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Abstract

In this article we highlight some interesting facts about Bayesian variable selection methods

for linear regression models in settings where the design matrix exhibits strong collinearity. We

first demonstrate via real data analysis and simulation studies that summaries of the posterior

distribution based on marginal and joint distributions may give conflicting results for assessing

the importance of strongly correlated covariates. The natural question is which one should be

used in practice. The simulation studies suggest that posterior inclusion probabilities and Bayes

factors that evaluate the importance of correlated covariates jointly are more appropriate, and

some priors may be more adversely affected in such a setting. To obtain a better understanding

behind the phenomenon we study some toy examples with Zellner’s g-prior. The results show

that strong collinearity may lead to a multimodal posterior distribution over models, in which

joint summaries are more appropriate than marginal summaries. Thus we recommend a routine

examination of the correlation matrix and calculation of the joint inclusion probabilities for cor-

related covariates, in addition to marginal inclusion probabilities, for assessing the importance

of covariates in Bayesian variable selection.

Key Words : Bayesian model averaging; Linear regression; Marginal inclusion probability; Me-

dian probability model; Multimodality; Zellner’s g-prior.

1 Introduction

We first present a brief overview of the Bayesian approach to variable selection in linear regression.

Let Y = (Y1, . . . Yn)
′ denote the vector of response variables, and let x1,x2, . . . ,xp denote the p
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covariates. Models corresponding to different subsets of covariates may be represented by the vector

γ = (γ1, . . . γp)
′, such that γj = 1 when xj is included in the model and γj = 0 otherwise. Let Γ

denote the model space of 2p possible models and pγ =
∑p

j=1 γj denote the number of covariates

in model γ, excluding the intercept. The linear regression model is

Y | β0,βγ , φ,γ ∼ N(1β0 +Xγβγ , In/φ), (1)

where 1 is an n × 1 vector of ones, β0 is the intercept, Xγ is the n × pγ design matrix and βγ is

the pγ × 1 vector of regression coefficients under model γ, φ is the reciprocal of the error variance,

and In is an n × n identity matrix. The intercept is assumed to be included in every model. The

models in (1) are assigned a prior distribution p(γ) and the vector of parameters under each model

γ is assigned a prior distribution p(θγ | γ), where θγ = (β0,βγ , φ). The posterior probability of

any model is obtained using Bayes’ rule as:

p(γ | Y) =
p(Y | γ)p(γ)∑
γ∈Γ p(Y | γ)p(γ) , (2)

where p(Y | γ) =
∫
p(Y | θγ ,γ)p(θγ | γ)dθγ is the marginal distribution of Y under model γ.

This is also referred to as the marginal likelihood of the model γ. We will consider scenarios when

the marginal likelihood may or may not exist in closed form. For model selection, a natural choice

would be the highest probability model (HPM). This model is theoretically optimal for selecting

the “true” model under a 0− 1 loss function using decision-theoretic arguments.

When p is larger than 25−30 the posterior probabilities in (2) are not available for general design

matrices due to computational limitations, irrespective of whether the marginal likelihoods can be

calculated in closed form or not. Generally one resorts to Markov chain Monte Carlo (MCMC) or

other stochastic sampling based methods to sample models. The MCMC sample size is typically

far smaller than the dimension (2p) of the model space, when p is large. As a result Monte Carlo

estimates of posterior probabilities of individual models can be unreliable, which makes accurate

estimation of the HPM a challenging task. Moreover, for large model spaces the HPM may have a

very small posterior probability, so it is not clear if variable selection should be based on the HPM
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alone as opposed to combining the information across models. Thus variable selection is often

performed with the marginal posterior inclusion probabilities, for which more reliable estimates are

available from the MCMC output. The marginal inclusion probability for the jth covariate is:

p(γj = 1 | Y) =
∑

γ∈Γ:γj=1

p(γ | Y).

The use of these can be further motivated by the median probability model (MPM) of Barbieri and

Berger (2004). The MPM includes all variables whose posterior marginal inclusion probabilities

are greater than or equal to 0.5. Instead of selecting a single best model another option is to

consider a weighted average of quantities of interest over all models with weights being the posterior

probabilities of models. This is known as Bayesian model averaging (BMA) and it is optimal for

predictions under a squared error loss function. However, sometimes from a practical perspective

a single model may need to be chosen for future use. In such a situation the MPM is the optimal

predictive model under a squared error loss function under certain conditions (Barbieri and Berger,

2004). For the optimality conditions to be satisfied, the columns of the design matrix need to

be orthogonal in the all submodels scenario, and the priors must also satisfy some conditions.

Independent conjugate normal priors belong to the class of priors that satisfies these conditions.

Barbieri and Berger (2004) suggest that in practice the MPM often outperforms the HPM even if

the condition of orthogonality is not satisfied.

It is known that strong collinearity in the design matrix could make the variance of the ordi-

nary least squares estimates unusually high. As a result the standard t-test statistics may all be

insignificant in spite of the corresponding covariates being associated with the response variable.

In this article we study a Bayesian analogue of this phenomenon. Note that our goal is not to

raise concerns about Bayesian variable selection methods, rather we describe in what ways they are

affected by collinearity and how to address such problems in a straightforward manner. In Section

2 we use real data analysis to demonstrate that marginal and joint summaries of the posterior

distribution over models may provide conflicting conclusions about the importance of covariates in

a high collinearity situation. In Section 3 we illustrate via simulation studies that joint summaries
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are more likely to be correct than marginal summaries under collinearity. Further, independent

normal priors generally perform better than Zellner’s g-prior (Zellner, 1986) and its mixtures in

this context. In Section 4 we provide some theoretical insight into the problem using the g-prior

for the parameters under each model and a discrete uniform prior for the model space. Our results

show that collinearity leads to a multimodal posterior distribution which could lead to incorrect

assessment of the importance of variables when using marginal inclusion probabilities. A simple so-

lution is to use the joint inclusion probabilities (and joint Bayes factors) that still provide accurate

results. In Section 5 we conclude with some suggestions to cope with the problem of collinearity in

Bayesian variable selection.

