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ABSTRACT
Motivation: In pharmacogenetic studies, it is common that multiple
microarray studies are conducted to investigate the relationship
between a phenotype and gene expressions. An important goal of
such studies is to discover influential genes that can be used as
disease biomarkers and construct predictive models. To increase
statistical power, meta analysis should be used to combine results
from these studies. However, it is difficult to apply the standard meta
analysis approaches because of high-dimensionality of microarray
data and because different microarray platforms and experimental
settings used in different studies may not be directly comparable.
Results: We propose a Meta Threshold Gradient Descent
Regularization (MTGDR) approach for regularized meta analysis.
The proposed approach is capable of selecting the same sets of
influential genes across different studies, while allowing for different
estimates for different platforms or experiments. To demonstrate the
proposed approach, we use microarray data with binary outcome as
an example in the context of logistic regression models. We analyze
datasets from pancreatic and liver cancer studies using the proposed
approach.
Availability: R code is available upon request.
Contact: shuangge.ma@yale.edu

1 INTRODUCTION
Microarrays are capable of profiling human tissues on a genome
wide scale and have been extensively used in pharmacogenetic
studies, where expressions of thousands of genes are measured
along with certain clinical outcomes. A major goal of such studies
is to identify genes that can be used as predictive biomarkers for
disease diagnosis and prognosis and as targets for therapy. It is now
very common that multiple microarray studies are carried out to
identify influential genes that are related to the same phenotype in
the same species (Choi et al. 2004; Ghosh et al. 2003; Wang et al.
2004; and Warnat et al. 2005).

Most microarray studies include a large number of genes and a
much smaller number of subjects. This “small n large d” scenario
makes analysis of microarray data challenging. One way to increase
statistical power is to simultaneously consider multiple datasets with
similar setups by use of meta analysis. However, meta analysis
can be complicated due to the high-dimensionality of microarray
data and technical differences between platforms, which can lead
to differences in the intrinsic nature of the produced expression
data. Arrays that hybridize one sample at a time (e.g. synthesized
oligonucleotide arrays) measure gene expression based directly
on the signal intensity of each probe set. Spotted cDNA arrays

hybridized with fluorescent labeled targets, in contrast, typically
measure the ratio of the signal from a test sample to the signal
of a co-hybridized reference sample. Thus one unit increase in
the expression levels measured in a study using cDNA arrays is
usually not directly comparable to one unit increase in a study using
oligonucleotide arrays. For example, it has been shown that data
from Affymetrix GeneChip oligonucleotide microarrays correlate
poorly with the data from custom-printed cDNA microarrays (Kuo
et al. 2002). Thus data from different platforms may not be directly
combined.

Several papers have considered the problem of detecting
differentially expressed genes based on multiple datasets. Examples
include an approach using proper transformations to directly
integrate raw gene expression data (Warnat et al. 2005); a Lasso
based method (Ghosh et al. 2003); a random effects model based
method (Stevens and Doerge 2005); and a Bayesian approach
(Jung et al. 2006) among many others. Although such studies are
informative, they do not directly lead to predictive models.

There are also publications that consider the problem of
constructing predictive models from multiple microarray studies.
For example, a majority voting with impact factors algorithm is
proposed in Fung and Ng (2004), where the main goal is to
construct models for predicting categorical outcomes. Predictive
model building is also considered by Jiang et al. (2004), where
gene shaving methods based on random forrest and Fisher’s
linear discrimination are applied. Statistical software, including
the R packages metaArray (Ghosh and Choi 2006), MergeMaid
(http://astor.som.jhmi.edu/MergeMaid/) and RankProd (Hong et
al. 2006), has been developed for microarray meta analysis.
Although aforementioned studies investigate predictive model
building, biomarker selection is either not considered or carried out
with relatively ineffective approaches. In these studies, a critical
underlying assumption is that although different platforms are not
directly comparable, the underlying biological models (for example
the sets of differentially expressed genes or the sets of genes with
predictive power) are the same across studies.

