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Abstract

In many moderate dimensional applications we have multiple response variables that are
associated with a common set of predictors. When the main objective is prediction of the
response variables, a natural question is: do multivariate regression models that accommodate
dependency among the response variables improve prediction compared to their univariate coun-
terparts? Note that in this paper, by univariate versus multivariate regression models we refer
to regression models with a single versus multiple response variables, respectively. We assume
that under both scenarios, there are multiple covariates. Our question is motivated by an ap-
plication in climate science, which involves the prediction of multiple metrics that measure the
activity, intensity, severity etc. of a hurricane season. Average sea surface temperatures (SSTs)
during the hurricane season have been used as predictors for each of these metrics, in sepa-
rate univariate regression models, in the literature. Since the true SSTs are yet to be observed
during prediction, typically their forecasts from multiple climate models are used as predictors.
Some climate models have a few missing values so we develop Bayesian univariate/multivariate
normal regression models, that can handle missing covariates and variable selection uncertainty.
Whether Bayesian multivariate normal regression models improve prediction compared to their
univariate counterparts is not clear from the existing literature, and in this work we try to fill
this gap.

Keywords: Bayesian model averaging, Horseshoe priors, Linear regression, Markov chain Monte

Carlo, Prediction intervals, Spike and slab priors.

1 Introduction

In this paper, one of the main goals is to address the question, whether Bayesian multivariate nor-

mal regression models yield improved predictions compared to univariate normal regression models.

We empirically study the properties of Bayesian multivariate regression models, and compare them

with those of univariate regression models under several variable selection priors, via extensive
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simulation studies. For moderate dimensional problems, our empirical results suggest that mul-

tivariate Bayesian methods can have a significant improvement in estimation; however, the gain

in prediction is typically much less striking. The reason is that for most practical applications,

the gain in estimation is typically small relative to the magnitude of the error variance, and as a

result, the gain gets overshadowed by noise when considering prediction error. Thus, if the main

goal is prediction, univariate modeling could be a reasonable choice in this scenario. We hope that

our contribution will be useful for practitioners, when one needs to select between univariate and

multivariate regression models for prediction.

The development of our methods and simulation studies was motivated by an application from

climatalogy. Villarini and Vecchi (2012) and Villarini et al. (2019) have considered multiple quan-

tities that measure different aspects of a hurricane season, such as the count of tropical storms,

the count of hurricanes, North Atlantic Power Dissipation Index (PDI), and Accumulated Cyclone

Energy (ACE). The first two quantities measure how active a hurricane season is, while the last

two metrics are used to assess the frequency, duration and intensity of storms. Li et al. (2022), il-

lustrated that Bayesian models have improved predictive performance compared to the hierarchical

model of Villarini et al. (2019) for predicting the count of tropical storms. So, a natural goal is to

examine the performance of Bayesian regression models for the three additional response variables.

Sea surface temperatures (SSTs) during the peak hurricane season have been shown to have

reasonably good predictive performance for forecasting different quantities that measure tropical

storm activity (Vecchi and Soden, 2007; Villarini et al., 2010, 2019). Out of sample prediction

was evaluated using different metrics such as Pearson/Spearman correlation coefficient, root mean

square error (RMSE) and the mean absolute error (MAE) between the held out observations and

the corresponding predicted values. In the current literature, the response variables (count of

tropical storms/hurricanes, PDI, and ACE) have been modeled via separate univariate regression

models with SSTs (or their forecasts) as predictors. In this application, the response variables

exhibit moderate to strong pairwise correlations and some predictors have missing values; thus

this motivates us to develop multivariate regression models that can accommodate dependency in

response variables, missing covariates, and variable selection uncertainty.
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The organization of this paper is as follows. In Section 2, we provide a brief literature review

of methods for multivariate regression models, where one of the aims of multivariate modeling is

to improve prediction. In Section 3, we provide a detailed description of the top level multivariate

regression model for response variables. In Section 4, we conduct extensive simulation studies to

compare the performance of univariate and multivariate Bayesian regression models. We design

simulations to tease out the effect of modeling the dependence in the response variables, versus

modeling the dependence in the prior. In Section 5, we present results from applying the methods

in Section 3 to data from North Atlantic TC activity. In Section 6, we discuss the main contributions

of this paper and directions for future work.

