Basics

- Simulation studies are commonly done to evaluate the performance of a frequentist statistical procedure, or to compare the performance of two or more different procedures for the same problem.
- Enable us to see what happens “when many many samples of the same size are drawn from the same population.”
- Properties of estimators that are often evaluated by simulation:
 - Bias
 - Mean squared error
 - Coverage of confidence intervals
- Properties of hypothesis tests also can be evaluated by simulation studies:
 - Size
 - Power
- Simulation studies are experiments, and the things you know about experimental design and sample size calculation apply.

Terminology

- Simulation: a numerical technique for conducting experiments on the computer.
- Monte Carlo simulation: a computer experiment involving random sampling from probability distributions.
 - What statisticians usually mean by “simulations”

Rationale

- Properties of statistical methods must be established before the methods can safely be used in practice.
- But exact analytical derivations of properties are rarely possible.
- Large sample approximations to properties are often possible:
 - Evaluation of the relevance of the approximation to (finite) sample sizes likely to be encountered in practice is needed.
- Analytical results may require assumptions such as normality.
 - What happens when these assumptions are violated? Analytical results, even large sample ones, may not be possible.
Questions to be addressed regarding an estimator or testing procedure

• Is an estimator biased in finite samples? What is its sampling variance?
• How does it compare to competing estimators on the basis of bias, precision, etc.?
• Does a procedure for constructing a confidence interval for a parameter achieve the claimed nominal level of coverage?
• Does a hypothesis testing procedure attain the claimed level or size?
• If so, what power is possible against different alternatives to the null hypothesis? Do different test procedures deliver different power?

Role of Monte Carlo simulation

• Goal is to evaluate sampling distribution of an estimator under a particular set of conditions (sample size, error distribution, etc.)
• Analytic derivation of exact sampling distribution is not feasible
• Solution: Approximate the sampling distribution through simulation
 – Generate \(S \) independent data sets under the conditions of interest
 – Compute the numerical value of the estimator/test statistic \(T(\text{data}) \) for each data set, yielding \(T_1, \ldots, T_S \)
• If \(S \) is large enough, summary statistics across \(T_1, \ldots, T_S \) should be good approximations to the true sampling properties of the estimator/test statistic under the conditions of interest

Simulation for properties of estimators

Simple example: Compare three estimators for the mean \(\mu \) of a distribution based on i.i.d. draws \(Y_1, \ldots, Y_n \)

• Sample mean \(T^{(1)} \)
• Sample 20% trimmed mean \(T^{(2)} \)
• Sample median \(T^{(3)} \)

Remarks:

• If the distribution of the data is symmetric, all three estimators indeed estimate the mean
• If the distribution is skewed, they do not

Simulation procedure

For a particular choice of \(\mu, n, \) and true underlying distribution

• Generate independent draws \(Y_1, \ldots, Y_n \) from the distribution
• Compute \(T^{(1)}, T^{(2)}, T^{(3)} \)
• Repeat \(S \) times ⇒ \(T_1^{(1)}, \ldots, T_S^{(1)}, T_1^{(2)}, \ldots, T_S^{(2)}, T_1^{(3)}, \ldots, T_S^{(3)} \)
• Compute for \(k = 1, 2, 3 \)
 \[
 \text{mean} = S^{-1} \sum_{s=1}^{S} T_s^{(k)} = \bar{T}^{(k)}, \quad \text{bias} = T^{(k)} - \mu
 \]
 \[
 \text{SD} = \sqrt{(S - 1)^{-1} \sum_{s=1}^{S} (T_s^{(k)} - \bar{T}^{(k)})^2},
 \]
 \[
 \text{MSE} = S^{-1} \sum_{s=1}^{S} (T_s^{(k)} - \mu)^2 \approx \text{SD}^2 + \text{bias}^2
 \]
Relative efficiency

For a particular choice of μ,

\[
RE = \frac{\text{var}(T^{(1)})}{\text{var}(T^{(2)})}
\]

is the relative efficiency of estimator 2 to estimator 1

- When the estimators are not unbiased it is standard to compute

\[
RE = \frac{\text{MSE}(T^{(1)})}{\text{MSE}(T^{(2)})}
\]

