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ABSTRACT
Motivation An important goal of microarray studies is to discover
genes that are associated with clinical outcomes such as disease
status and patient survival. While a typical experiment surveys gene
expressions on a global scale, there may be only a small number of
genes that have significant influence on a clinical outcome. Moreover,
expression data have cluster structures and the genes within a
cluster have correlated expressions and coordinated functions, but
the effects of individual genes in the same cluster may be different.
Accordingly, we seek to build statistical models with the following
properties. First, the model is sparse in the sense that only a subset
of the parameter vector is non-zero. Second, the cluster structures of
gene expressions are properly accounted for.
Results: For gene expression data without pathway information, we
divide genes into clusters are using commonly used methods such as
K-means or hierarchical approaches. The optimal number of clusters
is determined using the Gap statistic. We propose a Clustering
Threshold Gradient Descent Regularization (CTGDR) method, for
simultaneous cluster selection and within cluster gene selection.
We apply this method to binary classification and censored survival
analysis. Compared to the standard TGDR and other regularization
methods, the CTGDR takes into account the cluster structure and
carries out feature selection at both the cluster level and within-
cluster gene level. We demonstrate the CTGDR on two studies of
cancer classification and two studies correlating survival of lymphoma
patients with microarray expressions.
Availability: R code is available upon request.
Contact: shuangge.ma@yale.edu

1 INTRODUCTION
Microarray technology provides a way of monitoring gene
expressions on a large scale. Tremendous efforts have been devoted
to discovering genes that are associated with variations of clinical
outcomes. Understanding of the molecular biology that underlies
such variations might provide a more accurate method of diagnosis
and suggest new therapeutic approaches. See for example, Alizadeh
et al. (2000), Garber et al. (2001), and Rosenwald et al. (2003). Two
types of clinical outcomes have been of special interest. The first
type is categorical outcome, which includes the presence or absence
of tumor as in Alon et al. (1999) or different types of tumors as in
Alizadeh et al. (2000). The second type is survival outcome, which
corresponds to the occurrence time of certain event such as cancer.
See for example Rosenwald et al. (2003) and Dave et al. (2004).

Classification and survival analysis using microarray data are
challenging because of the large number of genes and relatively
small sample size. Various model reduction methods have been

proposed, including the singular value decomposition (Golub and
Van Loan 1996), partial least squares (Nguyen and Rocke 2002),
principal component analysis (Ma et al. 2006), LASSO-LARS (Gui
and Li 2005a), and Threshold Gradient Descent Regularization
(TGDR, Gui and Li 2005b; Ma and Huang 2005) among others.
The essence of the aforementioned techniques is to identify a
small number of representative features–individual genes or linear
combinations of genes, and build predictive models based on those
representative features. In the feature selection, all genes are treated
in an equal manner and the intrinsic gene correlation structures are
usually ignored.

Statistically speaking, there exist genes whose expressions are
highly correlated and should be put into clusters (Tamayo et al.
1999). Biologically speaking, there exist gene pathways composed
of co-regulated genes with coordinated functions (Eisen et al.
1998). See for example the Gene Ontology (Harris et al. 2004).
Although clusters defined based on statistical correlation and
biological functions do not match perfectly, they tend to have certain
correspondence (Clare and King 2002; Tavazoie et al. 1999; Yeung
et al. 2001).

Cluster analysis methods have been employed in microarray
studies as a dimension reduction tool (Alizadeh et al. 2000; Dave
et al. 2004). With this approach, a small number of gene clusters are
first constructed, using methods such as the K-means or hierarchical
(Johnson and Wichern 2002). The mean expressions of genes within
the same clusters are then computed and used as covariates for
downstream model building. A limitation of this approach is that
feature selection is carried out only at the cluster level. Once a
cluster is used in the final model, all genes within that cluster
are included. Although genes within the same cluster may have
correlated expressions, it is not necessarily true that they will all be
associated with a specific clinical outcome. Including noisy genes
may lead to ill-behaved models. Gene selection within clusters
is still needed to yield more reliable models. Wei and Li (2006)
proposes a nonparametric pathway-based regression approach that
explicitly makes use of available pathway information. They use
the gradient-based boosting algorithm (GDB, Friedman 2001) for
model fitting and the importance score (Breiman et al. 1984;
Friedman 2001) for ranking pathways and genes. However, they
do not explicitly consider variable selection at either the cluster or
individual gene levels.