On the other hand, for microarray data generated under a
single experimental setting, simultaneous biomarker selection
and predictive model building has been extensively investigated.
Examples include the Lasso in binary classification (Ghosh
and Chinnaiyan 2004) and survival analysis (Gui and Li
2005a), the Threshold Gradient Directed Regularization–TGDR,
in classification (Ma and Huang 2005) and survival analysis (Gui
and Li 2005b; Ma and Huang 2007), and the support vector
machine with SCAD penalty in Zhang et al. (2006). We refer to Li
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(2007) for a thorough review of existing methods. The regularized
approaches are capable of selecting a small number of influential
genes along with predictive model building. They are usually much
more informative than simply detecting differential genes. Although
great successes have been demonstrated by these approaches, they
cannot be used directly in meta analysis, since different platforms
and experimental settings are not directly comparable. We further
explain this issue in Section 4.

In this paper, we propose a Meta Threshold Gradient Directed
Regularization (MTGDR) method for simultaneously biomarker
selection and predictive model building for microarray meta
analysis. The MTGDR takes advantage of recent development in
regularized biomarker selection methods (with single microarray
dataset) and is capable of analyzing several datasets generated
under different platforms or experimental settings. It thus fills the
gap between available meta analysis methods and single-dataset
regularization methods. Compared with available meta analysis
methods, the MTGDR can select a small number of biomarkers with
joint predictive power and lead to parsimonious predictive models.
Compared with single-dataset regularized methods, the MTGDR
allows different estimates for different experiments and hence can
accommodate different experimental settings.

Notations and data settings are first introduced in Section 2.
The MTGDR algorithm is described in Section 3. We demonstrate
the proposed method on microarray data with binary outcomes.
However, the proposed approach is also applicable to quantitative
outcomes. We analyze four pancreatic cancer data in Section 4 and
four liver cancer data in Section 5. Discussions are provided in
Section 6.

2 DATA SETTINGS
For simplicity of notation, we assume that the same set of d
genes are measured in all M different experiments with M > 1.
Let Y 1, . . . , Y M be the clinical outcomes and let Z1, . . . , ZM

represent the gene expressions measured in these studies. We
postpone discussions of possibly different sets of genes from
different studies to the Discussion section. For m = 1, . . . , M ,
we assume Y m is associated with Zm through the model Y m ∼
φ(Zm′βm), where a′ denotes the transpose of a, and where φ is a
known regression function and is assumed to be the same across all
M studies.

We assume that the same statistical model holds across
different experiments. This assumption has been generally made in
microarray meta analysis. However, we allow different regression
coefficients βm. The rationale is that one unit gene expression
increase in experiment 1 (say for example a cDNA study) is not
equivalent to one unit increase in experiment 2 (say for example an
Affymetrix study). This assumption shares the same spirits as the
fixed effect models in standard meta analysis (Stevens and George
2005).

Although the proposed MTGDR approach is generally applicable
regardless of clinical outcome types and statistical models, we
describe it for binary outcome data. Let Y = 1 denote the presence
and Y = 0 denote the absence of disease. We assume the commonly
used logistic regression model, where for study m, the logit of
the conditional probability is logit(P (Y m = 1|Zm)) = αm +
Zm′βm. Here αm is the unknown intercept for experiment m.

Suppose that there are nm iid observations in experiment m. For
experiment m, the log-likelihood is:

Rm(αm, βm) =

nmX
j=1

Y m
j log

�
exp(αm + βm′Zm

j )

1 + exp(αm + βm′Zm
j )

�
+ (1− Yj) log

�
1

1 + exp(αm + βm′Zm
j )

�
. (1)

Since the intercept αm will not be subject to regularization, for
simplicity, we denote Rm(αm, βm) as Rm(βm).

3 MTGDR METHOD
3.1 Regularized microarray biomarker selection
In microarray studies, it is usually assumed that although tens of
thousands of genes are surveyed, only a small number of them are
actually associated with the clinical outcome of interest. Statistically
this is the basis for biomarker selection and the sparsity assumption,
i.e, most components of the regression coefficient β are zero. For
microarray data with binary outcome and logistic model, regularized
estimation methods can be used include the Lasso, SCAD and
TGDR among others. The proposed MTGDR is based on the
TGDR, which is introduced by Friedman and Popescu (2004) in
the context of linear regression and has been used for biomarker
selection in microarray classification (Ma and Huang 2005) and
survival analysis (Gui and Li 2005b). For completeness, we briefly
describe the TGDR algorithm below.