2 Biscuit Dough Data

To motivate the problem studied in this article, we begin with an analysis of the biscuit dough

dataset, available as “cookie” in the R package ppls (Kraemer and Boulesteix, 2012). The dataset

was obtained from an experiment that used near-infrared (NIR) spectroscopy to analyze the com-

position of biscuit dough pieces. The experiment of Osborne et al. (1984) investigated whether

NIR spectroscopy could be used for automatic quality control in the biscuit baking industry. Com-

pared to classical chemical methods these are non-destructive and fast. Hence the method could

potentially be used for automatic online control. An NIR reflectance spectrum for each dough is

a continuous curve measured at many equally spaced wavelengths. The goal of the experiment

was to extract the information contained in this curve to predict the chemical composition of the

dough. The package ppls contains the training and test samples used in the original experiment

by Osborne et al. (1984), where 39 samples were used for calibration and 31 samples made with

a similar recipe were used for prediction. We use the same training and test data. Osborne et al.

(1984) concluded that the method was capable of predicting the fat content in the biscuit doughs

sufficiently accurately.

Brown et al. (2001) omitted the first 140 and last 49 of the available 700 wavelengths to reduce

the computational burden because these were thought to contain little information. For our analysis

we choose the wavelengths 191 − 205 to have p = 15 covariates with high pairwise correlations
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(around 0.999) among all of them, and the percentage of fat as the response variable. Considering

all possible subsets of the full model, this results in a model space of 215 models. The model space

is small enough that all posterior probabilities (and thus posterior inclusion probabilities) can be

calculated exactly or approximately by a Laplace approximation. This ensures that there is no

ambiguity in the results due to Monte Carlo approximation.

We use a discrete uniform prior for the model space which assigns equal probability to each

of the 215 models and diffuse priors for the intercept β0 and precision parameter φ, given by

p(β0, φ) ∝ 1/φ. For the model specific regression coefficients βγ , we consider i) the multivariate

normal g-prior (Zellner, 1986) with g = n, ii) the multivariate Zellner-Siow (Zellner and Siow, 1980)

Cauchy prior, and iii) independent normal priors.

The marginal likelihood for the g-prior is given in equation (5). For the Zellner-Siow prior,

marginal likelihoods are approximated by a Laplace approximation for a one-dimensional integral

over g, see for example Appendix A.1 of Liang et al. (2008) for more details. The posterior

computation for the different versions of g-priors is done by enumerating all 215 models with the BAS

algorithm (Clyde et al., 2011). For the independent normal priors we use the same hyperparameters

as Ghosh and Clyde (2011). We enumerate all models and calculate the marginal likelihoods using

equation (17) of Ghosh and Clyde (2011) for posterior computation.

Suppose it is of interest to predict a set of future response variables Yf , at a set of covariates

Xf , from the same process that generated the observed data Y. We use the mean of the Bayesian

predictive distribution p(Yf | γ,Y), for a given model γ, where

p(Yf | γ,Y) =

∫
p(Yf | β0,βγ , φ,γ)p(β0,βγ , φ | γ,Y)dβ0dβγdφ. (3)

The mean of the above distribution is of the form 1β̃0+Xfγβ̃γ , where β̃0 and β̃γ are the posterior

means of β0 and βγ under the model γ. See Liang et al. (2008) and Ghosh and Clyde (2011) for

more details on expressions of the posterior means.

For every prior considered, the posterior marginal inclusion probability for each covariate is less

than 0.5. The marginal Bayes factor for γj = 1 vs. γj = 0 is the ratio of the posterior odds to

the prior odds,
p(γj=1|Y)/p(γj=0|Y)

p(γj=1)/p(γj=0) , for j = 1, . . . , p. Because p(γj = 1|Y) < 0.5 the posterior odds
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are less than 1, and the prior odds are equal to 1 under a uniform prior, hence the marginal Bayes

factors are less than 1. Here the MPM is the null model with only an intercept. The predicted

values are calculated using (3) and the prediction mean squared error (PMSE) is 3.95.

As all 15 covariates are correlated we next calculate the Bayes factor BF(HA : H0), where H0

is the model with only the intercept and HA denotes its complement. For the existence of the

marginal likelihood under the null model with only an intercept we need the sample size to be at

least two and the sample variance of the response variable to be strictly positive, that is the values

of the response variable cannot be all equal. These conditions are satisfied in this example and

would usually hold for continuous response variables. The Bayes factors are i) 114, ii) 69, and iii)

11,073, for the i) g-prior, ii) Zellner-Siow prior, and iii) independent normal priors. The Bayes

factors are different (in magnitude) under different priors, but they unanimously provide strong

evidence against H0. This suggests that it could be worthwhile to consider a model with at least

one covariate. Because all the covariates are correlated with each other, the full model is worth

an investigation. The PMSEs for the full model under the three priors are 4.55, 3.98 and 2.00,

respectively. We also consider prediction using the highest probability model (HPM) under each

prior; for all priors the HPM only selects covariate 13. The PMSEs for the HPM under all priors

are 2.03.

This example illustrates three main points. First, for a group of highly correlated covariates, the

marginal posterior inclusion probabilities for all of them may be low even when the joint posterior

inclusion probability that at least one of them is included is very high. Second, the predictive

performance using g-priors could be more adversely affected than using independent priors when

highly correlated covariates are included in the model. Third, if one has to select a single model

for prediction, the HPM could provide better prediction than the MPM under collinearity, because

unlike the MPM, the HPM does not discard the entire set of correlated covariates associated with

the response variable.