Regularization methods such as the LASSO and TGDR are
effective methods for variable selection. Although capable of
selecting a small number of important genes, these methods do
not incorporate cluster structure. On the other hand, standard
approaches using cluster analysis results as input explicitly take
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into account cluster structure, but cannot carry out individual gene
selection.

To combine strength of the aforementioned approaches, we
propose a Clustering TGDR (CTGDR) method that incorporates
cluster structure into TGDR-based variable selection. The proposed
CTGDR carries out feature selection at two levels: at the cluster
level and the individual gene level within each cluster. Thus it
takes advantages of both the cluster-based and regularized variable
selection methods.

In section 2, we present the data and models that we consider. We
use logistic regression for binary classification and Cox model for
right censored survival analysis as examples. We select the optimal
number of clusters using the Gap statistic. The CTGDR algorithm
is described in section 3. Tuning parameter selection and evaluation
are also discussed. We present two classification examples in section
4 and two survival analysis examples in section 5. The article ends
with discussions in section 6.

2 DATA AND MODEL SETTINGS
Let Z be a length d vector of gene expressions, and let Y be
the clinical outcome of interest. We assume that Y is associated
with Z through model Y ∼ φ(β′Z) with a regression function
φ and unknown regression coefficient β. In addition, we assume
there exists a smooth objective function and a proper estimate of β
can be obtained by maximizing that function. We are particularly
interested in the classification and survival analysis problems using
microarray gene expression data due to their extensive applications
in biomedical studies.

2.1 Binary classification
For the classification problems, Y is a categorical variable
indicating the disease status. For simplicity, we focus on binary
classification only. Suppose that Y = 1 denotes the presence and
Y = 0 indicates the absence of disease. We assume the commonly
used logistic regression model, where the logit of the conditional
probability is logit(P (Y = 1|Z)) = α + β′Z. Here β is the
length d vector of unknown regression coefficient and α is the
unknown intercept. Based on a random sample of n observations
Xi = (Yi, Zi), i = 1, . . . , n, the maximum likelihood estimator is
defined as (α̂, β̂) = argmaxα,βRn(α, β), where

Rn(α, β) =

n�
i=1

Yi log

�
exp(α + β′Zi)

1 + exp(α + β′Zi)

�
+ (1)

(1 − Yi) log

�
1

1 + exp(α + β′Zi)

�
.

For simplicity, we denote Rn(α, β) as Rn(β).

2.2 Cox survival analysis
For right censored survival data, Y = (T, Δ), where T =
min(U, V ) and Δ = I(U ≤ V ). Here U and V denote the
event time of interest and censoring time, respectively. The most
widely used model for censored survival data is the Cox model
(Cox, 1972) which assumes that the conditional hazard function
λ(u|Z) = λ0(u) exp(β′Z). λ0 is the unknown baseline function
and β is the regression coefficient. Based on a random sample of
n observations Xi = (Yi, Zi), i = 1, . . . , n, the partial likelihood

estimator is defined as the value β̂ that maximizes

Rn(β) =

n�
i=1

�
exp(β′Zi)�

j∈ri
exp(β′Zj)

�δi

,

where ri = {j : Tj ≥ Ti} is the risk set at time Ti.

2.3 Cluster structure
The proposed CTGDR approach assumes the cluster structure has
been well defined. Some gene expression data have well defined
biological gene pathways. Such cluster structure can be obtained
from web databases such as the GO (http://www.geneontology.org).
See for example Wei and Li (2006). However it is also well
known that the pathway information may be only partially or
even not available for a large number of genes. In this case, we
propose defining cluster structure based on statistical measurements
(Tamayo et al. 1999).