Consider experiment m only. Denote ∆ν as the small positive
increment as in ordinary gradient descent searching. In the
implementation of this algorithm, we choose ∆ν = 10−3, Denote
νk = k × ∆ν as the index for the point along the parameter path
after k steps. Let βm(νk) denote the parameter estimate of βm

corresponding to νk. For a fixed threshold 0 ≤ τ ≤ 1, the TGDR
algorithm consists of the following iterations:

1. Initialize βm(0) = 0 and ν0 = 0.

2. With current estimate βm, compute the negative gradient
gm(ν) = −∂Rm(βm)/∂βm. Denote the jth component of
gm(ν) as gm

j (ν). If maxj{|gm
j (ν)|} = 0, stop the iteration.

3. Compute the threshold vector fm(ν) of length d, where the jth

component of fm(ν):

fm
j (ν) = I(|gm

j (ν)| ≥ τ ×maxl|gm
l (ν)|).

4. Update βm(ν + ∆ν) = βm(ν) − ∆ν × gm(ν) × fm(ν)
and update ν by ν + ∆ν, where the product of fm and gm

is component-wise.

5. Steps 2-4 are iterated k times. The number of iteration k is
determined by cross validation.

We refer to Friedman and Popescu (2004) and Ma and Huang
(2005) for more detailed descriptions of the TGDR algorithm. For
microarray data, with cross validated k, many components of βm

are estimated to be exactly zero. Biomarker selection is achieved
by only including genes with nonzero coefficients. Compared with
regularized methods such as Lasso, the TGDR approach is a non-
linear boosting-like approach. It can be used to analyze a single
dataset, or pooled dataset by simply merging different datasets.
However, it is not a meta analysis method.
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3.2 MTGDR algorithm
We propose the following Meta-TGDR (MTGDR) approach for
regularized microarray meta analysis. We make the following two
essential assumptions: (1) although the same logistic regression
model holds, the regression coefficients βm may be different across
studies; (2) the sets of genes with nonzero coefficients (i.e., the
identified genes) are the same across studies. Assumption (1) is
mainly due to the concern of different platforms; Assumption
(2) assumes that although different experiments are not directly
comparable, the biological conclusions should be comparable, i.e,
we should conclude the same sets of genes to be significantly
associated with the outcome.

Let β = (β1, . . . , βM ) and R(β) = R1(β1) + . . . + RM (βM ).
Here β is a d×M matrix. Using notations similar to those in Section
3.1, the MTGDR algorithm can be described as follows.

1. Initialize β = 0 (component-wise) and ν0 = 0.

2. With current estimate β, compute the negative gradient matrix
g(ν) = −∂R(β)/∂β, where the (j, m) element of g is
gj,m(ν) = −∂Rm(βm)/∂βm

j .

3. Compute the length d vector of meta gradient G, where the jth

component of G is Gj(ν) =
PM

m=1 gj,m(ν).

4. Compute the meta threshold vector F (ν) of length d, where
the jth component of F (ν):

Fj(ν) = I(|Gj(ν)| ≥ τ ×maxl|Gl(ν)|).

5. Update the (j, m) element of β: βj,m(ν + ∆ν) = βj,m(ν) −
∆νgj,m(ν)F (ν) and update ν by ν + ∆ν.

6. Steps 2-5 are iterated k times, where k is determined by cross
validation.

The MTGDR algorithm shares some similarities with the TGDR:
it starts with the zero estimate and coefficients for important genes
(defined as those with large meta gradients) are updated at each
iteration. With τ > 0 and finite k, only a small number of genes
may have nonzero coefficients.