2 Review of Multivariate Regression Models for Prediction

In the frequentist literature, several authors have carried out a systematic comparison of univariate

versus multivariate regression models for prediction, when the models have the same covariates,

as in our application. Breiman and Friedman (1997) were one of the earliest authors who did

such a comparison with their curds and whey method. The curds and whey method uses a linear

combination of ordinary least squares estimates from separate regression models for each of the

response variables. It is a multivariate shrinkage method based on cross validation. Breiman

and Friedman (1997) concluded that multivariate methods can lead to improvement in prediction,

for correlated response variables. More recently Rothman et al. (2010) proposed a multivariate

regression with covariance estimation (MRCE) method, where they used a Lasso penalty on both the

regression coefficients and the off-diagonal entries in the precision matrix (inverse of the covariance

matrix), for sparse estimation in high dimensional regression models. In these papers, the authors

looked at a quantity called model error in simulation studies, which is the error in estimating the

mean of the predictive distribution for future covariates. Substantial gain was shown in reducing

the model error with multivariate methods over their univariate counterparts. While model error

is related to prediction error, it does not take into account the error variance. So, we evaluate both

model error and prediction error in simulation studies, and leave one out prediction error for the

application.
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In the Bayesian framework, Brown et al. (1998, 1999) have proposed two approaches to ex-

tend variable selection for univariate regression (George and McCulloch, 1993) to a multivariate

setting. Brown et al. (1998) assumed that a covariate is important or unimportant for all response

variables. For the selected covariates, the resulting matrix of regression coefficients was assigned

a matrix-normal prior. For the application, Brown et al. (1998) chose a generalization of Zellner’s

g-prior for univariate regression to multivariate normal regression. Brown et al. (1999) considered

a joint normal distribution for the response variables and covariates, and showed improvement in

prediction over a univariate regression method. However, the analysis was done for a particular

dataset of interest, and the univariate regression method was based on a different non Bayesian

approach. Richardson et al. (2010) relaxed the restriction of a covariate being included/excluded

for all response variables and proposed priors to borrow information across the response variables.

However, they assumed that the residual covariance matrix is diagonal. Recently Bottolo et al.

(2021) generalized the previous model of Richardson et al. (2010) to allow nondiagonal covariance

matrices for high dimensional model spaces and developed efficient posterior computation. How-

ever, their main focus is on high dimensional variable selection, whereas our focus in this paper

is on prediction for moderate dimensional model spaces. Up to approximately 225 models can be

enumerated. By moderate dimensional model spaces we refer to cases where the number of models

is large enough that it cannot be enumerated with standard computers, but modest enough so that

MCMC algorithms are expected to converge reasonably well.

In recent years, global-local shrinkage priors (Polson and Scott, 2010) have gained popularity

in univariate regression, because spike and slab priors (George and McCulloch, 1993) can be com-

putationally very demanding for large model spaces, when one is interested in the entire posterior

distribution. Global-local shrinkage priors are continuous priors that do not set a coefficient to

exactly zero; instead they shrink smaller coefficients to nearly zero and keep the large coefficients

almost unshrunk. Recently Bai and Ghosh (2018) and Kundu et al. (2021) have extended such

priors to the multivariate regression scenario. Kundu et al. (2021) performed simulation studies

to compare the effect of priors that borrow information across response variables, versus “naive”

priors that do not. Their results show a small gain in prediction when using priors that borrow
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information, when there is a shared pattern of covariates among the response variables. However,

they assume the errors are correlated throughout the paper, thus their comparisons do not address

whether it is useful to model the correlations among the response variables or not, for improvement

in prediction.

Since we have a moderate dimensional model space in the Tropical Cyclone (TC) activity data,

we prefer spike and slab priors that can set coefficients to exactly zero. Thus we develop models

with spike and slab priors for variable selection in the top level of the model, which models the

dependent response variables. In the second level, we have a sequence of regression models for the

covariates, to accommodate missing covariates, following the approach of Mitra and Dunson (2010),

which was also used by Li et al. (2022). Unlike Brown et al. (1998, 1999), where the covariates

are assumed to be associated with all or none of the response variables, we propose a model space

prior, which encourages but does not force a covariate to be included or excluded for all response

variables.

3 Bayesian Multivariate Linear Regression Models with Variable

Selection

Let Y = (y1,y2, . . . ,yq) denote the n × q matrix containing q response variables, and let X =

(x1,x2, . . . ,xp) denote the n × p design matrix. We assume that the columns of X and Y have

been standardized using the observed values to have mean 0 and standard deviation 1 for the

observed part of each covariate and response variable.

