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Abstract

In the Bayesian approach to model selection, models and model specific parameters are treated as un-
known quantities and uncertainty about them are expressed through prior distributions. Given the observed
data, updating of the prior distribution to the posterior distribution occurs via Bayes’ theorem. The posterior
probability of a given model may be interpreted as the support it gets based on the observed data. The
highest probability model (HPM) which receives the maximum support from the data is a possible choice
for model selection. For large model spaces Markov chain Monte Carlo (MCMC) algorithms are commonly
used to estimate the posterior distribution over models. However, estimates of posterior probabilities of in-
dividual models based on MCMC output are not reliable because the number of MCMC samples is typically
far smaller than the size of the model space. Thus the HPM is difficult to estimate and for large model
spaces it often has a very small posterior probability. An alternative to the HPM is the median probability
model (MPM) of Barbieri and Berger [1], which has been shown to be the optimal model for prediction using
a squared error loss function, under certain conditions. In this article we review some of the conditions for
which the MPM is optimal, and provide real data examples to evaluate the performance of the MPM under
small and large model spaces. We also discuss the behavior of the MPM under collinearity.
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INTRODUCTION

We begin with a review of the Bayesian approach to variable selection. The full linear regression model with all p
covariates is

Y | β, φ ∼ N(Xβ, In/φ), (1)

where Y = (Y1, . . . Yn)′ denotes the vector of response variables, X denotes the n × p design matrix with full rank,
β is the p × 1 vector of regression coefficients, φ is the reciprocal of the error variance, and In is an n × n identity
matrix. Models corresponding to different subsets of covariates may be represented by the vector γ = (γ1, . . . γp)

′,
such that γj = 1 when the jth covariate xj is included in the model and γj = 0 otherwise. Let pγ =

∑p
j=1 γj denote

the number of covariates in model γ. The linear regression submodel under γ is

Y | βγ , φ,γ ∼ N(Xγβγ , In/φ), (2)
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where Xγ is the n × pγ design matrix containing the columns of X corresponding to the nonzero components of γ,
and βγ is the corresponding pγ × 1 vector of regression coefficients under model γ. The first column ofX is usually
taken to be an n × 1 vector of ones corresponding to the intercept. In the Bayesian framework, models are treated as
additional unknown parameters and they are assigned a prior distribution p(γ). Then parameters within each model γ
are assigned a prior distribution p(θγ | γ), where θγ = (βγ , φ). The posterior probability of any model may now be
obtained using Bayes’ rule as:

p(γ | Y) =
p(Y | γ)p(γ)∑

γ∈Γ p(Y | γ)p(γ)
, (3)

where p(Y | γ) =
∫
p(Y | θγ ,γ)p(θγ | γ)dθγ is the marginal likelihood of the model γ, and Γ is the space of

models under consideration. For model selection, the highest probability model (HPM) is a possible candidate. If the
goal is choosing the true model, then the HPM can be shown to be the optimum Bayesian model under a 0 − 1 loss
function, provided the true model is in the list of models under consideration [3, 13].

In the absence of any additional information, the most common scenario in the model selection framework is to
consider all possible subsets of the p covariates leading to a model space Γ containing 2p candidate models. When p
is moderately large (bigger than 25 − 30) enumerating all 2p models and their posterior probabilities in (3) becomes
computationally prohibitive due to the enormous size of the model space. Moreover, even for small model spaces
the integral needed to calculate the marginal likelihood may not be available in closed form. Markov chain Monte
Carlo (MCMC) [11, 12, 21, 20, 22, 4] or other stochastic search algorithms [2, 18, 8] are generally used to sample
models for large model spaces. Typically the sample size for these algorithms is much smaller than the size of the
model space, so the estimates of posterior model probabilities based on such samples are not very reliable. Thus
accurate estimation of the HPM is regarded as a difficult task. Moreover, for large model spaces the HPM often has
a negligible posterior probability, so inference based solely on the HPM ignores many other competing models with
similar posterior probability.