In steps 2 and 5, the gradients are computed for each experiment
(dataset) and estimates are updated accordingly. By doing so, we
allow different estimates for different experiments, which satisfies
assumption (1). In step 3, the meta gradient, which is defined as the
sum across different experiments, is computed. A meta threshold
vector is computed in step 4. By doing so, we force the threshold
vector to be the same (for each gene) across experiments. So when
a gene is include, it is included in all models across experiments,
which corresponds to assumption (2).

The meta gradient in step 3 is the most straightforward definition
that considers the common effect in all studies. Consider for
example gene 1 only has significant effect in experiment 1; whereas
gene 2 has moderate effects in all experiments. Then the sum
of gradients (combined effects) for gene 2 may be larger than
that for gene 1. Gene 2 is thus more likely to be selected
since consistent effects are demonstrated across studies, whereas
gene 1 may demonstrate significant effect in experiment 1 simply
because of experimental variation or purely by chance. If a gene
shows significant effects in all experiments but the gradients have
both positive and negative signs, then the sum may be small
and hence this gene may not be selected. The rationale is that
if a gene is selected, it is supposed to show similar biological
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Fig. 1. Parameter path as a function of k. Dashed red line: simulated
experiment 1; Dash-dotted blue line: simulated experiment 2; Solid black
line: simulated experiment 3. Vertical lines: the cross validated k.

effects across studies (for example up-regulation of this gene
is positively associated with the clinical outcome). So if both
positive and negative associations are observed, then inconsistent
biological conclusions are reached in different experiments. Hence
the corresponding gene should not be selected. It is worth pointing
out that with the proposed MTGDR, it is still possible that a
gene selected has coefficients with different signs in different
experiments. For example, if a gene demonstrates dramatically large
positive effect in one study but no or small negative effect in other
studies, this gene is still possible to be selected.

3.3 Tuning parameter selection
The MTGDR involves tuning parameters k and τ , which jointly
determine the property of the estimate. We use V-fold cross
validation to determine k and τ . With V-fold cross validation,
the tuning parameters with the best predictive power are selected.
Partial protection against over-fitting is also provided. In our study,
we set V = 3 mainly due to the small sample sizes concern.

3.4 Evaluation
With binary outcome, prediction evaluation can be simply based on
prediction error. We consider the following Leave-One-Out (LOO)
approach. We first remove one subject from the data. With reduced
data, we carry out cross validation and MTGDR estimation. We then
use this estimate to make prediction for the one removed record.
With the logistic model, the predicted probability can be computed.
We use 0.5 as cutoff and predict the class label. We then repeat this
procedure over all subjects. Prediction error can then be computed.
This approach has been used in Dettling and Buhlmann (2003) and
Ma, Song and Huang (2007).
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3.5 A graphic demonstration
We use the following small numerical example to demonstrate
the MTGDR parameter path. For m = 1, 2 and 3, we generate
data from logit(P (Y m = 1|Zm) = βm

1 Zm
1 + βm

2 Zm
2 +

βm
3 Zm

3 + βm
4 Zm

4 . In this simulated meta analysis, we have three
independent experiments and four genes per experiment. Zj

i s are
generated independently and N(0, 0.5) distributed. We set β1 =
(2.0, 2.0, 0, 0), β2 = (1.5, 1.5, 0, 0) and β3 = (1.0, 1.0, 0, 0). In
all three experiments, only the first two genes are associated with
the binary outcomes, although their corresponding coefficients are
different. We simulate 50 observations under each experiment.

The 3-fold cross validation select τ = 1.0 and k = 620. We show
in Figure 1 the parameter paths as a function of k for τ = 1.0. We
can see that for any k the estimated coefficients for one gene are
either all zero or all nonzero across experiments. This corresponds
to the assumption that if a gene is significantly associated with
the outcome, the estimated coefficients should be nonzero in all
experiments. We can also see that individual parameter paths are
similar to Lasso paths. This property has been demonstrated for the
TGDR in Friedman and Popescu (2004). With cross validated tuning
parameter, only the first two genes enter the final predictive models
and the true underlying models are recovered.