Let B denote a p× q dimensional matrix of regression coefficients, and let Σ denote the q × q

residual covariance matrix. Then the multivariate linear regression model is given as follows:

Y |X,B,Σ ∼MNn×q (XB, In,Σ) , (1)

where MN denotes the matrix-normal density in (1) and is given by

p(Y ) =
| In |−q/2| Σ |−n/2

(2π)nq/2
e−

1
2

tr{I−1
n (Y −XB)Σ−1(Y −XB)T}.
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We assume an inverse Wishart (IW ) prior for the residual covariance matrix:

Σ ∼ IW (ν, dΣIq) , (2)

where we set the hyperparameters at ν = q + 2 and dΣ = 0.5. The choice of the hyperparameter

ν = q + 2 offers a reasonably diffuse prior that ensures the existence of the prior mean, which is

a commonly chosen value in the Bayesian literature. Here the prior mean is equal to dΣIq. There

is less consensus regarding the choice of dΣ. If the data are standardized to have variance 1, the

variance of the residuals is expected to be smaller than 1. We specify dΣ = 0.5, so that the prior

mean denotes that the residual variance is 50% of the total variance, which seems like a reasonable

choice, in the absence of any other information. Our choice can be regarded as a weakly informative

prior. We did some additional simulation studies (reported in the Supplement) with dΣ = 1, as in

Kundu et al. (2021). The results concerning point estimates are very similar. The credible intervals

under dΣ = 1 are slightly wider and have slightly higher coverage than the nominal level. Under

our hyperparameter choice dΣ = 0.5, the prior probability of getting values of residual variance

greater than 1 is smaller compared to the Kundu et al. (2021) prior. That is possibly why the

results under dΣ = 0.5 show a marginal improvement.

Regarding the prior for the regression coefficient matrix B, we propose a spike-and-slab prior

(George and McCulloch, 1993). A spike-and-slab prior is essentially a mixture of two components,

of which one component corresponds to larger values of regression coefficients representing a signal

and the other component corresponds to smaller values to denote a noise variable. These priors

facilitate variable selection. The two components considered by George and McCulloch (1993) are

normal distributions with zero means and different variances; a small variance corresponds to a

noise variable and a large variance corresponds to a signal. In this paper, we consider a popular

variation of this prior: a mixture of a point mass at zero for a noise variable and a normal prior

for a signal. We propose a prior that promotes the inclusion/exclusion of a covariate to be similar

(but not identical) across all response variables.

First, we define a q-dimensional row vector γ ′j = (γj1, γj2, . . . , γjq), for the jth row of the

regression coefficients matrix B, where j = 1, . . . , p. If γjk = 1, the jth predictor is included in the
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model for the kth response variable, and if γjk = 0, it is excluded from that model, for k = 1, 2, . . . , q.

Each γjk can take two possible values, 1 or 0, which leads to 2q possible configurations for the vector

γ ′j . Let the 2q × q matrix Γ list all those configurations, and let γ?′ = (γ?1 , γ
?
2 , . . . , γ

?
q ) denote a

specific row of the matrix Γ.

Let sγ?′ = max
(∑q

k=1 γ
?
k , (q −

∑q
k=1 γ

?
k)
)
, where

∑q
k=1 γ

?
k and (q−

∑q
k=1 γ

?
k) denote the number

of ones and zeros in γ?′ . We propose sγ?′ as a similarity measure, which aims to capture the

similarity (or lack of it) in the entries of γ?′ . If all the entries are ones or zeros, its value will be

maximum. For example, if q = 4, the maximum value of sγ?′ will be 4, which represents the case

when the predictor is either included or excluded for all response variables. For q = 4, the least

value of sγ?′ is 2, when the predictor is included in the model for half of the response variables.

Each γ ′j can be thought of being drawn randomly from the rows of the Γ matrix according to the

following probability distribution based on the renormalized similarity measure:

p
(
γ ′j = γ?′

)
=

sγ?′∑
γ′∈Γ sγ′

. (3)

We refer to this prior as the dependent spike-and-slab prior, to distinguish it from the independent

spike-and-slab prior, under which the components of γ ′j are assumed to have independent Bernoulli

distributions. The distributions of γ ′j are assumed to be i.i.d., according to equation (3), for

j = 1, 2, . . . , p. There can be many variations of the similarity measure, and one can induce a

dependence in other ways, such as through a Beta-Binomial prior. Conditional on γjk, the prior

for the regression coefficients is given by:

Bjk | γjk ∼ (1− γjk) δ0 + γjkN (0, λjk) , j = 1, . . . , p, k = 1, . . . , q, (4)

where δ0 denotes a degenerate distribution at zero and N (. , .) denotes the normal distribution

parameterized in terms of mean and variance, respectively. Since the predictors are standardized,

we set λjk = 1.
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A univariate version of the above model and prior is as follows:

y |X,β, φ ∼ Nn (Xβ, In/φ) ,

βj | γj ∼ (1− γj) δ0 + γjN (0, λj) , j = 1, . . . , p,

γj
i.i.d.∼ Bernoulli (ρ) , j = 1, . . . , p,

φ ∼ Gamma
(
ν − q + 1

2
,
dΣ

2

)
,

(5)

where y = (y1, . . . , yn)
′
is the n×1 vector of response variable, β = (β1, . . . , βp)

′
is the p-dimensional

vector of regression coefficients, φ is the residual precision, ρ is the prior inclusion probability of a

covariate, Nn (. , .) is the n-dimensional multivariate normal distribution, and Gamma (. , .) denotes

the Gamma distribution parameterized in terms of shape and rate parameters, respectively. Since

we have a moderate dimensional model space, we set ρ at 0.5, which corresponds to the discrete

uniform prior on the model space.