Because of the difficulties mentioned above, the HPM is not always the preferred choice for model selection. It would
be appealing to have a model selection method that incorporates the information across models and lends itself to more
stable estimation. This motivates the use of posterior inclusion probabilities in Bayesian variable selection, which are
more accurately estimated from the MCMC output compared to posterior probabilities of individual models, especially
when the marginal likelihoods do not have closed form expressions. The posterior marginal inclusion probability for
the jth covariate is defined as:

p(γj = 1 | Y) =
∑

γ∈Γ:γj=1

p(γ | Y). (4)

The inclusion probabilities measure the importance of a covariate based on all models in which the covariate is in-
cluded. This incorporates model uncertainty and the median probability model (MPM) of Barbieri and Berger [1]
provides further justification for the use of these. The MPM is defined as the model which includes all covariates with
posterior marginal inclusion probabilities greater than or equal to 0.5. Marginal inclusion probabilities can be esti-
mated in a straightforward manner based on MCMC output, so the MPM can be estimated easily. In the next section
we briefly discuss the optimal properties of the MPM and some conditions that are required for the optimality results
to hold.

MEDIAN PROBABILITY MODEL

In this section we provide background for the MPM by highlighting some of the main ideas in the paper by Barbieri
and Berger [1]. For a review with more technical details we refer interested readers to Section 9.8 of Ghosh et al. [13]
which contains a clear and concise review of several main results concerning the MPM in a theorem proof style.
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Motivation

In practical applications it is often of interest to find a model that yields good predictions rather than finding the
true model. When the goal is predicting a future observation y∗ = x∗β + ε, at a given value of the covariates
x∗ = (x1

∗, . . . , xp
∗), a common strategy is to use all the models in the list, and the resulting method is called

Bayesian model averaging (BMA). For a quadratic loss function, that is

L(y∗, ŷ∗) = (y∗ − ŷ∗)2
, (5)

where ŷ∗ is a generic notation for the predicted value of y∗, the optimal predictor is the BMA estimate [3, 1, 6, 13].
Here optimality is defined in terms of minimizing the expected loss in (5), with expectation being taken over the
posterior predictive distribution of y∗ given the observed data Y. The BMA estimate is a weighted average which
weighs the predictions from each model with weights equal to their posterior probabilities as follows:

ŷ∗BMA = x∗β̂BMA = x∗
∑
γ∈Γ

p(γ | Y)Sγ β̃γ , (6)

where Sγ is a p × pγ matrix such that x∗Sγ is the pγ-dimensional subvector of x∗ with components corresponding
to the nonzero coordinates of the model γ, and β̃γ is the posterior mean of βγ under model γ. As the dimension of
β̃γ varies across different models in Γ but x∗ is always p-dimensional, the introduction of the matrix Sγ is required
so that the matrices are conformable for multiplication in (6).

Because of practical considerations, sometimes one may need to select a single model to be used for repeated future
predictions. Thus this framework rules out the possibility of using BMA for prediction. For example, there may be
limited resources (in terms of time and/or money) which does not permit collecting information on all covariates in
the future. If a single model is used for prediction, one will need information on the covariates in that model only. If
the model is sparse, which is often the case for high-dimensional problems, this could be a more practical strategy. A
somewhat problematic aspect of BMA is its lack of interpretability. Because BMA includes many models, it is difficult
to assess the importance of covariates in the overall prediction. If a single best model is used for prediction, one may
easily identify the important predictors as the ones that appeared in the best model. Barbieri and Berger [1] point out
that a common misperception was that the HPM is the best model for prediction, but this is true only in special cases.
For example, the optimality of the HPM holds if the model space contains only two models [3], and it sometimes
holds for orthogonal design matrices in linear regression models. Barbieri and Berger [1] show that the MPM is the
optimal predictive model under some general conditions. Of course in situations when the HPM and MPM are the
same model, the HPM will also be optimal for prediction. Formally the MPM, say γ∗, is defined as follows,

γ∗j =

{
1 if p(γj = 1 | Y) ≥ 1/2,
0 otherwise.