4 PANCREATIC CANCER STUDY
4.1 Data settings
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of
malignancy-related death. Apart from surgery, there is still no
effective therapy and even resected patients usually dies within
one year postoperatively. Several studies have applied microarray
technology to pancreatic cancer, targeting at identification of
predictive pancreatic cancer biomarkers. We use four datasets in
our study: Iacobuzio-Donahue et al. (2003), Logsdon et al. (2003),
Crnogorac-Jurcevic et al. (2003) and Friess et al. (2003). These
four datasets have been selected and used in the meta analysis of
Grutzmann et al. (2005). We show data descriptions in Table 1 and
refer to original publications for more experimental details. Two
of the four studies use cDNA arrays and two used oligonucleotide
arrays. Cluster ID and gene names are assigned to all of the cDNA
clones and Affymetrix probes based on UniGene Build 161. The
two sample groups considered in our analysis are PDAC and normal
pancreatic tissue. Data on chronic pancreatitis are available from
Logsdon et al. (2003) and Friess et al. (2003). Following Grutzmann
et al. (2005), those CP samples are not used in our study.

Grutzmann et al. (2005) identified a consensus set of 2984
UniGene IDs. Our dataset is provided by Dr. Grutzmann and
contains the same set of 2984 genes. We further screen genes with
more than 30% missingness in any of the four datasets. 1204 genes
pass this screening. For Affymetrix expression measurements, we
add a floor or 10 and make log2 transformations. We fill in missing
values with medians across samples (for each dataset separately),
and then standardize each gene to zero mean and unit variance. For
cDNA studies, we fill in missing values with sample medians for
each dataset separately, and then standardize each gene to zero mean
and unit variance.

4.2 Individual TGDR analysis
We first analyze the four datasets separately. For each dataset,
the logistic regression model is assumed and we use the TGDR

Table 2. Pancreatic cancer datasets: genes with
nonzero coefficients in MTGDR.

UniGene P1 P2 P3 P4
Hs.107 -0.078 -0.074 -0.096 -0.062
Hs.12068 -0.265 -0.387 -0.189 -0.250
Hs.16269 0.038 0.055 0.060 0.017
Hs.169900 -0.879 -0.992 -0.693 -0.775
Hs.180920 -0.144 -0.244 -0.223 -0.189
Hs.241257 0.096 0.128 0.124 0.062
Hs.287820 1.051 1.157 1.055 0.736
Hs.317432 -0.023 -0.012 -0.053 -0.022
Hs.5591 -0.082 -0.170 -0.149 -0.149
Hs.62 0.111 0.100 0.104 0.126
Hs.66581 -0.024 -0.028 -0.034 -0.013
Hs.75335 -0.270 -0.259 -0.250 -0.250
Hs.76307 0.435 0.303 0.616 0.416
Hs.78225 0.011 0.010 0.018 0.010
Hs.83383 -0.074 -0.094 -0.066 -0.085

described in section 3.1 for regularized estimation and biomarker
selection. Tuning parameters are determined via 3-fold cross
validation. For each dataset, we use the LOO approach described
in section 3.4 to compute prediction error.

For the four datasets, 7 (P1), 10 (P2), 6 (P3) and 1 (P4) genes are
selected in the final models, respectively. There is only one common
gene selected in both P2 and P3. Otherwise there is no overlap
between the four sets of selected gene. So the gene selection results
are not different across these studies. In addition, the prediction
performance is unsatisfactory. For example, if we use estimate
from P2 to make predictions for P1, P3 and P4, the error rates are
0.27, 0.43 and 0.36, respectively. We conclude that separate TGDR
analysis results are unsatisfactory in terms of reproducibility across
studies and prediction across studies.

4.3 Pooled TGDR analysis
In the second set of analysis, we ignore the fact that the four datasets
are from different studies and different platforms and simply pool
them together. The pooled sample size is now 56.

We apply the TGDR for regularized estimation and biomarker
selection with the 56 subjects. 22 genes are identified and included
in the final model. The LOO approach mis-classifies 2 subjects,
leading to a prediction error 0.036, which is much improved from
separate TGDR analysis in section 4.2. As has been noted in
Grutzmann et al. (2005), the four selected datasets are relatively
easy to classify. This partly explains the satisfactory prediction
performance of simply pooling all data together.