- In either case $RE < 1$ means estimator 1 is preferred (estimator 2 is inefficient relative to estimator 1 in this sense)

R code for example

```r
> set.seed(3)
> S <- 1000
> n <- 15
> trimmean <- function(Y){mean(Y,0.2)}
> mu <- 1
> sigma <- sqrt(5/3)

Normal data:

```r
> out <- generate.normal(S,n,mu,sigma)
> outsampmean <- apply(out$dat,1,mean)
> outtrimmean <- apply(out$dat,1,trimmean)
> outmedian <- apply(out$dat,1,median)

> summary.sim <- data.frame(mean=outsampmean,trim=outtrimmean,
+ median=outmedian)
> results <- simsum(summary.sim,mu)

> view(round(summary.sim,4),5)
```

First 5 rows

<table>
<thead>
<tr>
<th>mean</th>
<th>trim</th>
<th>median</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.07539</td>
<td>0.7132</td>
<td>1.0389</td>
</tr>
<tr>
<td>2.06439</td>
<td>0.4580</td>
<td>0.3746</td>
</tr>
<tr>
<td>3.5553</td>
<td>1.6710</td>
<td>1.9395</td>
</tr>
<tr>
<td>4.5171</td>
<td>0.4827</td>
<td>0.4119</td>
</tr>
<tr>
<td>5.3603</td>
<td>1.4621</td>
<td>1.3452</td>
</tr>
</tbody>
</table>

> results

<table>
<thead>
<tr>
<th>Sample mean</th>
<th>Trimmed mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td># sims</td>
<td>1000.000</td>
<td>1000.000</td>
</tr>
<tr>
<td>MC mean</td>
<td>0.985</td>
<td>0.987</td>
</tr>
<tr>
<td>MC bias</td>
<td>-0.015</td>
<td>-0.013</td>
</tr>
<tr>
<td>MC relative bias</td>
<td>-0.015</td>
<td>-0.013</td>
</tr>
<tr>
<td>MC standard deviation</td>
<td>0.331</td>
<td>0.348</td>
</tr>
<tr>
<td>MC MSE</td>
<td>0.110</td>
<td>0.121</td>
</tr>
<tr>
<td>MC relative efficiency</td>
<td>1.000</td>
<td>0.905</td>
</tr>
</tbody>
</table>
Performance of estimates of uncertainty

How well do estimated standard errors represent the true sampling variation?

- E.g., For sample mean $T^{(1)}(Y_1, \ldots, Y_n) = \overline{Y}$
  
  $SE(\overline{Y}) = \frac{s}{\sqrt{n}}$,  
  $s^2 = (n-1)^{-1} \sum_{j=1}^{n} (Y_j - \overline{Y})^2$

- MC standard deviation approximates the true sampling variation
- Compare average of estimated standard errors to MC standard deviation

For sample mean: MC standard deviation 0.331

```r
> outsampmean <- apply(out$dat,1,mean)
> sampmean.ses <- sqrt(apply(out$dat,1,var)/n)
> ave.sampmeanses <- mean(sampmean.ses)
> round(ave.sampmeanses,3)
[1] 0.329
```

Usual 100(1-$\alpha$)% confidence interval for $\mu$:

Based on sample mean

$$[ \overline{Y} - t_{1-\alpha/2, n-1} \frac{s}{\sqrt{n}}, \overline{Y} + t_{1-\alpha/2, n-1} \frac{s}{\sqrt{n}} ]$$

- Does the interval achieve the nominal level of coverage $1 - \alpha$?
- E.g. $\alpha = 0.05$

```r
> t05 <- qt(0.975,n-1)
> coverage <- sum((outsampmean-t05n*sampmean.ses <= mu) & (outsampmean+t05n*sampmean.ses >= mu))/S
> coverage
[1] 0.949
```

Simulations for properties of hypothesis tests

Simple example: Size and power of the usual $t$-test for the mean $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$

- To evaluate whether size/level of test achieves advertised $\alpha$ generate data under $\mu = \mu_0$ and calculate proportion of rejections of $H_0$
- Approximates the true probability of rejecting $H_0$ when it is true
- Proportion should $\approx \alpha$
- To evaluate power, generate data under some alternative $\mu \neq \mu_0$ and calculate proportion of rejections of $H_0$
- Approximates the true probability of rejecting $H_0$ when the alternative is true (power)
- If actual size is $> \alpha$, then evaluation of power is flawed