We use the software JAGS for posterior computation for this model. An MCMC sampling

algorithm is run to sample from the posterior predictive distribution approximately. The sample

median of the posterior predictive distribution is used for point estimation and sample quantiles

are used for interval estimation.

4 Simulation Study

We refer to the model and prior developed in the previous section as the dependent-data-dependent-

prior (dep-data-dep-prior) spike-and-slab, where dependent data refers to the dependency among

the residuals in the multivariate normal model, and dependent prior refers to the dependency in

the inclusion indicators for a covariate to be associated with the q response variables. In this

section, we perform an extensive simulation study to compare the performance of the multivariate

Bayesian models with their univariate versions. The horseshoe prior proposed by Carvalho et al.

(2009, 2010) has become a very attractive alternative to spike-and-slab priors, particularly for high

dimensional model spaces. Unlike spike-and-slab priors, it is a continuous prior that makes it more

appealing for posterior computation. It has Cauchy like tails that help to preserve large signals
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and an infinitely tall spike at zero that helps to mimic the spike at zero of the spike-and-slab prior.

Thus, in addition to spike-and-slab priors we also include horseshoe priors in the simulation study.

We compare dep-data-dep-prior spike-and-slab with several other methods described below.

1. ind-data-ind-prior spike-and-slab: As a baseline, we consider this model/prior choice that fails

to make use of the information about the shared pattern of important/unimportant covariates

across response variables, and ignores the potential correlation between residuals. In this case,

γjk
i.i.d.∼ Bernoulli (ρ), and Σ = diag(σ2

1, . . . , σ
2
q ) where 1/σ2

k
i.i.d.∼ Gamma ((ν − q + 1)/2, dΣ/2).

2. dep-data-ind-prior spike-and-slab: To separate the effect of accounting for the potential corre-

lation between residuals from the effect of the dependency in the model space prior, we place

independent spike-and-slab priors on the regression coefficients and an inverse Wishart prior

on the residual covariance matrix Σ. That is γjk
i.i.d.∼ Bernoulli (ρ) and Σ ∼ IW (ν, dΣIq).

3. ind-data-dep-prior spike-and-slab: As the name suggests, here we take the similarity based

dependent model space prior in (3), and Σ = diag(σ2
1, . . . , σ

2
q ), with 1/σ2

k
i.i.d.∼ Gamma ((ν −

q + 1)/2, dΣ/2).

4. dep-data-dep-prior horseshoe: This corresponds to the MOHS prior of Kundu et al. (2021)

where the prior on the regression coefficients are designed to shrink towards a common value

across the response variables, and the model considers correlated residuals. Here Bjk ∼

N(0, ξjτk), ξj
1/2 i.i.d.∼ C+(0, 1), τ

1/2
k

i.i.d.∼ C+ (0, 1), and an inverse Wishart prior is placed on

the residual covariance matrix Σ ∼ IW (ν, dΣIq).

5. ind-data-ind-prior horseshoe: Similar to ind-data-ind-prior spike-and-slab, here we place in-

dependent horseshoe priors on the regression coefficients, conditional on τk. More specifically,

Bjk ∼ N (0, ξjkτk), ξjk
1/2 i.i.d.∼ C+ (0, 1), τ

1/2
k

i.i.d.∼ C+ (0, 1), and 1/σ2
k

i.i.d.∼ Gamma ((ν − q +

1)/2, dΣ/2), where Σ = diag(σ2
1, . . . , σ

2
q ).

6. dep-data-ind-prior horseshoe: Here we put independent horseshoe priors on the regression

coefficients (conditional on τk) as above, Bjk ∼ N (0, ξjkτk), ξjk
1/2 i.i.d.∼ C+ (0, 1), τ

1/2
k

i.i.d.∼

9



C+ (0, 1), but an inverse Wishart prior on the residual covariance matrix Σ ∼ IW (ν, dΣIq).

This was referred to as the “Naive Horseshoe” by Kundu et al. (2021).

7. ind-data-dep-prior horseshoe: This corresponds to Bjk ∼ N (0, ξjτk), ξj
1/2 i.i.d.∼ C+ (0, 1),

τ
1/2
k

i.i.d.∼ C+ (0, 1), and 1/σ2
k

i.i.d.∼ Gamma ((ν − q + 1)/2, dΣ/2), where Σ = diag(σ2
1, . . . , σ

2
q ).