4.4 MTGDR analysis
We use the proposed MTGDR method to analyze the pancreatic
cancer data. Tuning parameters are chosen via 3-fold cross
validation. 15 genes are selected in the final models. We show the
gene IDs and corresponding estimate in Table 2. We can observe
from Table 2 that (1) if a gene has nonzero coefficient for one
dataset, then it has nonzero coefficients for all datasets; (2) the
estimated coefficients for one gene can be different across all
studies; this is the extra flexibility allows by the MTGDR compared
with pooled analysis; and (3) although the estimated coefficients are
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Table 1. Pancreatic cancer gene expression datasets used in the meta-analysis. PDAC: number
of pancreatic adenocarcinoma tissue samples analyzed; N: number of normal pancreatic tissues;
CP: number of chronic pancreatitis; Array: type of array used in the study; UG: number of unique
UniGene cluster presented on the arrays.

Dataset P1 P2 P3 P4
Author Logsdon Friess Iacobuzio-Donahue Crnogorac-Jurcevic
PDAC 10 8 9 8
N 5 3 8 5
CP 5 8 – –
Array Affy. HuGeneFL Affy. HuGeneFL cDNA Stanford cDNA Sanger
UG 5521 5521 29621 5794

different for one gene across studies, their signs are the same. The
same signs lead to similar biological conclusions–i.e., whether up-
regulation of genes are positively or negatively associated with the
clinical outcome of interest. This consistency in terms of biological
conclusions partly supports the validity of the proposed MTGDR.

The prediction error is computed using the LOO approach
described in section 3.4. 2 subjects cannot be properly predicted,
leading to a prediction error 0.036. The surprisingly satisfactory
prediction performance of the pooled analysis (compared with
the MTGDR) can be partly explained by the fact that estimated
coefficients in Table 2 are similar across genes. So forcing them into
one value (as in the pooled analysis) will still lead to satisfactory
prediction.

The MTGDR identifies 15 genes, which is fewer than the pooled
analysis, and yet its prediction performance is the same as the
pooled analysis with 22 genes. With d >> n, more parsimonious
models are expected to be more reliable. In addition, identifying a
smaller number of predictive biomarkers can lead to a more focused
hypothesis for further investigation.

5 LIVER CANCER STUDY
5.1 Data settings
Gene expression profiling studies have been carried out on
hepatocellular carcinoma (HCC), which is among the leading causes
of cancer death in the world. A microarray meta analysis is carried
out in Choi et al. (2004), where the main goal is to detect
differentially expressed genes. Two sets of data are analyzed in Choi
et al. (2004). The first set contain five independent studies (referred
as data P1–P5 in Choi et al. 2004). As in the pancreatic cancer data,
datasets P1–P5 have limited overlapped genes. So in our study, we
focus on data D1–D4 in Choi et al. (2004) only. Dataset information
is shown in Table 3 (partly reproduced from Table 1 of Choi et al.
2004).

Datasets D1–D4 were generated in three different hospitals in
South Korea. Although the studies were designed in a controlled
setting, Choi et al. (2004) “failed to directly merge the data even
after normalization of each dataset.”

In studies D1–D3, expressions of 10336 genes were measured.
In study D4, expressions of 9984 genes were measured. We focus
on the 9984 genes that are measured in all four studies. We first
pre-process the data as follows: (1) if a gene has more than 30%
of missing for any one dataset, then this gene is removed from
downstream analysis. 3122 out of 9984 genes pass this screening.

(2) if a subject has more than 30% missing expressions for the 3122
genes, then this subject is removed from downstream analysis. 8
subjects are removed, leading to an effective sample size of 125. We
show the number of subjects actually used in the analysis in Table 3.
(3) For each dataset, we then fill in missing expression values with
medians across samples. (4) We compute the two-sample t-statistic
for each gene and each dataset. (5) We then assign a rank for each
gene and each dataset, based on the t-statistic. (6) The overall rank
for one gene is defined as the sum of ranks for all four datasets.
The 1000 genes with the highest ranks are selected for downstream
analysis.