Note that a different choice of wavelengths as covariates may not lead to selection of the null

model as was the case here using the MPM, but our goal is to illustrate that this phenomenon can

happen in practice.
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For a given model γ, the posterior mean of the vector of regression coefficients, βγ , under

the g-prior (as specified in equation (4) in Section 4) is g
1+g β̂γ , where β̂γ is the ordinary least

squares (OLS) estimate of βγ (Liang et al., 2008; Ghosh and Reiter, 2013). It is well-known that

OLS estimates can be unstable due to high variance under collinearity, so it is not surprising

that the g-prior inherits this property. The corresponding estimate under the independent normal

priors is a ridge regression estimate (Ghosh and Clyde, 2011), which is known to be more stable

under collinearity. In the following two sections we try to understand the problem better by using

simulation studies and theoretical toy examples.

3 Simulation Studies

Our goal is to compare the performance of marginal and joint summaries of the posterior distri-

bution for different priors under collinearity. It is of interest to evaluate whether the covariates in

the “true” model can be identified by using different priors and/or estimates. We agree with the

Associate Editor that a model cannot be completely “true”, however, we think like many authors

that studying the performance of procedures based on different priors and/or estimates under a

“true” model may give us insight about their behavior. From now on by important covariates we

would refer to covariates with nonzero regression coefficients in the “true” model. One could also

define “importance” in terms of predictive ability of the model, and we comment on these issues in

more detail in the Discussion section. For simulation studies we consider the three priors used for

the real dataset in the previous section and discuss the results in the following subsections.

3.1 Important Correlated Covariates

We take n = 50, p = 10, and q = 2, 3, 4, where q is the number of correlated covariates. We

sample a vector of n standard normal variables, say z, and then generate each of the q correlated

covariates by adding another vector of n independent normal variables with mean 0 and standard

deviation 0.05 to z. This results in pairwise correlations of about 0.997 among the correlated

covariates. The remaining (p− q) covariates are generated independently as N(0, 1) variables. We

set the intercept and the regression coefficients for the correlated covariates equal to one, and all
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other regression coefficients equal to zero. The response variable is generated according to model

(1) with φ = 1/4 and the procedure is repeated to generate 100 datasets. For all priors the model

space of 210 = 1, 024 models is enumerated.

If a covariate included in the “true” model is not selected by the MPM, it is considered a false

negative. If a noise variable is selected by the MPM, that leads to a false positive. It could be

argued that as long as the MPM includes at least one of the correlated covariates associated with

the response variable, the predictive performance of the model will not be adversely affected. Thus

we also consider the cases when the MPM drops the entire group of “true” correlated covariates,

when p(γj = 1 | Y) < 0.5 for all q correlated covariates. Results are summarized in Table 1 in

terms of four quantities, of which the first three measure the performance of the marginal inclusion

probabilities that are used to determine the MPM. They are defined as follows:

1. FNR: false negative rate defined as
∑m

i=1 FNRi/m, where m is the number of simulated

datasets and FNRi is the number of true covariates that are not selected by the MPM for

the ith datatset, divided by the total number of true covariates (q).

2. FPR: false positive rate defined as
∑m

i=1 FPRi/m, where FPRi is the number of noise co-

variates that are selected by the MPM for the ith datatset, divided by the total number of

noise covariates (p− q = 10− q).

3. Null: proportion of datasets in which the MPM discards all “true” correlated covariates

simultaneously.

4. BF: proportion of datasets in which the Bayes factor BF(HA : H0) ≥ 10, where H0 is the

hypothesis that γj = 0 for all the q correlated covariates and HA denotes its complement.

Table 1 shows that the false negative rate is much higher for q > 2 than q = 2. With q = 4

this rate is higher than 80% for the g-priors and higher than 10% for the independent priors. The

false positive rate is generally low and the performance is similar across all priors. For q = 2

none of the priors drop all correlated covariates together. However, for q = 3, 4, the g-priors show

this behavior in about 40-50% cases. This problem may be tackled by considering joint inclusion

probabilities for correlated covariates (Barbieri and Berger, 2004; Berger and Molina, 2005; George
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and McCulloch, 1997), and the corresponding Bayes factors lead to a correct conclusion 99-100%

of the time. The independent priors seem more robust to collinearity and they never discard all

the correlated covariates. The underperformance of the estimates based on the g-priors could be

partly explained by their somewhat inaccurate representation of prior belief in the scenarios under

consideration. This issue is discussed in more detail in Section 4.

q = 2 q = 3 q = 4
Prior FNR FPR Null BF FNR FPR Null BF FNR FPR Null BF
g-prior 0.36 0.06 0.00 0.99 0.78 0.05 0.43 1.00 0.86 0.05 0.51 1.00

Zellner-Siow 0.21 0.08 0.00 0.99 0.77 0.06 0.38 1.00 0.87 0.04 0.54 1.00
Independent normal 0.01 0.06 0.00 0.99 0.14 0.05 0.00 1.00 0.15 0.05 0.00 1.00

Table 1: Simulation study with p = 10 covariates, of which q correlated covariates are included in
the “true” model as signals, and (p− q) uncorrelated covariates denote noise.

3.2 Unimportant Correlated Covariates

In this simulation study we consider the same values of n, p, and q as before. We now set the

regression coefficients for the q correlated covariates at zero, and the remaining (p− q) coefficients

at one. We generate the covariates and the response variable as in Section 3.1.