4.1 Data Generation

We generate datasets of one hundred observations. For each of the simulated datasets, we generate

the covariates from a p-dimensional multivariate normal distribution with mean vector µ and

covariance matrix ΣX . We set p = 10, µ = 0, and ΣXij = 0.7|i−j|. The regression coefficient

matrix B is chosen to be sparse. The third row of B is (1.03, 0.00, 3.26, 3.55), the seventh row is

(−1.57,−2.76, 1.00,−3.79), and the ninth row is (0.00, 0.00, 0.05, 0.00). All other rows have only

zero entries, when rounded to two decimal places.

Each row of the matrix of residuals ε is generated independently from a multivariate normal

distribution N4 (0,Σ). We consider the fractional Gaussian noise covariance structure of Rothman

et al. (2010) where the value of the Hurst index H determines the degree of dependence. We

consider four values of H as follows:

1. High correlation: For H = 0.95, Σ =



1.00 0.87 0.80 0.77

0.87 1.00 0.87 0.80

0.80 0.87 1.00 0.87

0.77 0.80 0.87 1.00


.

2. Moderate correlation: For H = 0.9, Σ =



1.00 0.74 0.63 0.58

0.74 1.00 0.74 0.63

0.63 0.74 1.00 0.74

0.58 0.63 0.74 1.00


.
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3. Low correlation: For H = 0.8, Σ =



1.00 0.52 0.37 0.31

0.52 1.00 0.52 0.37

0.37 0.52 1.00 0.52

0.31 0.37 0.52 1.00


.

4. No correlation: For H = 0.5, Σ is the Identity matrix.

Under each of the above four correlation scenarios, one hundred datasets are generated, each

containing one hundred observations. For each dataset, we split the observations into two equal

halves. The first fifty observations are used for estimation, and the last fifty for prediction. For all

models with spike-and-slab and horseshoe priors, posterior computation is done using the software

JAGS, and the MCMC sampling algorithm is run for six million iterations. The first twenty thou-

sand samples are discarded as burn-in. The MCMC sample size is chosen so that the estimated

medians of the posterior predictive distribution are (roughly) accurate up to two decimal places.

The average MCMC standard errors for the estimated median of the posterior predictive distri-

bution were calculated using the R package mcmcse. These values are approximately 0.001, which

roughly ensures that estimates are accurate up to two decimal places, under multiple MCMC runs.

The approximate running times needed to fit the model and predict for one simulated dataset for

the spike-and-slab priors are 2.5, 8.3, 34, and 60.5 hours for ind-data-ind-prior, ind-data-dep-prior,

dep-data-ind-prior, and dep-data-dep-prior, respectively. The corresponding times required for the

horseshoe priors are 1.5, 1.5, 2.6, and 2.7 hours respectively. We also conducted some additional

simulations studies with different initial values and other choices of hyperparameters. All compu-

tations were done on a cluster. The results in the additional simulation studies are similar to the

ones below and are reported in the Supplement.

4.2 Results and Analysis

Under each correlation scenario, the results are averaged over the hundred datasets. The estimated

posterior mean of the regression coefficient matrix, say B̂, is used for calculating Model Error
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(ME) (Rothman et al., 2010). To assess the predictive accuracy of each method, we use the median

of the posterior predictive distribution for point estimation and compute the root mean squared

error (RMSE). These quantities are reported in Tables 1 and 2. To show the variability, they are

also plotted in Figure 1 for the high correlation scenario. They are calculated using the following

formulas:

ME =

q∑
k=1

(
B.k − B̂.k

)T
ΣX

(
B.k − B̂.k

)
, (6)

RMSE =

(
1

q · ntest

q∑
k=1

(
Ytest.k − Ŷtest.k

)T (
Ytest.k − Ŷtest.k

)) 1
2

, (7)

where B.k is the kth column of the regression coefficient matrix B, B̂.k is the kth column of

the estimate of coefficient matrix B̂, ΣX is the covariance matrix of X, ntest is the number of

observations in the test set for prediction (ntest = 50), and Ytest.k and Ŷtest.k denote the kth

columns of the response matrix, and the matrix with corresponding medians of posterior predictive

distributions, respectively. For assessing uncertainty, we also construct 90% equal-tailed intervals,

for each response variable, based on the draws from the marginal posterior predictive distribution,

which is based on the estimation/training data. The length and frequentist coverage, averaged over

all response variables, are reported in Tables 3 and 4. In the Supplement, we report results from

additional simulation studies where we evaluate 90% HPD intervals as well. They are marginally

shorter than the equal tailed intervals and both have very similar coverage.