We note that the proposed MTGDR has no limitation on the
number of genes that can be used in the analysis. However previous
empirical studies show that more reliable models can be obtained by
excluding noisy genes prior to the analysis. Gene pre-processing is
hence generally adopted. We refer to Ma (2006) for a more detailed
discussion.

5.2 Individual TGDR analysis
As for the pancreatic cancer datasets, we first carry out logistic
model + TGDR regularization analysis for each individual dataset.
27 (D1), 10 (D2), 20 (D3) and 6 (D4) genes are included in the
final models, respectively, where the optimal tuning parameters are
chosen via 3-fold cross validation. The gene sets identified are quite
different. For example, the gene sets from datasets D1 and D2 have
no overlap, while those from D1 and D3 have only one overlapped
gene.

We further note that the genes selected from one dataset cannot
be used for prediction in a different dataset. For example, if we use
the genes selected from data D1 for prediction in datasets D2–D4,
the prediction errors are 0.43 (D2), 0.24 (D3) and 0.35 (D4), which
are rather unsatisfactory.

The inconsistency of gene discoveries and large prediction errors
motivate us to consider combined analysis of four datasets.

5.3 Pooled TGDR analysis
In the second analysis, we simply pool four datasets together.
The four liver datasets are generated in similar experimental
settings and are expected to behave similarly. Using the TGDR
for regularization, 34 genes are included in the final model. The
LOO prediction error is 0.27 (34 subjects are misclassified). The
prediction performance is improved comparing to the individual
TGDR analysis.
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Table 3. Liver cancer gene expression datasets used in the meta-analysis. # tumor: number of
tumor samples. # normal: number of normal samples. Numbers in the “()” are the actual number
of subjects used in the analysis. Ver. 2 chips have different spot location from Ver. 1 chips. They
were printed using the same arrayer.

Dataset D1 D2 D3 D4
Experimenter Hospital A Hospital B Hospital C Hospital C
# tumor 16 (14) 23 29 12 (10)
# normal 16 (14) 23 5 9(7)
Chip type cDNA(Ver.1) cDNA(Ver.1) cDNA(Ver.1) cDNA(Ver.2)
(Cy5:Cy3) sample:normal liver sample:placenta sample:placenta sample:sample

Table 4. Liver cancer datasets: genes with nonzero coefficients in MTGDR.