The results based on repeating the procedure 100 times are presented in Table 2. The false

negative rates are similar across priors. This is expected because these are affected by the un-

correlated covariates only. The false positive rates are generally small and similar across priors,

so the MPM does not seem to have any problems in discarding correlated covariates that are not

associated with the response variable. The Bayes factors based on joint inclusion indicators lead

to a correct conclusion 99-100% of the time.

q = 2 q = 3 q = 4
Prior FNR FPR BF FNR FPR BF FNR FPR BF

g-prior 0.15 0.03 0.00 0.16 0.02 0.01 0.15 0.03 0.00
Zellner-Siow 0.11 0.07 0.00 0.11 0.06 0.01 0.10 0.07 0.00

Independent normal 0.14 0.08 0.00 0.16 0.03 0.00 0.14 0.00 0.00

Table 2: Simulation study with p = 10 covariates, of which q correlated noise variables are not
included in the “true” model, and (p− q) uncorrelated covariates are included in the “true” model
as signals.
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4 Zellner’s g-prior and Collinearity

In the previous simulation studies and real data analysis Zellner’s g-prior (Zellner, 1986) has been

shown to be most affected. In this section we explore this prior further with empirical and theoretical

toy examples to get a better understanding of its behavior under collinearity. Zellner’s g-prior and

its variants are widely used for the model specific parameters in Bayesian variable selection. A

key reason for the popularity is perhaps its computational tractability in high-dimensional model

spaces. The choice of g is critical in model selection and a variety of choices have been proposed in

the literature. In this section, we focus on the unit information g-prior with g = n, in the presence

of strong collinearity. Letting X denote the design matrix under the full model, we assume that the

columns of X have been centered to have mean 0 and scaled so that the norm of each column is
√
n,

as in Ghosh and Clyde (2011). For the standardized design matrix X′X is n times the observed

correlation matrix of the predictor variables. Under model γ the g-prior is given by:

p(β0, φ | γ) ∝ 1/φ

βγ | γ, φ ∼ N

(
0,

g

φ
(Xγ

′Xγ)
−1

)
. (4)

We first explain why the information contained in this prior is in strong disagreement with the

data, for the scenarios considered in Section 3. For simplicity of exposition we take a small example

with p = 2, and denote the sample correlation coefficient between the two covariates by r. For

given g and φ, the prior variance of βγ in the full model γ = (1, 1)′ is given by

g

φ

(
X′

γ
Xγ

)−1
=

g

φ


n




1 r

r 1







−1

=
g

nφ(1− r2)




1 −r

−r 1


 .

When r ≈ 1, the prior correlation coefficient between β1 and β2 is −r ≈ −1. Thus the g-prior

strongly encourages the coefficients to move in opposite directions when the covariates are strongly

positively correlated. Krishna et al. (2009) have given similar arguments for not preferring the

g-prior in high collinearity situations.

An effect of a prior distribution may be better understood by examining the posterior distribu-
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tion that arises under it, which is studied in the rest of this section. Now let Ŷγ = 1β̂0 +Xγβ̂γ ,

where β̂0 = Ȳ =
∑n

i=1 Yi/n and β̂γ = (Xγ
′Xγ)

−1
Xγ

′Y are the ordinary least squares estimates

of β0 and βγ . Let the regression sum of squares for model γ be SSRγ =
∑n

i=1 (Ŷγi − Ȳ )
2
and

the total sum of squares be SST =
∑n

i=1 (Yi − Ȳ )
2
. Then the coefficient of determination (see for

example, Christensen (2002) Section 14.1.1) for model γ is R2
γ
= SSRγ/SST. When γ is the null

model with only the intercept term, Ŷγ = 1Ȳ , thus its SSRγ = 0 and R2
γ
= 0, in this special case.

The marginal likelihood for the g-prior can be calculated analytically as:

p(Y | γ) ∝ (1 + g)
n−pγ−1

2 {1 + g(1−R2
γ
)}−

(n−1)
2 , (5)

where pγ =
∑p

j=1 γj denotes the number of covariates in model γ (excluding the intercept), and

the constant of proportionality does not depend on γ (see Section 2.1 equation (5) of Liang et al.

(2008)). We assume throughout that we have a discrete uniform prior for the model space so that

p(γ) = 1/2p for all models. For exploration of non-enumerable model spaces MCMC may be used

such that p(γ | Y) is the target distribution of the Markov chain. George and McCulloch (1997)

discuss fast updating schemes for MCMC sampling with the g-prior.

Next, we consider a small simulation study for p = 3 with strong collinearity among the covari-

ates, so that we can explicitly list each of the 23 models along with their R2 values and posterior

probabilities, to demonstrate the problem associated with severe collinearity empirically. In later

subsections we consider some toy examples to explain this problem theoretically and hence obtain

a better understanding of the properties of the MPM. For our theoretical examples, we will deal

with finite and large n under conditions of severe collinearity. Our results complement the results

of Fernández et al. (2001) who showed that model selection consistency holds for the g-prior with

g = n. Their result implies that under appropriate assumptions, p(γ|Y) will converge to 1 in

probability, if γ ∈ Γ is the “true” model. Our simulations and theoretical calculations demonstrate

that under severe collinearity the posterior distribution over models may become multimodal and

very large values of n may be needed for consistency to take effect.
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4.1 Simulated data for p = 3

We generate highly correlated covariates by sampling a vector of n standard normal variables, say

z, and then generate each of the covariates by adding another vector of n independent normal

variables with mean 0 and standard deviation 0.05 to z. This results in pairwise correlations of

about 0.997 among all the covariates. We set the intercept and the regression coefficients for all

the covariates equal to one, and generate the response variable as in model (1) with φ = 1/4. We

look at a range of moderate to extremely large sample sizes in Table 3. For each sample size n, a

single dataset is generated, and the same data generating model is used for all n. The differences

in R2 values for a given model across different sample sizes is due to sampling variability, and it

stabilizes to a common value when n is large.