The results suggest that spike-and-slab and horseshoe priors behave similarly, within each class

of priors, across the different correlation scenarios. However, spike-and-slab priors tend to be

somewhat better than the corresponding horseshoe priors, in every scenario. This is likely due to

the fact that horseshoe priors are more advantageous in high dimensional problems, but a regression

coefficient matrix with forty entries and a sample size of fifty in our simulation study is a moderate

dimensional problem, where spike-and-slab priors are still the gold standard.

So, in the following analysis of the results, we focus mainly on the spike-and-slab priors. Based

on the results reported in Tables 1 and 2, ME and RMSE for dep-data-dep-prior and ind-data-

dep-prior with both spike-and-slab prior and horseshoe prior are reduced in all cases, compared to
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the corresponding ind-data-ind-prior cases. To assess the variability across hundred datasets, we

use notched box plots (McGill et al., 1978). These are like traditional box plots but have notches

around the medians, which allow us to informally test whether the population medians are equal.

When the notches of two box plots do not overlap, one concludes that the population medians

are not equal. The notched box plots for ME and RMSE under the high correlation scenario are

shown in Figure 1. For ME, the notches of the box plots for dependent data models do not overlap

with those of the corresponding independent data models. This implies there can be a significant

improvement in the estimation of the mean of the response variables, via modeling of the dependent

data structure. However, the difference in RMSE between different model/prior combinations is

not as prominent, and the notches overlap even under the high correlation scenario where the

difference between dependent and independent models is the most pronounced. Based on Tables

3 and 4, dependent data methods have slightly shorter credible intervals than independent data

methods, and all Bayesian methods have frequentist coverage close to 90%. To summarize, our

dep-data-dep-prior structure with spike-and-slab prior, performs well in this simulation study, for

reducing ME. However, the gain in predictive performance is not substantial.

Methods H = 0.95 H = 0.90 H = 0.80 H = 0.50

ss-ind-ind 0.260 0.260 0.259 0.252
ss-dep-ind 0.124 0.151 0.204 0.275
ss-ind-dep 0.239 0.237 0.234 0.228
ss-dep-dep 0.124 0.147 0.191 0.249
hs-ind-ind 0.454 0.452 0.448 0.432
hs-dep-ind 0.202 0.269 0.364 0.450
hs-ind-dep 0.423 0.393 0.354 0.313
hs-dep-dep 0.214 0.245 0.291 0.331

Table 1: ME of all methods. Here “ss-ind-ind”, “ss-dep-ind”, “ss-ind-dep”, “ss-dep-dep” refer
to ind-data-ind-prior, dep-data-ind-prior, ind-data-dep-prior, and dep-data-dep-prior under spike-
and-slab priors; similarly “hs-ind-ind”, “hs-dep-ind”, “hs-ind-dep”, and “hs-dep-dep” refer to the
methods under horseshoe priors.
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Methods H = 0.95 H = 0.90 H = 0.80 H = 0.50

ss-ind-ind 1.017 1.020 1.026 1.033
ss-dep-ind 1.002 1.009 1.020 1.035
ss-ind-dep 1.015 1.018 1.023 1.030
ss-dep-dep 1.001 1.008 1.019 1.032
hs-ind-ind 1.038 1.042 1.047 1.053
hs-dep-ind 1.010 1.021 1.037 1.055
hs-ind-dep 1.034 1.034 1.035 1.039
hs-dep-dep 1.011 1.019 1.028 1.041

Table 2: RMSE of all methods. Here “ss-ind-ind”, “ss-dep-ind”, “ss-ind-dep”, “ss-dep-dep” refer
to ind-data-ind-prior, dep-data-ind-prior, ind-data-dep-prior, and dep-data-dep-prior under spike-
and-slab priors; similarly “hs-ind-ind”, “hs-dep-ind”, “hs-ind-dep”, and “hs-dep-dep” refer to the
methods under horseshoe priors.

Methods H = 0.95 H = 0.90 H = 0.80 H = 0.50

ss-ind-ind 3.485 3.491 3.499 3.513
ss-dep-ind 3.432 3.447 3.473 3.510
ss-ind-dep 3.475 3.481 3.489 3.503
ss-dep-dep 3.430 3.445 3.469 3.502
hs-ind-ind 3.541 3.550 3.562 3.584
hs-dep-ind 3.476 3.500 3.533 3.577
hs-ind-dep 3.472 3.490 3.514 3.543
hs-dep-dep 3.477 3.489 3.510 3.539

Table 3: Length of 90% equal-tailed intervals for all methods. Here “ss-ind-ind”, “ss-dep-ind”,
“ss-ind-dep”, “ss-dep-dep” refer to ind-data-ind-prior, dep-data-ind-prior, ind-data-dep-prior, and
dep-data-dep-prior under spike-and-slab priors; similarly “hs-ind-ind”, “hs-dep-ind”, “hs-ind-dep”,
and “hs-dep-dep” refer to the methods under horseshoe priors.