Commonly used clustering methods include the hierarchical, K-
means, tree-truncated vector quantization and self-organizing map
methods, among many others. For a general reference, see Gordon
(1999). In general there does not exist optimal clustering method.
In this article, we consider the two most popular unsupervised
approaches: hierarchical and K-means methods.

We use the Gap statistic (Tibshirani et al. 1999) to select the
optimal number of clusters. For a chosen clustering approach, we
first choose Lmax–the largest number of clusters. Then for L =
1, . . . , Lmax:

1. Generate L clusters using the selected approach. Denote rssL

as the total within block sum of squares.

2. Create a new dataset by separately permuting each gene
expression measurements. Apply the clustering method to the
permuted expression data. Let �rssL denote the resulting within
cluster sum of squares. Repeat this for a number of times and
compute the average ave(�rssL).

3. Compute the Gap statistic as gap(L) = ave(�rssL) − rssL.

Choose the value L that maximizes gap(L). We refer to Tibshirani
et al. (1999) and McLachlan et al. (2004) for detailed discussions of
the Gap statistic. We assume gene j = 1, . . . , d belongs to one of
the clusters C(j) ∈ {1, . . . , L}.

3 CLUSTERING TGDR
The CTGDR can be consider a generalization of the TGDR, which
is introduced by Friedman and Popescu (2004) in the context of
linear regression analysis and has been employed in microarray
studies by Gui and Li (2005b) and Ma and Huang (2005). For
completeness, we first briefly describe the TGDR algorithm.

3.1 TGDR algorithm
Denote Δν as the small positive increment as in ordinary
gradient descent methods (Friedman and Popescu 2004). In the
implementation of this algorithm, we choose Δν = 1 × 10−4.
Denote νk = k × Δν as the index for the point along the
parameter path after k steps. Let β(νk) denote the parameter
estimate corresponding to νk. For any fixed threshold 0 ≤ τ ≤ 1,
the TGDR algorithm consists of the following steps:

1. Initialize β(0) = 0 and ν0 = 0.
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2. With current estimate β, compute the negative gradient g(ν) =
−∂Rn(β)/∂β. Denote the jth component of g(ν) as gj(ν). If
maxj{|gj(ν)|} = 0, stop the iterations.

3. Compute the threshold vector f(ν) of length d, where the jth

component of f(ν): fj(ν) = I{|gj(ν)| ≥ τ × maxl |gl(ν)|}.
4. Update β(ν +Δν) = β(ν)−Δν× g(ν)× f(ν) and update ν

by ν + Δν, where the product of f and g is component-wise.

5. Steps 2–4 are repeated k times. The number of iterations k is
determined by cross validation.

The tuning parameters τ and k jointly determine the property of
β. When τ ≈ 0, β is dense even for small values of k. When
τ ≈ 1, β is sparse for small k and remains so for a relatively
large number of iterations, but will become dense eventually. At the
extreme when τ = 1, the TGDR usually increases in the direction of
a single covariate in each iteration. When τ is in the middle range,
the characteristics of β are between those for τ = 0 and τ = 1.
For τ �= 0, variable selection can be achieved with cross validated,
finite k, by having certain components of β exactly zero. We refer
to Friedman and Popescu (2004) for more detailed discussions. The
TGDR described here is capable of individual gene selection but
does not account for the cluster structure.

3.2 Naive CTGDR
Naive CTGDR Algorithm I. This algorithm modifies step 3 of the
TGDR as follows:

f1
j (ν) = I

	
� �
m∈C(j)

|gm(ν)| ≥ τ1 × max
C(k)

�
l∈C(k)

|gl(ν)|
�� , (2)

where 0 ≤ τ1 ≤ 1 is the threshold tuning parameter. The other steps
in the TGDR are kept unchanged.

Compared to the original TGDR, algorithm I uses cluster
gradients to replace individual gradients. The combined effects of
genes in the same clusters are considered and compared with the
combined effects of other clusters. This algorithm is similar to the
traditional clustering approaches in the sense that gene selection is
achieved on a cluster basis, and if the combined effect of genes
in a cluster is important, then all the genes within this cluster
will be included in the final model. The key difference is that the
naive CTGDR I estimated coefficients of genes in the same clusters
may be different. So genes within the same clusters may still have
different contributions in the final model, whereas in traditional
cluster based methods, all genes within the same clusters have the
same coefficient and hence equal contributions to the outcome.