Table 3 shows that high positive correlations among the important covariates lead to similar R2

values across all non-null models. For the g-prior this translates into high posterior probabilities

for the single variable models, in spite of the full model being the “true” model. The full model

does not have a high posterior probability even for n = 104, finally posterior consistency takes

effect when n is as large as 105. For n ≥ 1, 000, one model usually has a high posterior probability,

but under repeated sampling there is considerable variability regarding which model gets the large

mass. We run the experiment a second time to illustrate the sampling variability and report the

results in Table 4.

R2

γ
p(γ | Y)

γ n = 25 n = 102 n = 103 n = 104 n = 105 n = 25 n = 102 n = 103 n = 104 n = 105

(0, 0, 0)′ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0, 0, 1)′ 0.736 0.582 0.666 0.691 0.691 0.274 0.144 0.548 0.000 0.000
(0, 1, 0)′ 0.734 0.589 0.665 0.691 0.691 0.253 0.329 0.086 0.018 0.000
(0, 1, 1)′ 0.736 0.590 0.666 0.692 0.692 0.054 0.035 0.026 0.909 0.000
(1, 0, 0)′ 0.738 0.591 0.665 0.690 0.691 0.293 0.398 0.282 0.000 0.000
(1, 0, 1)′ 0.738 0.592 0.666 0.691 0.692 0.058 0.047 0.040 0.000 0.000
(1, 1, 0)′ 0.738 0.591 0.666 0.692 0.692 0.057 0.041 0.017 0.046 0.000
(1, 1, 1)′ 0.738 0.594 0.667 0.692 0.692 0.011 0.006 0.001 0.026 1.000

Table 3: Simulation study for p = 3, to demonstrate the effect of collinearity on posterior proba-
bilities of models; the posterior probabilities of the top 3 models have been highlighted.

Finally, Table 5 studies the posterior inclusion probabilities of covariates corresponding to the

12



R2

γ
p(γ | Y)

γ n = 25 n = 102 n = 103 n = 104 n = 105 n = 25 n = 102 n = 103 n = 104 n = 105

(0, 0, 0)′ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0, 0, 1)′ 0.612 0.759 0.691 0.685 0.691 0.204 0.254 0.017 0.000 0.000
(0, 1, 0)′ 0.629 0.761 0.693 0.685 0.691 0.332 0.344 0.915 0.000 0.000
(0, 1, 1)′ 0.643 0.761 0.693 0.686 0.692 0.097 0.036 0.032 0.061 0.000
(1, 0, 0)′ 0.617 0.760 0.690 0.685 0.691 0.231 0.293 0.004 0.000 0.000
(1, 0, 1)′ 0.617 0.760 0.691 0.686 0.692 0.045 0.032 0.001 0.175 0.000
(1, 1, 0)′ 0.633 0.761 0.693 0.686 0.692 0.072 0.037 0.029 0.609 0.000
(1, 1, 1)′ 0.643 0.761 0.693 0.686 0.692 0.019 0.004 0.001 0.155 1.000

Table 4: Replicate of simulation study for p = 3 with collinearity in the design matrix, to demon-
strate the effect of sampling variability; the posterior probabilities of the top 3 models have been
highlighted.

datasets generated in Table 3. We find that for n = 25 and n = 100, the marginal inclusion

probabilities are all smaller than 0.5, so the MPM will be the null model. However, for all values

of n, the joint inclusion probability that at least one of the correlated covariates is included in

the model is (1− p((0, 0, 0)′ | Y)) = 1. This suggests that the joint inclusion probabilities are

still effective measures of importance of covariates even when the MPM or the HPM are adversely

affected by collinearity.

Even though the HPM is not the “true” model, it will very likely be effective for predictions in

this high collinearity situation because it never discards all the important covariates. When the main

goal is prediction, whether the “true” model has been selected or not may be irrelevant. However,

sometimes it may be of practical interest to find the covariates associated with the response variable,

as in a genetic association study. In this case it would be desirable to select the “true” model for a

better understanding of the underlying biological process, and both the HPM and the MPM could

fail to do so under high collinearity.

n = 25 n = 102 n = 103 n = 104 n = 105

p(γ1 = 1 | Y) 0.419 0.492 0.341 0.072 1.000
p(γ2 = 1 | Y) 0.375 0.411 0.130 1.000 1.000
p(γ3 = 1 | Y) 0.397 0.232 0.615 0.936 1.000

Table 5: Effect of collinearity on posterior marginal inclusion probabilities of covariates correspond-
ing to the simulation study reported in Table 3.

In the following subsections we first introduce a few assumptions and propositions and then conduct
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a theoretical study of the p = 2 case followed by that for the general p case.

4.2 Assumptions About R2 and Collinearity

First note that for the null model γ = (0, 0, . . . , 0)′, we have R2
γ
= 0, by definition. To deal with

random R2
γ
for non-null models, we make the following assumption:

Assumption 1. Assume that the “true” model is the full model and that 0 < δ1 < R2
γ
< δ2 < 1,

for all sample size n and for all non-null models γ ∈ Γ− {(0, 0, . . . , 0)′}, with probability 1.

Proposition 1. If Assumption 1 holds, then for given ǫ > 0, and for g = n sufficiently large, the

Bayes factor for comparing γ = (0, 0, . . . , 0)′ and γ = (1, 0, . . . , 0)′ can be made smaller than ǫ,

with probability 1.

The proof is given in Appendix A. This result implies that the Bayes factor,

BF(γ = (0, 0, . . . , 0)′ : γ = (1, 0, . . . , 0)′) ≈ 0, (6)

with probability 1, if the specified conditions hold.