(7)

Existence

The MPM may not exist for an arbitrary model space. However, Barbieri and Berger consider a particular class of
models which has a “graphical model structure”, for which the MPM is guaranteed to exist. We provide their definition
of this special class of models below.

Definition 1 (Barbieri and Berger, 2004 [1]) Assume that for each covariate index j, there is an index set I(j) of
other covariates. A subclass of linear models is said to have “graphical model structure” if it consists of all models
satisfying the condition that “for each j, if xj is included in the model, then covariates xk with k ∈ I(j) are also
included in the model.”

The above class includes the class of models with all possible subsets of the p covariates, which is one of the most
commonly considered frameworks in variable selection. To see that, define I(j) as the null set. Another class of
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models having the “graphical model structure” is a sequence of nested models defined as:

γ(j), j = 0, . . . , p, such that γ(j) = (1, . . . . . . , 1︸ ︷︷ ︸
j ones

, 0, . . . . . . , 0︸ ︷︷ ︸
(p−j) zeroes

)
′
. (8)

The above notation basically says that in this sequence the first model does not have any covariate, the second one
has only x1, the third model includes x1 and x2, and so on. To see that this has “graphical model structure” take
I(j) = {k : 1 ≤ k < j} for j ≥ 2 and otherwise take I(j) as the null set. A sequence of nested models may arise
in a polynomial regression scenario where j denotes the degree of the polynomial. For the special class of nested
models (8) the MPM may be represented in a simpler way. One needs to calculate the cumulative sum of posterior
probabilities of the models, starting from the smallest model and in ascending order, until the sum is greater than or
equal to 1/2. The MPM will then be the first model where this sum is ≥ 1/2. This representation perhaps makes the
name “median probability model” more intuitive. Barbieri and Berger derive several results under the nested models
scenario. As nested models are not that common in the variable selection set up, at least in our experience, we do
not discuss them any further in this section. We conclude this section with their optimality results relevant for the all
possible subsets scenario.

Optimality

Let x∗ denote the covariates where predictions will be made in the future, assume that these will follow some distri-
bution such that

R = E[(x∗)
′
x∗]

exists and is positive definite. One possible choice is R = X
′
X , implying that covariates for which future predictions

will be made are similar to the ones in the observed data. Let the posterior mean of β in the full model be denoted as
β̃ and suppose the posterior means β̃γ in submodels γ satisfy

β̃γ = S
′

γ β̃. (9)

The above condition implies that posterior means of βγ in submodels may be obtained by simply picking the corre-
sponding coordinates of the full model posterior mean β̃. The authors mention the following scenario with independent
conjugate normal priors, where condition (9) will hold. Suppose X

′
X is diagonal and the prior for the full model is

a p-dimensional normal distribution
p(β | φ) = Np(m,L/φ), (10)

where L is a known diagonal matrix. Assume that the submodel priors are of the form

p(βγ | φ) = Npγ (S
′

γm, S
′

γLSγ/φ). (11)

Then condition (9) will hold for a fixed φ or for any prior for φ.

Corollary 1 (Barbieri and Berger, 2004 [1]) If R is diagonal with diagonal elements rj > 0, condition (9) holds, and
any submodel of the full model is allowed, then the best predictive model is the median probability model given by (7).
Further if φ is known for the priors in (10,11) and the prior model probabilities are of the form

p(γ) =

p∏
j=1

πj
γj (1− πj)(1−γj)

, (12)

where πj is the prior probability for covariate xj to be in the model, then the median probability model is the model
with highest posterior probability.
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In Corollary 1 the best predictive model refers to the model that minimizes the expected predictive loss, where the
expectation is first taken with respect to the predictive distribution of y∗ given Y and x∗, and then a further expectation
is taken over x∗. Barbieri and Berger note that the above corollary holds when all models have common parameters,
and one can define πj = 1 for them. For example, an intercept is a parameter that is often included in all models.
Corollary 1 has two important implications. First, the MPM is the optimal predictive model under an orthogonal design
matrix, R = X

