Including graphics files in a \LaTeX{} file

- include in the preamble

\begin{verbatim}
\usepackage[dvips]{graphics}
\end{verbatim}

- include in the body of the document

\begin{verbatim}
\begin{figure} [h,t,b, or p]
\begin{center}
\scalebox{ <size> }{\includegraphics{ <filename.ps or filename.eps> }}
\end{center}
\caption{ <caption> }
\end{figure}
\end{verbatim}

- letters h, t, b, and p mean the same as in table
- \texttt{<size>} in \texttt{scalebox} command means what multiple of size of original figure to use (e.g. 0.5 for half)
- graphics do not have to be put in \texttt{figure} environment

Adding a bibliography

- built-in bibliographic capabilities in \LaTeX{} enable matching references in the body of the text to entries in the bibliography
- creating the bibliography at the end of the article

\begin{verbatim}
\begin{thebibliography}{9} % 9 if < 10 items in biblio; 99 if 10 - 99, etc.
\end{thebibliography}
\end{verbatim}

- citing references in the body of the text

Blocking may solve the problem of slow convergence in a Gibbs sampler for a cumulative link GLM as shown in \cite{Cow96}.

Blocking may solve the problem of slow convergence in a Gibbs sampler for a cumulative link GLM as shown in [?].
• you must put entries in bibliography in order you want them to be listed

BibTeX

• associated product that can be used with \LaTeX to prepare bibliographies
• enables you to keep all your references in a database
• extracts only those that are cited in a particular paper
• different style files available to format the bibliographic entries and citations in different standard ways

Some math in \LaTeX

• Greek letters
\$\theta, \Theta, \omega, \text{ and } \Omega$

\$\mbox{\boldmath θ}\$

• aligned equations
\begin{eqnarray}
\mbox{\boldmath y} & \sim & N \left(\mbox{\boldmath X} \mbox{\boldmath β}, \\
\mbox{\boldmath Σ} \right) \\
\mbox{\boldmath Σ} & = & \\
\begin{array}{cc}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}
\end{eqnarray}

• special symbols
\begin{eqnarray*}
y & = & \sqrt{ \frac{q}{r} } \\
i = 1, \ldots, n
\end{eqnarray*}
Bibliography