For a discrete uniform prior for the model space, that is p(γ) = 1/2p for all models γ ∈ Γ, the

posterior probability of any model γ may be expressed entirely in terms of Bayes factors as:

p(γ | Y) =
p(Y | γ)(1/2p)∑
γ∈Γ p(Y | γ)(1/2p) =

p(Y | γ)∑
γ∈Γ p(Y | γ) =

p(Y | γ)/p(Y | γ⋆)∑
γ∈Γ p(Y | γ)/p(Y | γ⋆)

=
BF(γ : γ⋆)∑
γ∈Γ BF(γ : γ⋆)

,

(7)

where γ⋆ ∈ Γ (Berger and Molina, 2005). Taking γ = (0, 0, . . . , 0)′ and γ⋆ = (1, 0, . . . , 0)′ in (7),

and using (6), for large enough n we have the following with probability 1,

p(γ = (0, 0, . . . , 0)′ | Y) ≈ 0. (8)

As the null model receives negligible posterior probability we may omit it when computing the

normalizing constant of p(γ | Y), that is we may compute the posterior probabilities of non-

null models by re-normalizing over the set Γ − {(0, 0, . . . , 0)′} instead of Γ. We provide a formal

justification of this approximation in Appendix B.
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We now make an assumption about strong collinearity among the covariates, so that R2
γ
for all

non-null models γ ∈ Γ− {(0, 0, . . . , 0)′} are sufficiently close to each other, with probability 1.

Assumption 2. Assume that the p covariates are highly correlated with each other such that the

ratio

{
1+n(1−R2

γ)

1+n(1−R2
γ′ )

}−
(n−1)

2

can be taken to be approximately 1, for any pair of distinct non-null

models γ and γ ′, with probability 1.

The above assumption is not made in an asymptotic sense, instead it assumes that the collinear-

ity is strong enough for the condition to hold over a range of large n, but not necessarily as n → ∞.

One would usually expect a group or multiple groups of correlated covariates to occur, instead

of all p of them being highly correlated. This simplified assumption is made for exploring the

behavior theoretically, but the phenomenon holds under more general conditions. This has been

already demonstrated in the simulation studies in Section 3, where a subset (of varying size) of the

p covariates was assumed to be correlated rather than all of them. Our empirical results suggest

that this assumption will usually not hold when the correlations are smaller than 0.9 or so. Thus

it will probably not occur frequently, but cannot be ruled out either, as evident from the real data

analysis in Section 2. We next study the posterior distribution of 22 models for an example with

p = 2 highly correlated covariates and extend the results to the general p scenario in the following

subsection.

4.3 Collinearity Example for p = 2

Under Assumptions 1 and 2 and the discrete uniform prior for the model space, p(γ) = 1
22
, γ ∈ Γ,

the posterior probabilities of the 22 models can be approximated as follows, with probability 1:

p(γ = (0, 0)′ | Y) ≈ 0, p(γ = (0, 1)′ | Y) ≈ 1

2
, p(γ = (1, 0)′ | Y) ≈ 1

2
, p(γ = (1, 1)′ | Y) ≈ 0. (9)

The detailed calculations are given in Appendix C and the results in (9) have the following impli-

cations with probability 1.

The marginal posterior inclusion probabilities for both covariates would be close to 0.5, so the

MPM will most likely include at least one of the two important covariates, which happened in all
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our simulations in Section 3. The prior probability that at least one of the important covariates is

included is 1 − p(γ = (0, 0)′) = 1 − (1/2)2 = 3/4. The posterior probability of the same event is

1− p(γ = (0, 0)′ | Y) ≈ 1, by (9). Let H0 denote γ = (0, 0)′ and HA denote its complement. Then

the prior odds P (HA)/P(H0) = (3/4)/(1/4) = 3 and the posterior odds P (HA | Y)/P(H0 | Y) is

expected to be very large, because P (HA | Y) ≈ 1 and P (H0 | Y) ≈ 0, by (9). Thus the Bayes factor

BF(HA : H0) =
P(HA|Y)/P(H0|Y)

P(HA)/P(H0)
will be very large with probability 1, under the above assumptions.

4.4 Collinearity Example for General p

Consider a similar set up with p highly correlated covariates and γ = (1, 1, . . . , 1)′ as the “true”

model. Under Assumptions 1 and 2 the following results hold with probability 1, which is implicitly

assumed throughout this section. For large n, under Assumption 1, the null model has nearly zero

posterior probability by (8), so it is not considered in the calculation of the normalizing constant for

posterior probabilities of models as before. Under Assumption 2, taking g = n in (5), all (2p−1) non-

null models have the term {1 + n(1 − R2
γ
)}−

(n−1)
2 (approximately) in common. Ignoring common

terms the marginal likelihood for any model of dimension pγ is approximately proportional to

(1 + n)
n−pγ−1

2 . Given n, this term decreases as pγ increases, so the models with pγ = 1 will have

the highest posterior probability, and the posterior will have p modes at each of the one-dimensional

models. The posterior inclusion probability for the jth covariate is

p(γj = 1 | Y) =

∑
γ∈Γ:γj=1 p(Y | γ)
∑

γ∈Γ p(Y | γ) ≈
∑

γ∈Γ:γj=1 p(Y | γ)
∑

γ∈Γ−{(0,0,...,0)′} p(Y | γ) ≈
∑p

pγ=1

(
p−1
pγ−1

)
(1 + n)

n−pγ−1

2

∑p
pγ=1

(
p
pγ

)
(1 + n)

n−pγ−1

2

,(10)

where the last approximation is due to Assumption 2 regarding collinearity. The expression in