Algorithm I does feature selection at the cluster level. If a cluster
is selected, then all the genes in this cluster are selected. Thus the
total number of genes in the final model can be large. Consider for
an example a hypothetical study with 2000 genes and five clusters
of equal sizes are constructed. Then using algorithm I, it is possible
three or four clusters are selected. The total number of genes in
the final model will be greater than 1000. Although the prediction
performance may still be satisfactory, this makes the final estimation
results hard to interpret from a gene discovery point of view. Since it
is often the case that only a subset of genes within each cluster have
important impact on the outcome of interest, gene selection within
cluster is still needed.

Naive CTGDR Algorithm II. This algorithm partly solves the
drawbacks of algorithm I. Denote τ2 ∈ [0, 1] as the threshold tuning

parameter. We replace f in step 3 of the TGDR with

f2
j (ν) = I

�
|gj(ν)| ≥ τ2 × max

l∈C(j)
|gl(ν)|

�
, (3)

so that each gene is only compared with other genes within the same
cluster and only important genes from each cluster are selected. The
rationale is that genes from different clusters may not be directly
comparable. So a fair comparison should be for genes within the
same clusters. Within each cluster, we use the TGDR to identify
important genes.

We have employed algorithm II in the examples in sections
4 and 5. We are able to identify a smaller number of genes
(∼200, much fewer than that from naive algorithm I) with
satisfactory prediction performance. However, algorithm II has its
own drawbacks. It is roughly equivalent to carrying out the TGDR in
each cluster separately and the final model includes genes selected
from all clusters. The underlying assumption is that all clusters
are associated with the outcome of interest. Previous cluster based
methods as in Dave et al. (2004) and Alizadeh et al. (2000) show
that this is not necessarily true. Cluster selection is still needed.

3.3 CTGDR algorithm
The naive CTGDR algorithm I carries out cluster selection, but
does not select important genes within each cluster. On the other
hand, the naive CTGDR algorithm II does gene selection in each
cluster separately, but does not select clusters. The advantages and
drawbacks of the naive CTGDR algorithms motivate the following
CTGDR algorithm.

Let τ1, τ2 ∈ [0, 1] be two threshold parameters. In step 3 of the
TGDR algorithm, define

fj(ν) = f1
j (ν) × f2

j (ν), (4)

where f1(ν) is defined in (2) with threshold value τ1 and f2(ν) is
defined in (3) with threshold value τ2, respectively.

In (4), the term f1(ν) carries out cluster selection, while f2(ν)
carries out within-cluster gene selection. So the combined f can
carry out feature selection at both the cluster level and within cluster
level. Further flexibility is introduced by allowing two possibly
different threshold values. In this algorithm, if a gene or a cluster
is known to be associated with the clinical outcome a priori, then it
can be excluded from the thresholding step.

The three tuning parameters k, τ1 and τ2 jointly determine the
properties of the CTGDR estimates. The τ1 and τ2 have similar
effects as the tuning parameter τ for the standard TGDR in section
3.1. If τ1 and τ2 are both close to 1, then the estimate remains sparse
for a relatively large k, but will become dense eventually. If τ1 and
τ2 are both close to 0, the estimate is dense for even a very small k.
τ1 and τ2 determine the degree of sparsity on cluster level and within
cluster level, respectively, with larger thresholding values leading to
more parsimonious models with fixed k. With nonzero τ1 and τ2,
the model with small to moderate k usually has a small number of
clusters and a small number of genes within each selected cluster.

3.3.1 Possible extensions In the above CTGDR algorithm, the
cluster gradient is defined as the sum of absolute values of individual
gradients. This is the default definition when there is no extra
information on the clusters. If there exists external knowledge of
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the clusters, then we can modify the indicator function in (2) as

I

	
�wj

�
m∈C(j)

|gm(ν)| ≥ τ1 × max
C(k)

wk

�
l∈C(k)

|gl(ν)|
�� , (5)

where wj is the positive weight measuring the relative importance
of cluster j. A simple choice of wj is the inverse of cluster size, so
that the relative importance of clusters is not affected by cluster size.
If external knowledge about the relative importance of genes within
the same cluster is present, then the cluster gradient can be defined
as the weighted sum of individual gradients, with more stable and
more important genes having larger weights. Further flexibility can
be introduced by considering weighted gradients.