Gene Information D1 D2 D3 D4
1.2.F.7/noseq/ -0.076 -0.100 -0.078 -0.035
1.3.A.8/clone MGC:5207 IMAGE:2901089 0.147 0.199 0.030 0.054
10.1.B.9/cDNA FLJ20844 fis, clone ADKA01904 -0.020 -0.016 -0.002 -0.002
11.3.F.6/noseq/ -0.275 -0.519 -0.225 -0.170
15.1.G.7/Cyt19 protein (Cyt19), mRNA 0.023 0.019 -0.001 0.009
15.2.D.10/EST387826 cDNA -0.041 -0.031 -0.003 -0.015
15.3.E.9/hypothetical protein MGC11287 0.016 0.034 0.015 0.014
15.4.E.1/Rab9 effector p40 (RAB9P40), mRNA 0.166 0.243 -0.012 0.083
17.2.B.11/ATPase, H+ transporting, lysosomal 9kD 0.145 0.258 0.108 0.020
18.3.F.6/nomatch/ 0.072 0.073 0.070 0.045
19.1.G.5/Ras association (RalGDS/ 0.168 0.176 -0.036 0.042
2.2.E.11/triosephosphate isomerase 1 (TPI1), mRNA 0.012 0.012 0.004 0.011
2.2.G.10/UDP-glucose pyrophosphorylase 2 (UGP2) -0.296 -0.274 -0.043 -0.178
21.3.A.4/noseq/ 0.016 0.011 0.002 0.001
23.3.H.1/thioredoxin-like, 32kD (TXNL) 0.285 0.226 0.066 0.033
25.2.A.5/noseq/ 0.016 0.014 0.001 0.009
26.2.D.2/adipose differentiation-related protein (ADFP) -0.169 -0.114 -0.219 -0.118
26.4.B.5/Human zyxin related protein ZRP-1 mRNA 0.161 0.127 0.042 0.070
3.2.E.10/Human G protein-coupled receptor V28 mRNA -0.707 -0.589 -0.359 -0.375
4.1.D.1/multiple endocrine neoplasia I (MEN1), mRNA -0.086 -0.075 -0.130 -0.090
4.2.H.5/solute carrier family 22, member 1 -0.014 -0.120 -0.144 -0.092
4.3.C.1/noseq/ -0.058 -0.020 -0.008 0.007
4.4.B.9/noseq/ -0.438 -0.670 -0.460 -0.502
5.1.A.9/noseq/ -0.001 -0.007 -0.002 -0.001
5.1.D.1/malate dehydrogenase 2, NAD (mitochondrial) 0.135 0.043 0.063 0.060
6.2.E.3/tubulin, beta polypeptide (TUBB), mRNA / 0.024 0.012 0.004 0.011
6.3.B.3/noseq/ 0.104 0.104 -0.023 0.015
6.4.D.11/non-metastatic cells 2, protein expressed NME2 0.053 0.072 0.020 0.025
6.4.F.5/H2A histone family, member Z (H2AFZ), mRNA 0.047 0.062 -0.001 0.042
7.3.A.5/nomatch/ -0.329 -0.432 -0.297 -0.222
7.3.G.9/guanine nucleotide binding protein, q polypeptide 0.073 0.019 0.049 0.029
8.2.B.11/cystatin B (stefin B) (CSTB), mRNA 0.040 0.112 0.051 0.046
8.2.D.8/RNA helicase-related protein (RNAHP), mRNA -0.739 -1.369 -1.002 -1.140
8.3.A.7/proline-rich Gla polypeptide 2 -0.001 -0.019 -0.024 -0.026

5.4 MTGDR analysis
We analyze the liver cancer data using the proposed MTGDR,
with optimal tuning parameters selected using the 3-fold cross
validation. 34 genes have nonzero coefficients in the final models.
We provide the gene information and corresponding estimates in
Table 4. We can see that the characteristics of Table 4 and close
to those in Table 2. However, we note that for some genes, the
signs of the four estimates can be different. For example, for gene

15.4.E1/Rab9 effector p40, three out of four estimated coefficients
are positive, and one is negative. As discussed above, different
signs of estimates may indicate conflicting biological conclusions.
However, we observe that the negative coefficient is very small.
Similar small estimates are observed for other conflicting cases.

Prediction performance is evaluated using the LOO approach.
There are 20 subjects that are misclassified, leading to a
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classification error of 0.16, which is a significant improvement over
the pooled analysis.

6 DISCUSSIONS
Multiple pharmacogenetic studies have been carried out to detect
predictive genomic biomarkers and construct predictive models. It
is thus critical to develop microarray meta analysis methods that can
effectively combine different datasets. In this article, we propose
the MTGDR method for regularized meta analysis. This method
can accommodate different platforms and experimental settings,
and can lead to the same or similar biological conclusions across
studies. Our analysis of pancreatic and liver cancer data indicates
that parsimonious models with satisfactory prediction performance
can be obtained using the proposed approach.

The main goal of this article is statistical methodology
development, where we focus on constructing parsimonious
predictive models with satisfactory prediction performance. The
biological implications of the meta analysis results are not further
pursued.

In our data analysis, the same sets of genes across studies are
considered. When different sets of genes are included in different
studies, the MTGDR is still applicable by setting gradients for
missing genes zero. We note that meta analysis will be less
powerful, if the sets of genes measured vary greatly.

We considered studies with binary outcome and the logistic
regression model only. The MTGDR method is generally
applicable, as long as the objective function R(β) is well defined
and differentiable. So the MTGDR can be applied to continuous
outcomes including censored survival data. However, empirical
studies need to be carried out to evaluate its performance with
continuous outcomes.
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