(10) follows the fact that i) all pγ-dimensional models have the marginal likelihood proportional to

(1 + n)
n−pγ−1

2 approximately (using Assumption 2 in (5)), ii) there are altogether
(
p
pγ

)
such models,

and iii) exactly
(
p−1
pγ−1

)
of these have γj = 1. Dividing the numerator and denominator of (10) by
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(1 + n)
n−2
2 we have

p(γj = 1 | Y) ≈
1 +

∑p
pγ=2

(
p−1
pγ−1

)
(1 + n)−

(pγ−1)

2

p+
∑p

pγ=2

(
p
pγ

)
(1 + n)−

(pγ−1)

2

≈ 1

p
,

where the last approximation follows for fixed p and sufficiently large n, as the terms in the sum

over pγ (from 2 to p) involve negative powers of (1 + n). This result suggests that the MPM will

have greater problems due to collinearity for p ≥ 3 compared to p = 2.

Let H0 : γ = (0, 0, . . . , 0)′ and HA: complement of H0. Because the prior odds P (HA)/P (H0) =

(2p−1) is fixed (for fixed p), and the posterior odds is large for sufficiently large n, the Bayes factor

BF(HA : H0) will be large. This useful result suggests that while marginal inclusion probabilities

(marginal Bayes factors) may give misleading conclusions about the importance of covariates, the

joint inclusion probabilities (joint Bayes factors) would correctly indicate that at least one of the

covariates should be included in the model. These results are in agreement with the simulation

studies in Section 3 and provide a theoretical justification for them.

5 Discussion

Based on the empirical results it seems preferable to use independent priors for model matrices

with high collinearity instead of scale mixtures of g-priors. The MPM is the model which includes

all covariates with posterior marginal inclusion probabilities greater than or equal to 0.5, so it is

easy to understand, straightforward to estimate, and it generally has good performance except in

cases of severe collinearity. As the threshold of 0.5 may not be appropriate for highly correlated

covariates, we recommend a two-step procedure: using the MPM for variable selection as a first step,

followed by an inspection of joint inclusion probabilities and Bayes factors for groups of correlated

covariates, as a second step. For complex correlation structures it may be desirable to incorporate

that information in the prior. Krishna et al. (2009) proposed a new powered correlation prior for the

regression coefficients and a new model space prior with this objective. The posterior computation

for their prior will be very demanding for high dimensions compared to some of the other standard

17



priors like independent normal priors used in this paper. Thus development of priors along the

lines of Krishna et al. (2009) that scale well with the dimension of the model space is a promising

direction for future research.

An interesting question was raised by the reviewer: should we label all the covariates appearing

in the “true” model as important even in cases of high collinearity. The definition of important

covariates largely depends on the goal of the study. For example, in genetic association studies

there could be some highly correlated genetic markers, all associated with the response variable,

and the goal of the study is often identifying such markers. In this case they would all be deemed

important. In recent years statisticians have focused on this aspect of variable selection with corre-

lated covariates, where it is desired that correlated covariates are to be simultaneously included in

(or excluded from) a model as a group. The elastic net by Zou and Hastie (2005) is a regularization

method with such a grouping effect. Bayesians have formulated priors that will induce the grouping

effect (Krishna et al., 2009; Liu et al., 2014). In some of these papers the authors have shown that

including correlated covariates in a group with appropriate regularization or shrinkage rules may

improve predictions.

If the goal is to uncover the model with best predictive performance, then including highly

correlated covariates simultaneously in the model may not necessarily lead to the best predictive

model. The MPM is the optimal predictive model under squared error loss, and certain conditions.

For the optimality conditions to be satisfied, the design matrix has to be orthogonal in the all

submodels scenario, and certain types of priors must be used. In general, the MPM does quite

well under non-orthogonality too, but may not do as well under high collinearity. One possibility

would be to find the model with best predictive ability from a Bayesian point of view, measured

by expected squared error loss, with expectation taken with respect to the predictive distribution

(see for example, Lemma 1 of Barbieri and Berger (2004)). This would be feasible for conjugate

priors and small model spaces that can be enumerated. For large model spaces one could use the

same principle to find the best model among the set of sampled models. However, for general

priors, when the posterior means of the regression coefficients are not available in closed form,

the problem would become computationally challenging. Thus for genuine applications, it would
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be good practice to report out of sample predictive performance of both the HPM and the MPM.

When finding the best predictive model in the list of all/sampled models is computationally feasible

one could report it as well.
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Appendix A: Proof of Proposition 1

Proof. To simplify the notation let R2
γ
= R2 for γ = (1, 0, . . . , 0)′. Then putting g = n and using

the expression for marginal likelihood of the g-prior given in (5) we have,

BF(γ = (0, 0, . . . , 0)′ : γ = (1, 0, . . . , 0)′) = p(Y | γ = (0, 0, . . . , 0)′)/p(Y | γ = (1, 0, . . . , 0)′)

=
1

(1 + n)(n−2)/2{1 + n(1−R2)}−(n−1)/2

=
1

(1 + n)(n−2)/2
[
{1+n(1−R2)}(1+n)

(1+n)

]−(n−1)/2

=
1

(1 + n)(n−2)/2
(
1+n−nR2

1+n

)−(n−1)/2
(1 + n)−(n−1)/2

=
1

(1 + n)(n−2−n+1)/2
(
1− n

1+nR
2
)−(n−1)/2

=
1

(1 + n)−1/2
(
1− n

1+nR
2
)−(n−1)/2

= (1 + n)1/2
(
1− n

1 + n
R2

)(n−1)/2

(11)
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Taking the logarithm of (11) the following result holds with probability 1, by Assumption 1:

log(BF(γ = (0, 0, . . . , 0)′ : γ = (1, 0, . . . , 0)′)) = log

(
(1 + n)1/2

(
1− n

1 + n
R2

)(n−1)/2
)

