Introduction to the Bootstrap

Lecture 8
September 22, 2007

Kate Cowles
374 SH, 335-0727
kcowles@stat.uiowa.edu

Resources

• materials listed under Web Resources

Review concepts

• suppose we have one sample of n data values: y_1, \ldots, y_n

• sample values considered outcomes of i.i.d. random variables Y_1, \ldots, Y_n

• probability density function (pdf) or probability mass function (pmf) f

• cumulative distribution function (cdf) F

• sample will be used to make inference
 – about population characteristic θ
 – using statistic T whose value in sample is t

• questions of interest regarding T
 – bias?
 – standard error?
 – quantiles?
 – how to compute confidence limits for θ?

– likely values under a null hypothesis of interest?
Two classes of statistical methods

- parametric
 - particular mathematical model for behavior of random variables Y_j
 - pdf or pmf f is completely determined by values of unknown parameters ψ
 - quantity of interest in statistical analysis θ is a component or function of ψ

- nonparametric
 - uses only the fact the Y_js are i.i.d.
 - no mathematical model for their distribution
 - (may be useful to do a nonparametric analysis even if a reasonable parametric model exists)
 - to assess sensitivity of conclusions to assumptions of parametric model

The empirical distribution

- puts probability mass $\frac{1}{n}$ at each sample value y_j
- empirical distribution function (edf) or \hat{F}
 - nonparametric mle of F
 - sample proportion $\hat{F}(y) = \frac{\#\{y_j \leq y\}}{n}$
 * where $\#$ denotes the number of items in a set
- edf plays role of fitted model when no mathematical form is assumed for F

Example of edf

```r
> library(QRMlib)
> help(edf)
> data <- sort(rnorm(100) )
> plot( data, edf(data), type = "s" )
> qs <- seq(-2.5,2.5,by=0.005)
> lines( qs, pnorm(qs), lty = 2 )
```

Example for the nonparametric bootstrap:
City population data

- for each of $n = 49$ U.S. cities, two data values
 - u_j = population in 1920 (in 1000s)
 - x_j = population in 1930 (in 1000s)
- population of interest is all U.S. cities
- the 49 cities are assumed to be a simple random sample from this population
- define (U,X) as pair of population values for a randomly selected city
- then if we knew $\theta = \frac{E(X)}{E(U)}$ and the total 1920 population for the U.S., we could estimate the total 1930 population of U.S.
- want to estimate θ without assuming any parametric model for X and U
- sample-based statistic is $T = \frac{\bar{X}}{\bar{U}}$
• observations 1 to 10 of this dataset are included with the `boot` package for R.

```r
> library(boot)
> data(city)
> city
   u  x
1 1 38 143
2 2 93 104
3 3 61  69
4 4 179 260
5 5  48  75
6 6  37  63
7 7  29  50
8 8  23  48
9 9  30 111
10 10  2  50
```

The non-parametric bootstrap

• goal: to get an idea of the sampling distribution of the statistic T under repeated sampling from the population of interest

• basic idea: our sample data gives us all the information we have about the whole population

• steps:

1. calculate statistic of interest (call it $\hat{\theta}$) from dataset as a whole
2. fit edf \hat{F}
3. Draw a “bootstrap sample” from \hat{F} and calculate statistic of interest on bootstrap sample
 - i.e., draw a sample of size n from original dataset with replacement
 - $Y_1^*, Y_2^*, \ldots, Y_n^* \sim \hat{F}$
 - $\hat{\theta}^* = \hat{\theta}(Y_1^*, Y_2^*, \ldots, Y_n^*)$
4. repeat step 2 independently a large number B of times obtaining bootstrap replications $\hat{\theta}^{*1}, \hat{\theta}^{*2}, \ldots, \hat{\theta}^{*B}$
5. Use bootstrap replications to:
 - estimate standard error of $\hat{\theta}$
 - estimate bias
 - obtain confidence interval
Using the R sample function to draw bootstrap samples

Random Samples and Permutations

Description:

'sample' takes a sample of the specified size from the elements of 'x' using either with or without replacement.

Usage:

```r
sample(x, size, replace = FALSE, prob = NULL)
```

Arguments:

- `x`: Either a (numeric, complex, character or logical) vector of more than one element from which to choose, or a positive integer.
- `size`: non-negative integer giving the number of items to choose.
- `replace`: Should sampling be with replacement?
- `prob`: A vector of probability weights for obtaining the elements of the vector being sampled.

```r
> x <- seq(1:25)
> x
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
```

```r
> sample(x, 25)
[1] 2 20 3 9 6 8 15 10 23 1 19 25 12 21 14 4 13 24 17 5 11 18 7 22 16
```

```r
> mindex <- sample(1:10, replace = T)
> mindex
[1] 4 9 1 9 10 9 6 5 3 3
```

```r
> city[mindex,]
   u  x
4  179 260
9  30  111
1 138 143
9.1 30 111
10  2  50
9.2 30 111
6  37  63
5  48  75
3  61  69
```