3.4 Tuning parameter selection
We select the tuning parameters k and (τ1, τ2), which jointly
determine the characteristics of the estimator, using the following
two-step approach.

First we choose the tuning parameter k for any fixed (τ1, τ2) using
V -fold cross validation (Wahba 1990) as follows. Partition the data
randomly into V non-overlapping subsets of equal sizes. Choose k
to maximize the cross-validated objective function

CV (k) =
V�

v=1

�
Rn(β(−v)) − R(−v)

n (β(−v))
�
, (6)

where β(−v) is the CTGDR estimate of β based on the data without
the vth subset for a fixed k and R

(−v)
n is the objective function Rn

evaluated without the vth subset. In our study, we set V = 5.
After cross validation over k, model features for different τ1 and

τ2 can be obtained. We choose parsimonious models with relatively
large CV score. An AIC type score as in Huang et al. (2006) can be
used as model selection criterion. Cross validation over τ1 and τ2

can also be considered, i.e, we can select the model with the largest
CV score over all possible k, τ1 and τ2. However, this approach may
lead to models with slightly larger CV scores, but a lot more genes,
which may be less stable models.

3.5 Evaluation
Unlike in standard classification or survival analysis where the
association between clinical outcome and covariates is of primary
interest, studies given in sections 4 and 5 put more emphasis on
selection of important genes and prediction. So we consider the
following cross validation based approach for evaluating prediction
performance, as suggested in Ma and Huang (2005).

1. We first partition the data randomly into a training set of size
n1 and a testing set of size n2 with n1+n2 = n. In this article,
we set n1 ∼ 2/3n.

2. Compute the CTGDR estimate based on the training set only.
Using this training set estimate, we compute a prediction index
for the testing set.

3. To take into account the possibility of an extreme prediction
performance due to a rare partition, we repeat this process B
(for example 200) times. Each time a new partition is made and
the prediction index is computed.

For classification studies, the prediction index can be the
prediction error. For censored survival studies, we first create two
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Fig. 1. Colon data: gap statistic as a function of number of clusters. Solid
line: K-means clustering. Dashed line: Hierarchical clustering.

risk groups based on dichotomizing the estimated linear risk scores
β̂′Zi at the median risk score for the testing set. We then use the
Logrank statistic to assess whether the survival curves of different
risk groups are different. A large value of the Logrank statistic
indicates that the high and low risk groups are well separated,
and suggests satisfactory prediction performance of the CTGDR
estimate.

4 BINARY CLASSIFICATION
Colon data. In this dataset, expression levels of 40 tumor and
22 normal colon tissues for 6500 human genes are measured
using the Affymetrix gene chips. A selection of 2000 genes with
the highest minimal intensity across the samples has been made
by Alon et al. (1999), and these data are publicly available
at http://microarray.princeton.edu/oncology/. The colon data have
been analyzed in several previous studies using other statistical
approaches, see for example Dettling and Buhlmann (2003), Pochet
et al. (2004), Nguyen and Rocke (2002) and Ma and Huang (2005).

Nodal data. This dataset was first presented by West et al.
(2001) and Spang et al. (2001). It includes expression values
of 7129 genes from 49 breast tumor samples. The expression
data were obtained using the Affymetrix gene chip technology
and are available at http://mgm.duke.edu/genome/dna micro/work/.
The response describes the lymph nodal (LN) status, which is
an indicator for the metastatic spread of the tumor. Among the
49 samples, 25 are positive (LN+) and 24 are negative (LN−).
We threshold the raw data with a floor of 100 and a ceiling of
16000. Genes with max(expression)/min(expression) < 10
and/or max(expression) − min(expression) < 1000 are also
excluded (Dudoit et al. 2002). 3332 (46.7%) genes pass the first
step screening. A base 2 logarithmic transformation is then applied.
This data have also been studied by Dettling and Buhlmann (2003).
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Table 1. Colon and Nodal data. Tuning: values of tuning parameters;
Nonzero: number of selected genes; Clus.: number of selected clusters; Error:
mean prediction errors.