′
X , and independent normal conjugate priors. Second, the additional conditions needed for the HPM

and MPM to be the same are fairly restrictive. Thus even for orthogonal design matrices and independent conjugate
normal priors on the regression coefficients, the HPM may not be the best predictive model (MPM). This suggests
that it would be good practice to routinely report the predictions from the MPM, in addition to the HPM, when one is
interested in model selection for prediction. The authors also consider some generalizations when the assumptions of
a diagonal R can be relaxed, in the nested models case. In the next section we illustrate how to estimate the MPM in
practice and evaluate its predictive performance.

EXAMPLES

We analyze two classic real datasets in this section. Hald’s dataset has a very small model space so all models can be
enumerated. The ozone dataset has a much larger model space so we use MCMC to explore the model space.

Hald’s data: nested models

Hald’s dataset consists of 4 covariates, x1, . . . ,x4, that are ingredients of a cement mix and a response variable, Y,
which is the heat evolved during the process of hardening. An interesting aspect of this example is high collinearity
in the covariates, there are two pairs of highly correlated variables {x1,x3} and {x2,x4} with pairwise correlations
being −0.82 and −0.97 respectively. There are 13 observations in this dataset.

We consider a sequence of 5 nested models all of which include an intercept: γ(0) = (1, 0, 0, 0, 0)′, γ(1) =
(1, 1, 0, 0, 0)′, γ(2) = (1, 1, 1, 0, 0)′, γ(3) = (1, 1, 1, 1, 0)′, and γ(4) = (1, 1, 1, 1, 1)′. Here γ(0) includes the
intercept term only, γ(1) includes the intercept term and {x1}, γ(2) includes the intercept term and {x1,x2}, etc.
This dataset has been used by Barbieri and Berger [1] but in this article we analyze it with a different prior under a
full Bayesian framework. We use equal prior probabilities for the models, that is p(γ) = 1/5 for all models, and
Zellner’s g-prior [23] for the model specific parameters. As the intercept is included in all models we first make a
slight change of notation for a simpler representation. Let β1 denote the intercept and β(1)γ denote the regression
coefficients corresponding to the covariates in model γ, excluding the first one, that is the intercept. For example, for
γ(2), βγ = (β1,β(1)γ

′)
′

= (β1, β2, β3)
′
. Let (1,Xc) denote the design matrix under the full model where 1 denotes

an n × 1 vector of ones corresponding to the intercept, and Xc contains the column vectors corresponding to the 4
covariates, assuming that they have been centered and scaled so that the mean of each column of Xc is 0 and the norm
of each column is

√
n, as in Ghosh and Clyde [14]. Let Xc

γ denote the submatrix of Xc under model γ. Zellner’s
g-prior is given as follows:

p(β1, φ | γ) ∝ 1/φ,

β(1)γ | γ, φ ∼ N

(
0,
g

φ
(Xc

γ
′Xc

γ)−1

)
. (13)

An explicit analytic expression is available for the marginal likelihood for this prior (see Section 2.1 equation (5) of
Liang et al. [19]),

p(Y | γ) ∝ (1 + g)
n−pγ−1

2 {1 + g(1−R2
γ)}−

(n−1)
2 , (14)

where R2
γ is the standard coefficient of determination for model γ (see Section 14.1 of Christensen [5] for definition),

pγ is the number of nonzero components of γ excluding the first, and the constant of proportionality does not depend
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Table 1 Posterior summaries for the nested models scenario for Hald’s dataset.

γ(0) γ(1) γ(2) γ(3) γ(4)

p(γ | Y) 0.0000 0.0001 0.7020 0.2348 0.0631
Cumulative sum of p(γ | Y) 0.0000 0.0001 0.7021 0.9369 1.0000

on the model γ. We set the hyperparameter g = n [8]. The posterior probabilities, p(γ | Y) are obtained by putting
p(γ) = 1/5 and p(Y | γ) in (3), and the marginal inclusion probabilities, p(γj = 1 | Y), are calculated by (4).

