More on the Bootstrap

Lecture 10
September 23, 2009

Kate Cowles
374 SH, 335-0727
kcowles@stat.uiowa.edu

Parametric bootstrap

1. estimate parametric mle \(\hat{F} \) of unknown \(F \)
 - i.e., get mles of parameters

2. Draw a “bootstrap sample” from \(\hat{F} \) and calculate statistic of interest on bootstrap sample
 - i.e., simulate data values from parametric model using mles as parameters
 - \(Y_1^*, Y_2^*, \ldots, Y_n^* \sim \hat{F} \)
 - \(\hat{\theta}^* = \hat{\theta}(Y_1^*, Y_2^*, \ldots, Y_n^*) \)

3. repeat step 2 independently a large number \(B \) of times obtaining bootstrap replications \(\hat{\theta}^{*1}, \hat{\theta}^{*2}, \ldots, \hat{\theta}^{*B} \)

4. Use bootstrap replications to:
 - estimate standard error of \(\hat{\theta} \)
 - estimate bias
 - obtain confidence interval

Using boot package for parametric bootstrap

Usage:

```
boot(data, statistic, R, sim="ordinary", stype="i",
strata=rep(1,n), L=NULL, m=0, weights=NULL,
rangen=function(d, p) d, mle=NULL, ...)
```

- **sim**: A character string indicating the type of simulation required. Possible values are "ordinary" (the default), "parametric", "balanced", "permutation", or "antithetic". Importance resampling is specified by including importance weights; the type of importance resampling must still be specified but may only be "ordinary" or "balanced" in this case.

- **rangen**: This function is used only when 'sim' is "parametric" when it describes how random values are to be generated. It should be a function of two arguments. The first argument should be the observed data and the second argument consists of any other information needed (e.g. parameter estimates). The second argument may be a list, allowing any number of items to be passed to 'rangen'. The returned value should be a simulated data set of the same form as the observed data which will be passed to statistic to get a bootstrap replicate. It is important that the returned value be of the same shape and type as the original dataset. If 'rangen' is not specified, the default is a function which returns the original 'data' in which case all simulation should be included as part of 'statistic'. Use of 'sim="parametric"' with a suitable 'rangen' allows the user to implement any types of nonparametric resampling which are not supported directly.

- **mle**: The second argument to be passed to 'rangen'. Typically these will be maximum likelihood estimates of the parameters. For efficiency 'mle' is often a list containing all of the objects needed by 'rangen' which can be calculated using the original data set only.
Example: assuming population distribution is normal

Suppose we are using the trimmed mean as a measure of center using continuous data.

```r
> x <- rcauchy(26)
> trimmed.mean <- function(x) {mean(x, trim=0.25) }

ran.gen.normal <- function(d,p)
{
  rnorm( length(d), mean = p$xbar, sd = p$s)
}

boot.normal.out <- boot( data = x, statistic = trimmed.mean,
                        R=999, sim="parametric", ran.gen = ran.gen.normal,
                        mle = list( xbar = mean(x), sd = sqrt(var(x))) )

> boot.normal.out

PARAMETRIC BOOTSTRAP

Call:
  boot(data = x, statistic = stat.cauchy, R = 999, sim = "parametric",
       ran.gen = ran.gen.normal, mle = list(xbar = mean(x), s = sqrt(var(x))))

Bootstrap Statistics :
  original  bias  std. error
```

For Cauchy data

Since mean and variance do not exist for Cauchy distribution, choice of measures of center and spread for simulating data are somewhat arbitrary.

```r
> ran.gen.cauchy <- function(d, p )
  {rcaucahy(length(d), location = p$med, scale = p$sc)}

> boot.cauchy.out <-boot(data=x, statistic=trimmed.mean, R=999,
                        sim="parametric",ran.gen = ran.gen.cauchy,
                        mle = list( med = median(x), sc = IQR(x)/2 )
```