Approach Tuning Nonzero Clus. Error
Colon

K-means-CTGDR (τ1, τ2) = (1.0, 1.0) 13 5 0.111
K-means-simple – 500 9 0.166
Hierarchical-CTGDR (τ1, τ2) = (0.9, 1.0) 15 3 0.111
Hierarchical-simple – 500 23 0.222
TGDR τ = 0.9 28 – 0.149
LASSO u = 1.4 8 – 0.170

Nodal
K-means-CTGDR (τ1, τ2) = (1.0, 0.9) 33 5 0.143
K-means-simple – 500 10 0.228
Hierarchical-CTGDR (τ1, τ2) = (1.0, 1.0) 18 2 0.143
Hierarchical-simple – 500 11 0.177
TGDR τ = 1.0 29 – 0.147
LASSO u = 8.0 40 – 0.222

We first identify 500 genes for each dataset based on marginal
significance to gain further stability as in Ma and Huang (2005).
Compute the sample standard errors of the d genes se(1), . . . , se(d)

and denote their median as med.se. Compute the adjusted standard
errors as 0.5(se(1) + med.se), . . . , 0.5(se(d) + med.se). Then
the genes are ranked based on the t-statistics computed with the
adjusted standard errors. 500 genes with the largest absolute values
of the adjusted t-statistics are used for classification.

For the Colon and Nodal data, we construct the clusters using
the K-means and hierarchical methods. The number of clusters is
chosen using the Gap statistic. For the Colon data, we show in
Figure 1 the Gap statistic as a function of L. Since it has been
suggested that the clusters should not be too small on average
(Dave et al. 2004), we set Lmax = 50. For the Colon data, the
Gap statistic yields the optimal number of clusters 9 (K-means)
and 23 (hierarchical); for the Nodal data, 10 (K-means) and 11
(hierarchical).

We apply the CTGDR to the clustered data obtained above. We
consider the tuning parameters τ1 and τ2 taking values in the grid 0,
0.1,..., 1.0. Model features selected via cross validation are shown
in Table 1. For the Colon data, 13 (K-means) and 15 (hierarchical)
genes are selected in the final models, representing 5 and 3 clusters.
For the Nodal data, 33 (K-means) and 18 (hierarchical) genes are
selected in the final models, representing 5 and 2 clusters. The
estimated coefficients and gene descriptions for the final models are
available upon request.

We evaluate the prediction performance of the CTGDR using
the approach discussed in section 3.5. For comparison, we also
consider three alternatives: (1) a simple clustering approach, where
the clusters are the same as used under the CTGDR. The within
cluster median expressions are used as covariates. This mimics the
approach in Dave et al. (2004). We refer to this approach as K-
means-simple or Hierarchical-simple, depending on the clustering
methods used; (2) Logistic model with TGDR for variable selection;
and (3) Logistic model with LASSO for variable selection, where
the tuning parameter u is the L1 norm of β. For the TGDR and
LASSO, the tuning parameters are also chosen via 5-fold cross
validation.

For the Colon data, the CTGDR yields mean prediction errors
0.111 based on 200 random partitions under both the K-means
and hierarchical clustering. Simple clustering approaches yield
mean prediction errors 0.166 and 0.222; The TGDR approach has
mean prediction error 0.149 and the LASSO yields prediction error
0.170. The CTGDR also has better prediction performance than the
SMRC in Ma and Huang (2005, mean classification error 0.14), the
boosting (Dettling and Buhlmann 2003, mean classification error:
LogitBoost 0.16; AdaBoost 0.18), the classification tree (Dettling
and Buhlmann 2003, mean classification error 0.15) and the SVM
(Pochet, et al. 2004, mean classification error 0.18).