From Table 1 the MPM is γ(2), using the representation of the MPM for a sequence of nested models. According to
this definition, γ(2) is the MPM because it is the first model in the sequence where the cumulative sum is ≥ 1/2. This
representation provides an intuition for the name “median probability model”. Alternatively we can also use the more
general definition of the MPM based on p(γj = 1 | Y ), which for this dataset are 1.0000, 0.9999, 0.2979, 0.0631 for
x1 − x4 respectively. The MPM includes all covariates with p(γj = 1 | Y ) ≥ 1/2, which would lead to selecting
{x1,x2} in addition to the intercept, which is indeed the same model γ(2). Here the MPM ended up being the
middlemost model in the sequence, however this may not happen in general. For example if the last model in the
sequence had a posterior probability greater than 0.5, it would have been the MPM. Here γ(2) has the maximum
posterior probability so it is also the HPM. Finally, for a choice of E[(x∗)

′
x∗] = aX

′
X, for some a > 0, this example

satisfies the three conditions listed in Section 4 of Barbieri and Berger’s paper, so by their Corollary 4 for nested
models, the MPM γ(2) (which is also the HPM here) is the optimal predictive model.

Ozone data: all submodels

We use the popular ozone dataset used by several authors in earlier papers [9, 19, 14]. The response variable is ground
level ozone in Los Angeles and there are 8 meteorological covariates. The description of the covariates is given in the
Appendix. We consider a model with second order interactions and square terms to capture the nonlinearity [19, 14].
This leads to a total of 44 covariates and we consider all possible combinations of the covariates, while always includ-
ing the intercept, like some of the previous papers. Unlike the previous example, all models cannot be enumerated
due to the sheer size (244) of the model space. There are some considerably high correlations in the design matrix
which is not uncommon when including square and interaction terms. The g-prior may have greater problems in the
presence of collinearity than independent priors [15], so in addition to the g-prior, we also use conjugate independent
normal priors [14] for this analysis, as described below. Let pγ denote the number of covariates included in model γ,
excluding the intercept. Then consider the prior

p(β1, φ) ∝ 1/φ,

β(1)γ | γ, φ ∼ N
(
0,Λ−1

γ(1)/φ
)
. (15)

where Λγ is a (pγ + 1) × (pγ + 1) diagonal matrix with the first diagonal λ1 = 0 and the rest of the pγ diagonal
elements being the subset of {λ2, . . . , λp} for which the corresponding γj = 1, and Λγ(1) is the submatrix obtained
by excluding the first row and first column of Λγ . Under this prior, the posterior mean for βγ is given as

β̃γ = (Xγ
′Xγ + Λγ)

−1
X
′

γY, (16)

where Xγ denotes the design matrix under model γ, whose first column corresponds to the intercept. We assume
as before all the columns of X have been standardized to have mean 0 and norm

√
n, except the first column. The

marginal likelihood under this prior can be obtained in closed form as

p(Y | γ) ∝ |Λγ(1)|1/2|Xγ

′
Xγ + Λγ |−1/2

(
‖Y −Xγ β̃γ‖2 + β̃γ

′

Λγ β̃γ

)−n−1
2

, (17)

6



where {λ2, . . . , λp} are positive hyperparameters. Following Ghosh and Clyde [14] we choose λj = 1 for j =
2, . . . , p. The model space prior is taken to be a discrete uniform prior, p(γ) = 1/(244) for γ ∈ Γ, for both the g-prior
as well as independent normal priors. For exploring the model space we use a Metropolis Hastings algorithm with a
mixture kernel that randomly chooses between an add/delete step and a swap step so that, the add/delete step adds or
removes a covariate from the current model, and the swap step exchanges a covariate in the current model with one
that is not included. The swap step in this algorithm specially helps when there is collinearity [8, 14]. Alternatively
sandwich algorithms [17] may be used to improve mixing.