Methods H = 0.95 H = 0.90 H = 0.80 H = 0.50

ss-ind-ind 0.907 0.907 0.906 0.908
ss-dep-ind 0.908 0.908 0.906 0.907
ss-ind-dep 0.908 0.908 0.907 0.908
ss-dep-dep 0.907 0.908 0.907 0.908
hs-ind-ind 0.904 0.905 0.906 0.908
hs-dep-ind 0.910 0.907 0.906 0.907
hs-ind-dep 0.900 0.902 0.904 0.910
hs-dep-dep 0.907 0.905 0.905 0.908

Table 4: Coverage of 90% equal-tailed intervals for all methods. Here “ss-ind-ind”, “ss-dep-ind”,
“ss-ind-dep”, “ss-dep-dep” refer to ind-data-ind-prior, dep-data-ind-prior, ind-data-dep-prior, and
dep-data-dep-prior under spike-and-slab priors; similarly “hs-ind-ind”, “hs-dep-ind”, “hs-ind-dep”,
and “hs-dep-dep” refer to the methods under horseshoe priors.
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Figure 1: Box plots showing ME and RMSE of each method under the high correlation scenario
when H = 0.95; results are shown for one hundred datasets.
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5 Multivariate Normal Regression Models for the North Atlantic

TC Activity Dataset

We have yearly data on the frequency of tropical storms and hurricanes, ACE, PDI, tropical Atlantic

and tropical mean SSTs for the period 1958-2018. ACE and PDI are summary measures that take

into account the duration, frequency and intensity of storms. They are computed using the duration

and maximum sustained wind speed during the storm, from the HURDAT2 database (Villarini and

Vecchi, 2012; Villarini et al., 2019). The main difference between the two metrics is that ACE uses

the square of the wind speed, while PDI uses the cube, in their respective formulas. We use data

from 1982-2018, since the predictors in the Bayesian models are forecasts of SSTs from five climate

prediction systems, which are unavailable before 1982.

We perform the analysis using the multivariate models with spike-and-slab priors described in

Section 3. We use a square-root transformation for all response variables, prior to standardization.

Due to the larger ME and RMSE of horseshoe priors in the simulation studies, we do not consider

them here. However, for higher dimensional model spaces, we expect horseshoe priors to be an

attractive alternative due to their much smaller running times. Because some of the covariates

are missing, we follow the method in Mitra and Dunson (2010); Li et al. (2022), where a joint

distribution is specified in the second level of the model as follows:

p (Xi) = p (xi1)

p∏
j=2

p
(
xij | xi1, . . . , xi(j−1)

)
,

and for i = 1, 2, . . . , n,

xi1 ∼ N
(
θ10,

1

ψ1

)
,

xi2 | xi1 ∼ N
(
θ20 + xi1θ21,

1

ψ2

)
,

...

xip | xi1, . . . , xi(p−1) ∼ N
(
θp0 + xi1θp1 + . . . ,+xi(p−1)θp(p−1),

1

ψp

)
.
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We specify the same prior distributions on the regression coefficients (θjks) and the residual preci-

sions (ψjs), as Li et al. (2022):

θjk ∼ N
(

0,
λjk
ψj

)
, j = 1, 2, · · · , p, k = 0, 1, · · · , j − 1.

ψj ∼ Gamma (c, d) , j = 1, 2, · · · , p,
(8)

where λj0 = 100, λjk = 1 for coefficients other than the intercept, c = 1, and d = 1
5 respectively.

All methods are run for six million iterations, with a burn-in of twenty thousand. For our

models, we use Method 2 of Li et al. (2022), that discards covariates with missing/unobserved

values in the year of prediction. This is because retaining or discarding such predictors was shown

to have similar performance by Li et al. (2022), and Method 2 that discards those predictors is

computationally less intensive. To be clear, we retain covariates that have missing values in past

years, so the second level sequence of regression models for missing covariates is still relevant for

estimation.

The median of the posterior predictive distribution is used as a point estimate for leave-one-

out prediction during the period 2011-2018. Forecasts of SSTs are issued every month, starting

from around nine months before the hurricane season. Following Li et al. (2022), we focus on

SST forecasts issued in June, July, and August, as predictors of the model. We do an analysis

for each of the three months (June-August) with its set of predictors, because the predictors are

issued every month. Note that the response variables measure annual summary statistics related

to the hurricane season, and those do not change across the analyses. Like Li et al. (2022), we

assess the importance of predictors via ind-data-ind-prior spike-and-slab priors, and if a predictor

has marginal posterior inclusion probability greater than 0.75 for any response variable, it is added

to the model in the next month, as it can improve prediction. The predictors in the second level

sequence of regression models are chosen based on exploratory data analysis so that the model

assumptions are appropriate, and are given in the Supplement. The same hyperparameters are

used as in the simulation study.