For the Nodal data, the mean prediction errors are 0.143 with
the CTGDR under both clustering schemes. Simple clustering
based approach has less optimal prediction errors 0.228 and 0.177.
The TGDR and LASSO mean prediction errors are 0.147 and
0.222, respectively. Applying the SMRC approach as in Ma
and Huang (2005), we get mean prediction error 0.147. The
prediction performance of the CTGDR is better than the boosting
based approaches (mean classification errors 0.184, 0.265 and
0.224) and 1-nearest neighbor (mean classification error 0.367) and
classification tree (mean classification error 0.204). See details in
Dettling and Buhlmann (2003).

5 SURVIVAL ANALYSIS
Follicular Lymphoma data. Follicular lymphoma is the second
most common form of non-Hodgkin’s lymphoma, accounting
for about 22 percent of all cases. A study was conducted to
determine whether the survival probability of patients with follicular
lymphoma can be predicted by the gene-expression profiles of the
tumors at diagnosis (Dave et al. 2004). Fresh-frozen tumor-biopsy
specimens and clinical data from 191 untreated patients who had
received a diagnosis of follicular lymphoma between 1974 and 2001
were obtained. The median age at diagnosis was 51 years (range
23 to 81), and the median follow up time was 6.6 years (range
less than 1.0 to 28.2). The median follow up time among patients
alive at last follow up was 8.1 years. Eight records with missing
survival information are excluded from the downstream analysis.
Affymetrix U133A and U133B microarray genechips were used
to measure gene expression levels from RNA samples. A log2
transformation was applied to the Affymetrix measurements. We
first filter the 44928 gene measurements with the following criteria:
(1) the max expression value of each gene across 191 samples must
be greater than 9.186 (the median of the maximums of all probes).
(2) the max-min should be greater than 3.874 (the median of the
max-min of all probes). (3) Compute correlation coefficients of the
uncensored survival times with gene expressions. Select the genes
whose correlations with survival time are greater than 0.2. There
are 729 genes that pass this screening process. We normalize genes
across samples to have mean 0 and variance 1.

Mantel Cell Lymphoma data. Rosenwald et al. (2003)
reported a study using microarray expression analysis in mantle
cell lymphoma (MCL). Among 101 untreated patients with no
history of previous lymphoma included in this study, 92 were
classified as having MCL, based on established morphologic and
immunophenotypic criteria. Survival times of 64 patients were
available and other 28 patients were censored. The median survival
time was 2.8 years (range 0.02 to 14.05 years). Lymphochip DNA
microarrays (Alizadeh et al., 2000) were used to quantify mRNA
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Table 2. Follicular and MCL data. Tuning: values of tuning parameters;
Nonzero: number of selected genes; Clus.: number of selected clusters; Logrank:
median of the Logrank test statistics.

Approach Tuning Nonzero Clus. Logrank
Follicular

K-means-CTGDR (τ1, τ2) = (1.0, 1.0) 111 13 4.685
K-means-simple – 729 34 1.175
Hierarchical-CTGDR (τ1, τ2) = (1.0, 1.0) 71 1 4.204
Hierarchical-simple – 729 24 1.146
TGDR τ = 1.0 42 – 3.836
LASSO u = 0.8 14 – 1.509

MCL
K-means-CTGDR (τ1, τ2) = (1.0, 1.0) 85 8 9.587
K-means-simple – 834 30 2.837
Hierarchical-CTGDR (τ1, τ2) = (1.0, 1.0) 65 1 9.036
Hierarchical-simple – 834 13 7.284
TGDR τ = 1.0 39 – 9.151
LASSO u = 1.7 23 – 4.671

expression in the lymphoma samples from the 92 patients. The
gene expression data that contains expression values of 8810 cDNA
elements is available at http://llmpp.nih.gov/MCL. We pre-process
the data as follows to exclude noises and gain further stability:
(1) Compute the variances of all gene expressions; (2) Compute
correlation coefficients of the uncensored survival times with gene
expressions; and (3) Select the genes with variances larger than the
first quartile and with correlation coefficients larger than 0.25. 834
out of 8810 genes pass the above initial screening. We standardize
these genes to have zero mean and unit variance.