=
1

2
log(1 + n) +

(n− 1)

2
log(1− n

n+ 1
R2)

<
1

2
log(1 + n) +

(n− 1)

2
log(1− n

n+ 1
δ1) (12)

As n goes to infinity, the first term in (12) goes to ∞ at a logarithmic rate in n. Logarithm is a

continuous function so log(1− n
n+1δ1) goes to log(1− δ1) as n goes to infinity. Because 0 < δ1 < 1,

we have log(1 − δ1) < 0. This implies that the second term in (12) goes to −∞ at a polynomial

rate in n, of degree 1. Thus, as n → ∞, with probability 1,

log(BF(γ = (0, 0, . . . , 0)′ : γ = (1, 0, . . . , 0)′)) → −∞, or

BF(γ = (0, 0, . . . , 0)′ : γ = (1, 0, . . . , 0)′) → 0. (13)

From (13) it follows that for sufficiently large n, we can make BF(γ = (0, 0, . . . , 0)′ : γ =

(1, 0, . . . , 0)′) < ǫ, for given ǫ > 0, with probability 1. This completes the proof.

Note that the above proof is based on an argument where we consider the limit as n → ∞.

However, for other results concerning collinearity, we assume that n is large but finite. Thus we

avoid the use of limiting operations in the main body of the article to avoid giving the reader an

impression that we are doing asymptotics.

Appendix B: Justification for Omission of the Null Model for Com-

puting the Normalizing Constant
∑

γ∈Γ p(Y | γ)

We first establish the following lemma. This shows that for computing a finite sum of positive

quantities, if one of the quantities is negligible compared to another, then the sum can be computed

accurately even if the quantity with negligible contribution is omitted from the sum.

Lemma 1. Consider ain > 0, i = 1, 2, . . .m. If a1n
a2n

→ 0 as n → ∞ then
∑m

i=2 ain∑m
i=1 ain

→ 1.
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Proof.

lim
n→∞

∑m
i=2 ain∑m
i=1 ain

= lim
n→∞

∑m
i=2 ain/a2n∑m
i=1 ain/a2n

= lim
n→∞

∑m
i=2 ain/a2n

(a1n/a2n) +
∑m

i=2 ain/a2n

=
limn→∞

∑m
i=2 ain/a2n

limn→∞(a1n/a2n) + limn→∞
∑m

i=2 ain/a2n

=
limn→∞

∑m
i=2 ain/a2n

0 + limn→∞
∑m

i=2 ain/a2n

= 1

Corollary 1. If Assumption 1 holds, then given η > 0, however small, for sufficiently large n, we

can make
(
1−

∑
γ∈Γ−{(0,0,...,0)′} p(Y|γ)

∑
γ∈Γ p(Y|γ)

)
< η, with probability 1.

Proof. We have p(Y | γ) > 0, γ ∈ Γ and p(Y|γ=(0,0,...,0)′)
p(Y|γ=(1,0,...,0)′) → 0 as n → ∞, with probability 1, by

(13). Then as n → ∞ we have the following, with probability 1, by Lemma 1:

∑
γ∈Γ−{(0,0,...,0)′} p(Y | γ)
∑

γ∈Γ p(Y | γ) → 1.

The proof follows immediately.

Appendix C: Calculation of Posterior Probabilities of all 22 Models

for p = 2

The posterior probability of the null model was shown to be approximately zero in (8). We derive

the posterior probabilities of the non-null models under Assumptions 1 and 2 here. For any non-null
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model γ ∈ Γ− {(0, 0)′},

p(γ | Y) =
p(γ)p(Y | γ)∑
γ∈Γ p(γ)p(Y | γ)

=
(1/22)p(Y | γ)∑
γ∈Γ(1/2

2)p(Y | γ) (because p(γ) = 1/22 for γ ∈ Γ)

=
p(Y | γ)∑
γ∈Γ p(Y | γ)

≈ p(Y | γ)∑
γ∈Γ−{(0,0)′} p(Y | γ) , (14)

with probability 1. The last approximation in (14) follows from Corollary 1 in Appendix B.

We will use the expression in (14) to derive the posterior probabilities. First note that under

Assumption 2 the term {1 + n(1−R2
γ
)}−

(n−1)
2 in the expression of marginal likelihood p(Y | γ) in

(5) is approximately the same across all non-null models with probability 1. Thus this term does

not have to be taken into account when computing the posterior probabilities by (14). Then by

(5), (14), and substituting g = n we have with probability 1,

p(γ = (0, 1)′ | Y) ≈ (1 + n)(n−1−1)/2

(1 + n)(n−1−1)/2 + (1 + n)(n−1−1)/2 + (1 + n)(n−2−1)/2
. (15)

Dividing the numerator and denominator of the right hand side of (15) by (1 + n)(n−2)/2,

p(γ = (0, 1)′ | Y) ≈ 1

2 + (1 + n)−1/2

≈ 1

2
,

for large enough n, with probability 1.

Under Assumption 2, we note that p(γ = (1, 0)′ | Y) would have an identical expression as

p(γ = (0, 1)′ | Y). Hence

p(γ = (1, 0)′ | Y) ≈ 1

2
,

for large enough n, with probability 1.
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We finally derive p(γ = (1, 1)′ | Y) in a similar manner as follows,

p(γ = (1, 1)′ | Y) ≈ (1 + n)(n−2−1)/2

(1 + n)(n−1−1)/2 + (1 + n)(n−1−1)/2 + (1 + n)(n−2−1)/2

≈ 1

2(1 + n)1/2 + 1

≈ 0,

for large enough n, with probability 1.
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