Our goal is to compare the out of sample predictive performance of BMA, the HPM, and the MPM, under the two
priors described above. We split the data randomly into two halves, and use one half for training and the other half
for predicting the response variables. Each half consists of 165 observations. For a given training dataset, we run
the MCMC algorithm for a million iterations under each prior and discard the first 200,000 samples as burn in. We
repeat the whole procedure 100 times. For each replicate, we compute the mean squared error (MSE) for predicting
the response variables in the corresponding test dataset. The MSE is computed for BMA, the HPM, and the MPM
under both priors. The estimator under BMA was defined in equation (6). We replace the sum over all models by
the sum over sampled models, as commonly done for large model spaces. Here p(γ | Y) is not known because the
model space is too large to enumerate, so we use their standard Monte Carlo estimates. For a model γ this estimate is
simply the proportion of times it was sampled by the MCMC algorithm, after burn in. Alternatively one could also use
the marginal likelihoods to form another type of renormalized estimator [7, 10]. To calculate the BMA estimate, the
remaining ingredients, β̃γ’s, need to be calculated for each sampled model. These are calculated exactly by (16) under
independent priors, and by the expression β̃γ = (β̃1, β̃

′
(1)γ)

′
= (Ȳ, gβ̂′(1)γ/(1 + g))

′
for the g-prior, where β̂(1)γ is

the ordinary least squares estimate of β(1)γ [19, 16]. Next, the Monte Carlo estimate of p(γj = 1 | Y) is used (which
is simply the fraction of times the index j was sampled) to determine the MPM. Once the covariates to be included
in the MPM are known, the exact posterior mean of βγ under it is obtained as in BMA. The HPM is estimated as the
sampled model with maximum marginal likelihood and then posterior mean of βγ is calculated under it.

The top panel in Figure 1 shows boxplots of square-root of MSE (RMSE) for the different estimators and priors. This
plot gives an overall idea about the RMSE for each method (combination of prior and estimator) but it does not show
explicitly the relative performance of different methods for a given test sample. The plot in the second panel displays
the relative RMSE, defined as the RMSE of a method divided by the smallest RMSE obtained for a given test sample.
For the best method this will ratio will be 1 and for other methods this will be larger than 1. It is clear from Figure 1 that
the MPM under the g-prior has weaker predictive performance compared to other methods. This result is in agreement
with that of Ghosh and Ghattas [15] who show that the MPM under the g-prior may have a tendency to drop a group
of strongly correlated variables associated with the response variable, if there are more than two correlated variables.
The MPM produces two unusually large RMSE values which makes it difficult to visualize the other boxplots. Thus
we create similar plots in Figure 2 after removing these two values. The second panel of Figure 2 shows that for
each prior, BMA has boxplots closest to 1, so it is frequently the best method, followed by the HPM and the MPM
respectively. This is an example where the conditions of optimality of the MPM are not met. In principle one can
determine the model whose predictive performance is closest to that under BMA, among the sampled models based
on MCMC [8]. Clyde et al. [8] report that they found the HPM to be closer to this optimal model than the MPM, when
there is high collinearity. Thus our results seem to align with this observation. The difference among the estimators is
more pronounced for the g-prior and the independent priors have better predictive performance overall. However, the
plot also reveals that predictions with BMA under the two priors have negligible difference.