For the Follicular data, the Gap statistic yields optimal number of
clusters equal to 34 (K-means) and 24 (hierarchical), respectively.
Plot similar to Figure 1 can be generated and is omitted here.
We show model features with cross validation selected tuning
parameters in Table 2. Under the hierarchical clustering, the largest
cluster has 347 genes and all genes with nonzero coefficients in the
CTGDR model come from this cluster. For evaluation, we compute
the Logrank test statistics from random partitions. For comparison,
we also consider three alternatives: the simple clustering based
approach as in classification study, the simple TGDR as described
in section 3.1, and the LASSO approach as in Gui and Li (2005a).
We can see from Table 2 that the CTGDR coupled with K-means or
hierarchical clustering have the best prediction performance. The K-
means-CTGDR has slightly better prediction than the Hierarchical-
CTGDR, but the difference is not dramatic.

For the MCL data, the optimal number of clusters are 30 and
13 under K-means and hierarchical clustering respectively. Model
features with optimal tuning parameters are also shown in Table
2. One dominating cluster is also present under the hierarchical
method, which leads to all genes identified by CTGDR coming from
this cluster. In Figure 2, we show the kernel-smoothed histograms of
the predictive Logrank statistics calculated from random partitions
as described in Section 3.5 for different approaches. The K-means-
CTGDR method has the best prediction performance in terms of the
predictive Logrank statistic. However, the TGDR is slightly better
than the hierarchical-CTGDR, but the difference is very small.
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Fig. 2. MCL data. Kernel-smoothed density estimates of the predictive
Logrank statistics based on 200 random partitions as described in Section
5 for different approaches.

6 DISCUSSIONS
The proposed CTGDR approach can carry out feature selection at
the cluster and individual gene levels simultaneously, and directly
accounts for cluster structures in microarray gene expression data.
This algorithm is quite flexible in that it can use any clustering
results, including those based on gene annotation, as input in the
analysis. We use logistic regression for classification and Cox model
for survival data as examples to illustrate the effectiveness of the
CTGDR. However, the CTGDR algorithm does not depend on the
actual form of the objective function, as long as it is well defined
and differentiable. So the CTGDR can be used in survival analysis
with other models such as the accelerated failure time and additive
hazards models, and classification analysis based other objective
functions such as the SVM hinge loss and the ROC objective
function.

We have demonstrated the proposed approach on four publicly
available datasets. In these examples, there do not exist well
defined biological clusters. So we constructed the clusters using
two popular approaches: the K-means (a top-down approach) and
the hierarchical (bottom-up) methods. We used the Gap statistic to
determine the optimal number of clusters. For the four datasets we
considered, comparing to several existing methods, the CTGDR has
better prediction performance by simultaneously accounting for the
cluster structure and carrying out two-level feature selection.

We note that there exist quite a few alternative clustering
approaches, for example the self-organizing map. However there
exists no optimal clustering method. We only demonstrate the
two popular ones in this study. It is possible that other clustering
approaches or other ways of determining optimal number of clusters
can also lead to models with satisfactory prediction. Comparison
of different clustering schemes is beyond the scope of this paper.
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When there exist well defined biological clusters (e.g., biological
pathways), the proposed CTGDR can utilize that information.

The essential idea of the CTGDR is to carry out feature
selection simultaneously at two levels. Specifically, CTGDR is a
combination of TGDR at the cluster level and TGDR at the gene
level within cluster. With the same spirit, combinations of different
regularization approaches can in fact be considered. For example,
we can use TGDR for within cluster selection and LASSO for
cluster selection. Considering that there are many variable selection
methods, the combinations will have a very long list and it is
beyond the scope of the current manuscript to conduct a thorough
investigation.

We have only considered classification and survival models
in which the outcome variable depends on a simple linear
combination of the gene expression data. The CTGDR is applicable
to more complicated models which may include nonparametric
and nonlinear components. It is also applicable to models with
interactions at both the cluster and individual gene levels. Such
models would probably be more realistic from a biological
standpoint. We plan to consider such issues in future studies.
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