Bias correction using the bootstrap

- notation
 - \(\theta \) – true and unknown population quantity value
 - \(\hat{\theta} \) – estimate of \(\theta \) based on sample data
 - \(\hat{\theta}^b \) – estimate of \(\theta \) from b-th bootstrap sample
Bias correction continued

• So in a sense:
 \[\hat{\theta}^{*} \text{s are to } \hat{\theta} \text{ as } \hat{\theta} \text{ is to } \theta \]

 - bootstrap estimate of bias
 - Note: bias = \(E_F(\hat{\theta} - \theta) \)

 \[
 \text{bias}_{\text{boot}} = \frac{1}{B} \left(\sum_{b=1}^{B} \hat{\theta}^{*b} - \hat{\theta} \right) = \hat{\theta}^{*} - \hat{\theta}
 \]

• So bias-corrected point estimate is

 \[
 \tilde{\theta} = \hat{\theta} - (\hat{\theta}^{*} - \hat{\theta}) = 2\hat{\theta} - \hat{\theta}^{*}.
 \]

Percentile method for confidence intervals

• denote cdf of bootstrap distribution of \(\hat{\theta}^{*} \) as

 \[CDF(t) = Pr_s(\hat{\theta}^{*} \leq t) \]

• If bootstrap distribution is obtained by simulation then

 \[CDF(t) \approx \frac{\#(\hat{\theta}^{*b} \leq t)}{B} \]

• define confidence interval as interval between appropriate quantiles

Bootstrap confidence intervals

• normal

• basic

• percentile

• BCa (adjusted bootstrap percentile)

R code for the City Data

```r
> library(boot)
> help(boot, package="boot")
```
further arguments can be passed to ‘statistic’ through the
‘...()’ argument.

R: The number of bootstrap replicates. Usually this will be a
single positive integer. For importance resampling, some
resamples may use one set of weights and others use a
different set of weights. In this case ‘R’ would be a vector
of integers where each component gives the number of
resamples from each of the rows of weights.

sim: A character string indicating the type of simulation
required. Possible values are “ordinary” (the default),
“parametric”, “balanced”, or “antithetic”. Importance resampling is specified by
including importance weights; the type of importance
resampling must still be specified but may only be
“ordinary” or “balanced” in this case.

stype: A character string indicating what the second argument of
statistic represents. Possible values of stype are “i”
(indices – the default), “f” (frequencies), or “w”
(weights).

Details:
The statistic to be bootstrapped can be as simple or complicated
as desired as long as its arguments correspond to the dataset and
(for a nonparametric bootstrap) a vector of indices, frequencies
or weights. ‘statistic’ is treated as a black box by the ‘boot’
function and is not checked to ensure that these conditions are
met.

Value:
The returned value is an object of class ‘“boot”’, containing the
following components:

 t0: The observed value of ‘statistic’ applied to ‘data’.

 t: A matrix with ‘R’ rows each of which is a bootstrap replicate
 of ‘statistic’.

 R: The value of ‘R’ as passed to ‘boot’.

 data: The ‘data’ as passed to ‘boot’.

 seed: The value of ‘.Random.seed’ when ‘boot’ was called.

 statistic: The function ‘statistic’ as passed to ‘boot’.

 sim: Simulation type used.

 stype: Statistic type as passed to ‘boot’.

Example of nonparametric bootstrap with boot package:

define “statistic” function
> meanratio <-
 function(mydat, indices)
 {
 if (!(is.matrix(mydat) && ncol(mydat) ==
 length(indices)==
 {
 stop("invalid arguments")
 }
 mean(mydat[indices,2]) / mean(mydat[indices,1])
 }

call boot function
> boot.out <- boot(as.matrix(city), meanratio, 999)

summarize results
> boot.out
 ORDINARY NONPARAMETRIC BOOTSTRAP
 Call: boot(data = as.matrix(city), statistic = meanratio, R = 999)
 Bootstrap Statistics :
 original bias std. error
 t1* 1.520312 0.04051090 0.2263570

--

> boot.ci(boot.out)
 BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
 Based on 999 bootstrap replicates

CALL : boot.ci(boot.out = boot.out)

Intervals :

Level Normal Basic
95% (1.036, 1.923) (0.848, 1.786)

Level Percentile BCa
95% (1.254, 2.192) (1.264, 2.231)

Calculations and Intervals on Original Scale
Warning message:
In boot.ci(boot.out = boot.out) :
 bootstrap variances needed for studentized intervals

> Bootstrap Statistics :
 original bias std. error
 t1* 1.520312 0.04051090 0.2263570

--

> boot.ci(boot.out)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates