in the same manner as in the simulations. Body weights were normalized within each dose group

prior to analysis for purposes of studying the correlation structure. Here the maximum possible

number of factors was m = 3.

The estimated probabilities for the one, two and three factor models using PS-PX are 0.9209,

0.0714 and 0.0077 respectively. Here the BIC also chooses the one factor model. We also performed

some sensitivity analysis by considering i) t prior distributions with 4 d.f. instead of the default

Cauchy prior distributions for the factor loadings, ii) G(1, 0.4) prior distributions instead of G(1, 0.2)

for the precision parameters and iii) both i) and ii) together. The estimated probabilities under

i), ii) and iii) were {0.9412, 0.0544, 0.0044}, {0.9373 ,0.0578, 0.0048} and {0.9612, 0.0369, 0.0019}

respectively. This suggests that our approach is not very sensitive to the prior distribution. The

posterior means of factor loadings under the one factor model corresponding to body, heart, liver,

lungs, kidneys and thymus are 0.88, 0.33, 0.52, 0.33, 0.70 and 0.42 respectively. Body weight and

kidney weight are the two outcomes having the highest correlation with the latent factor in the one

factor analysis. These results suggest that one can bypass the need to rely on univariate analyses

for this data, by using a sparse one factor model instead.

6. DISCUSSION

In analyzing high-dimensional, or even moderate-dimensional, multivariate data, one is faced with

the problem of estimating a large number of covariance parameters. The factor model provides

a convenient dimensionality-reduction technique. The routine use of normal and gamma prior

distributions has proven to be a bottleneck for posterior computation in these models for the very

slow convergence exhibited in the Markov chain.

In this article we have proposed a default heavy-tailed prior distribution for factor analytic

models, using a parameter expansion approach. The posterior computation can be implemented
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easily using a Gibbs sampler. This prior distribution leads to a considerable improvement in

mixing in the Gibbs chain. Extension of this prior distribution to more general settings with

mixed outcomes (Song and Lee, 2007) or to factor regression models and Structural Equation

models is straightforward. The computational gain in using the PX Gibbs sampler compared to

the traditional one can be tremendous, especially if the outcomes are highly correlated. As evident

from the Male Fertility Study data, one may need to run the traditional Gibbs sampler for almost

an hour and the PX Gibbs sampler for less than two minutes to achieve the same level of accuracy

in estimating 95% credible intervals. Hobert and Marchev (2008) show theoretical support for PX

Gibbs samplers. Note that their work is philosophically different than our method, since their goal

is to use PX simply to accelerate the MCMC mixing without modifying the prior distribution.

We have also outlined a method based on path sampling using our default prior distribution, for

computing posterior probabilities of models having different number of factors. Good performance

of the method was demonstrated by using simulated data.

Matlab 7.5.0 was used for coding the PX Gibbs sampler and the PS-PX procedure. The package

coda in R 2.6.1 was used to compute the convergence diagnostics. The data used in the analyses

and the code can be downloaded from the JCGS website.
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APPENDIX: EFFECT OF PARAMETER EXPANSION
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Figure 1: Comparison of the Parameter Expanded and Traditional Gibbs sampler based on the
ratio of effective sample size for upper triangular elements of Ω, plotted rowwise from left to right,
over 100 simulated datasets for Simulation 3.1
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Figure 2: Comparison of the Parameter Expanded and Traditional Gibbs sampler based on the
ratio of effective sample size for upper triangular elements of Ω, plotted rowwise from left to right,
over 100 simulated datasets for Simulation 3.2
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Figure 3: Trace plots of factor loadings exhibiting poor mixing using the Traditional Gibbs sampler
in Application 5.1

0 5000 10000 15000 20000

0.
9

1.
0

1.
1

1.
2

Iterations

λ1

0 5000 10000 15000 20000

0.
9

1.
0

1.
1

1.
2

Iterations

λ2

0 5000 10000 15000 20000

0.
9

1.
0

1.
1

1.
2

Iterations

λ3

Figure 4: Trace plots of factor loadings exhibiting vastly improved mixing using the Parameter
Expanded Gibbs sampler in Application 5.1
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