The accuracy of different methods in predicting the response variable is evaluated using RMSE,

Mean Absolute Error (MAE), and correlation coefficients (Pearson/Spearman). The uncertainty
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of point estimates is assessed using 90% equal-tailed intervals, for which we report the length and

the frequentist coverage. We report the results for August in Table 5 and the results for June and

July can be found in the Supplement. The dependent data models yield smaller RMSE and MAE

than the independent models when predicting the frequency of hurricanes. The RMSE computed

over all response variables for ind-data-ind-prior/dep-data-dep-prior spike-and-slab priors for June,

July, and August are 1.95/1.80, 1.74/1.63, and 1.67/1.58 respectively, which shows a small decrease

when using the multivariate model with our dependent spike-and-slab prior.

The estimated covariance matrix expressed as a correlation matrix, is provided in the Sup-

plement, for June, July, and August. In general, we find that the dependent data model with

dependent spike-and-slab prior tends to shrink more than the independent data model with inde-

pendent spike-and-slab prior. The diagonals of the estimated Σ matrix are in the range 0.60-0.67

in June, and decrease to 0.50-0.53 in August. The results are on a standardized scale, where the

response variables have marginal variance 1. Thus, around 50% of the variance in the response

variables can be explained by the model in August. The correlations between response variables in

the observed data are between 0.73 and 0.99, and the corresponding correlations between residuals

range from 0.50 to 0.95, in August. We find that the correlations of PDI and ACE with the other

variables show the most reduction. However, the correlation between frequency of tropical storms

and hurricanes (on square root scale) decreases from 0.86 to 0.72 in the estimated residual correla-

tion matrix, and for the PDI/ACE pair (on square root scale), it decreases from 0.99 to 0.95. The

high correlations in the residual matrix suggest that there are other common factors between the

response variables that the covariates in this model (SST forecasts) do not capture.
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Response Method Cor.Pearson Cor.Spearman RMSE MAE Coverage Length

TS

ss-ind-ind 0.74 0.69 1.93 1.45 1.00 11.28
ss-dep-ind 0.67 0.72 2.10 1.74 1.00 11.41
ss-ind-dep 0.75 0.69 1.94 1.39 1.00 11.19
ss-dep-dep 0.65 0.68 2.16 1.81 1.00 11.50

Hurricane

ss-ind-ind 0.41 0.46 2.61 2.34 0.88 7.37
ss-dep-ind 0.45 0.56 2.19 1.80 0.88 7.88
ss-ind-dep 0.41 0.46 2.62 2.38 0.88 7.26
ss-dep-dep 0.46 0.60 2.16 1.74 0.88 8.01

PDI

ss-ind-ind 0.62 0.67 0.65 0.52 0.75 1.85
ss-dep-ind 0.53 0.50 0.68 0.54 0.75 2.05
ss-ind-dep 0.61 0.55 0.66 0.53 0.75 1.83
ss-dep-dep 0.52 0.38 0.69 0.55 0.75 2.07

ACE

ss-ind-ind 0.70 0.69 0.44 0.38 0.88 1.40
ss-dep-ind 0.58 0.71 0.47 0.37 0.88 1.54
ss-ind-dep 0.68 0.69 0.45 0.39 0.88 1.38
ss-dep-dep 0.56 0.55 0.48 0.38 0.88 1.56

Table 5: Results for August with linear regression models.

19



6 Discussion

One of the main aims of this paper was to compare the predictive performance of Bayesian univariate

and multivariate regression models. Our simulation results suggest that for moderate dimensional

model spaces with a sparse coefficient matrix, multivariate Bayesian methods can have significantly

improved performance in estimation of the mean of the predictive distribution compared to uni-

variate methods. While there is also an improvement in prediction error, the gain can be relatively

small. The reason is that the gain in estimation is typically quite small relative to the magnitude

of error variance, and thus it does not lead to a significant reduction in the prediction error. A

natural direction for future work is to consider higher dimensional model spaces.

Our results from the TC activity data are consistent with the simulation studies, in the sense

that we see an overall small gain in point estimates for prediction using the multivariate methods.

An interesting result for the application is that, while we find the SST forecasts can explain some

of the correlations between the response variables, a large part still remains unaccounted for by this

model. Perhaps, this suggests the need to look for additional covariates (which also have reliable

forecasts) that could explain North Atlantic TC activity.
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