There is considerable variability in the list of covariates included in the estimated HPM/MPM across different repli-
cates because the replicates correspond to different random splits of the dataset. To obtain a better understanding of the
phenomenon when the MPM is outperformed by the HPM in predictive accuracy we focus on 3 particular replicates.
We consider some characteristics of the MPM and the HPM under the g-prior in Tables 2 and 3 below. The results
in Table 2 show that the HPM may include covariates with relatively low marginal posterior inclusion probability and
that it tends to have slightly larger model sizes compared to the MPM. Table 3 shows that for replicate 40, a very high
RMSE of the MPM is accompanied by a very low marginal likelihood compared to the HPM. The HPM seems to
include covariates with somewhat larger correlation than those included in the MPM. For example for replicate 1, the
highest correlation among the covariates in the HPM is 0.96 compared to 0.71 in the MPM.
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Figure 1: The root mean squared error (RMSE) for out of sample predictions for the ozone dataset based on Bayesian
model averaging (BMA), the highest probability model (HPM) and the median probability model (MPM) under inde-
pendent priors and the g-prior. Relative RMSE of any method is its RMSE relative to that of the best method (smallest
RMSE). The boxplots are based on 100 replicates.
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Figure 2: The root mean squared error (RMSE) for out of sample predictions for the ozone dataset based on Bayesian
model averaging (BMA), the highest probability model (HPM) and the median probability model (MPM) under inde-
pendent priors and the g-prior. Relative RMSE of any method is its RMSE relative to that of the best method (smallest
RMSE). The boxplots are based on 98 replicates after removing two unusually large RMSE values for the MPM under
the g-prior.
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Table 2 List of all variables included in estimated HPM/MPM for replicates 1, 2 and
40 where +/* denotes if the variable is included in the estimated HPM/MPM. Estimated
marginal posterior inclusion probabilities are provided in parentheses.

Replicate

1 hum.2 dpg.2 hum.ibt ibt hum.dpg temp.ibt
(0.61)+* (0.57)+* (0.67)+* (0.26)+ (0.47)+ (0.44)+

2 ibt hum.ibt hum.ibh temp.ibt
(0.52)+* (0.73)+* (0.38)+ (0.28)+

40 dpg.2 ibt.vis vh.dpg temp.ibt ibh.dpg
(0.73)+* (0.59)+* (0.34)+ (0.47)+ (0.45)+

Table 3 Bayes factor of MPM versus HPM and RMSE of BMA,
HPM, and MPM for replicates 1, 2 and 40.

Replicate BF(MPM:HPM) BMA MPM HPM
RMSE RMSE RMSE

1 1.60e-05 3.79 4.07 3.80

2 9.47e-07 4.14 4.47 4.08

40 1.22e-48 4.15 7.88 4.33

DISCUSSION

Based on theoretical and empirical results, using Bayesian model averaging for prediction instead of any single model
seems to be a more robust strategy. However, when a single model needs to be chosen for constraints or interpretation,
Barbieri and Berger recommend considering the median probability model in addition to the highest probability model.
This is reasonable as they point out that the MPM is the only model for which some optimality results are known and
it is quite straightforward to estimate based on MCMC output.

In this article we have considered two real data examples with high collinearity, the MPM (same as the HPM there) is
theoretically optimal in one of the examples, while the HPM does better empirically in the other. Barbieri and Berger
provide examples where optimality conditions of the MPM are not formally satisfied but the MPM still emerges as
superior than the HPM by a large margin, so this motivates the use of the MPM even when theoretical results are
not directly applicable. Moreover, we considered priors for which the marginal likelihoods are available in closed
form, but for more general priors, estimating the HPM can be much more challenging. This suggests that both the
posterior median and the modal model are worth reporting in an application. Finally, Barbieri and Berger mention
the importance of joint inclusion probabilities for correlated covariates. Ghosh and Ghattas [15] demonstrate the
usefulness of joint inclusion probabilities over marginal inclusion probabilities under severe collinearity in the design
matrix so these can serve as useful additional summaries for correlated data.
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APPENDIX: Ozone Data

Covariates Description

vh the altitude at which the pressure is 500 millibars
wind the wind speed (mph)
hum the humidity (in percent)
temp the temperature (F)
ibh the temperature inversion base height (feet)
dpg the pressure gradient (mm Hg)
ibt the inversion base temperature (degrees F)
vis the visibility (miles)

The full model contains the above 8 main effects, 8 square terms, and 28 interaction terms. Square terms are de-
noted by adding “.2” to the main effect terms and interaction terms are indicated by joining the main effect terms by a
dot.
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