```
> set.seed(3); S <- 1000; n <- 15; sigma <- sqrt(5/3)
> mu0 <- 1; mu <- 1
> out <- generate.normal(S,n,mu,sigma)
> ttests <- (apply(out$dat,1,mean)-mu0)/sqrt(apply(out$dat,1,var)/n)
> t05 <- qt(0.975,n-1)
> power <- sum(abs(ttests)>t05)/S
> power
[1] 0.051
```
Power of test:

```r
> set.seed(3); S <- 1000; n <- 15; sigma <- sqrt(5/3)
> mu0 <- 1; mu <- 1.75
> out <- generate.normal(S,n,mu,sigma)
> ttests <-
+ (apply(out$dat,1,mean)-mu0)/sqrt(apply(out$dat,1,var)/n)
> t05 <- qt(0.975,n-1)
> power <- sum(abs(ttests)>t05)/S
> power
[1] 0.534
```

Simulation study principles

**Issue:** How well do the Monte Carlo quantities approximate properties of the true sampling distribution of the estimator/test statistic?

- Is $S = 1000$ large enough to get a feel for the true sampling properties? How “believable” are the results?
- A simulation is just an experiment like any other, so use statistical principles!
- Each data set yields a draw from the true sampling distribution, so $S$ is the “sample size” on which estimates of mean, bias, SD, etc. of this distribution are based
- Select a “sample size” (number of data sets $S$) that will achieve acceptable precision of the approximation in the usual way!

### Principle 1: A Monte Carlo simulation is just like any other experiment

- Careful planning is required
- **Factors** that are of interest to vary in the experiment: sample size $n$, distribution of the data, magnitude of variation, …
- Each combination of factors is a *separate simulation*, so that many factors can lead to very large number of combinations and thus number of simulations
  - time consuming
- Use experimental design principles
- Results must be recorded and saved in a systematic, sensible way
- Don’t choose only factors favorable to a method you have developed!
- “Sample size $S$ (number of data sets in each simulation) must deliver acceptable precision…

### Choosing $S$: Estimator for $\theta$ (true value $\theta_0$)

- Estimation of mean of sampling distribution/bias:
  $$\sqrt{\text{var}(T - \theta_0)} = \sqrt{\text{var}(T)} = \sqrt{\text{var} \left( \frac{1}{S} \sum_{s=1}^{S} T_s \right)} = \frac{\text{SD}(T_s)}{\sqrt{S}} = d$$
  where $d$ is the acceptable error
  $$\Rightarrow S = \frac{(\text{SD}(T_s))^2}{d^2}$$
- Can “guess” SD($T_s$) from asymptotic theory, preliminary runs
Choosing $S$: Coverage probabilities, size, power

- Estimating a proportion $p$ (= coverage probability, size, power) $\Rightarrow$ binomial sampling, e.g., for a hypothesis test

$$Z = \#\text{rejections} \sim \text{binomial}(S, p) \Rightarrow \sqrt{\text{var} \left( \frac{Z}{S} \right)} = \frac{p(1-p)}{S}$$

- Worst case is at $p = 1/2 \Rightarrow 1/\sqrt{4S}$
- $d$ acceptable error $\Rightarrow S = 1/(4d^2)$; e.g., $d = 0.01$ yields $S = 2500$
- For coverage, size, $p = 0.05$

Principle 2: Save everything!

- Save the individual estimates in a file and then analyze (mean, bias, SD, etc) later — as opposed to computing these summaries and saving only them
- Critical if the simulation takes a long time to run!
- Advantage: can use software for summary statistics (e.g., SAS, R, etc.)

Principle 3: Keep $S$ small at first

- Test and refine code until you are sure everything is working correctly before carrying out final “production” runs
- Get an idea of how long it takes to process one data set

Principle 4: Set a different seed for each run and keep records

- Ensure simulation runs are independent
- Runs may be replicated if necessary

Principle 5: Document your code