Choosing the number of bootstrap datasets

- approximately 1000 to 2000 is minimum for reasonable performance in most cases
- choosing $R = 999$ or 1999 facilitates calculation of percentile confidence intervals (see below)

Another version of the function for calculating the statistic for the city data

```r
> meanratio <- function( df, indices ){
  #df must be data frame with 2 columns, "x" and "u"
  mean( df[indices, "x"] ) / mean( df[indices,"u"] )
}
```

Running the bootstrap with different settings of R

```r
> library( boot )
Attaching package: 'boot'

The following object(s) are masked _by_ .GlobalEnv:
  city

> data(city)
> boot.out <- boot( city, meanratio, R=999 )
> boot.out

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
  boot( data = city, statistic = meanratio, R = 999 )

Bootstrap Statistics :
  original  bias  std. error
  t1*  1.520312 0.0338232  0.218307

> boot.out <- boot( city, meanratio, R=999 )
> boot.out

ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = city, statistic = meanratio, R = 999)

Bootstrap Statistics :
original  bias  std. error
 t1*    1.520312  0.04969103  0.2316369

> boot.out <- boot( city, meanratio, R=1999)
> boot.out

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = city, statistic = meanratio, R = 1999)

Bootstrap Statistics :
original  bias  std. error
 t1*    1.520312  0.04079779  0.2294637

> boot.out <- boot( city, meanratio, R=1999)
> boot.out

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = city, statistic = meanratio, R = 1999)

Interpreting the boot object

Percentile method for confidence intervals

• denote cdf of bootstrap distribution of \( \hat{\theta}^* \) as
  \[ CDF(t) = Pr(\hat{\theta}^* \leq t) \]

• If bootstrap distribution is obtained by simulation then
  \[ CDF(t) \approx \frac{\#(\hat{\theta}^{*b} \leq t)}{B} \]

• define confidence interval as interval between appropriate quantiles
Bootstrap confidence intervals

- normal
- basic
- percentile
- BCa (adjusted bootstrap percentile)

Usage:

```r
boot.ci(boot.out, conf = 0.95, type = "all",
index = 1:min(2,length(boot.out$t0)), var.t0 = NULL,
var.t = NULL, t0 = NULL, t = NULL, h = function(t) t,
hdot = function(t) rep(1,length(t)), hinv = function(t) t, ...)
```

Arguments:

- `boot.out`: An object of class ""boot"" containing the output of a bootstrap calculation.
- `conf`: A scalar or vector containing the confidence level(s) of the required interval(s).
- `type`: A vector of character strings representing the type of intervals required. The value should be any subset of the values 'c("norm", "basic", "stud", "perc", "bca")' or simply '"all"' which will compute all five types of intervals.

```r
> boot.ci(boot.out)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates
CALL :
boot.ci(boot.out = boot.out)
Intervals :
Level Normal Basic
95% (1.036, 1.923) (0.848, 1.786)
```

Parametric bootstrap

1. estimate *parametric* mle \( \hat{F} \) of unknown \( F \)
   - i.e., get mles of parameters
2. Draw a “bootstrap sample” from \( \hat{F} \) and calculate statistic of interest on bootstrap sample
   - i.e., simulate data values from parametric model using mles as parameters
   - \( Y_1^*, Y_2^*, \ldots, Y_n^* \sim \hat{F} \)
   - \( \hat{\theta}^* = \hat{\theta}(Y_1^*, Y_2^*, \ldots, Y_n^*) \)
3. repeat step 2 independently a large number \( B \) of times obtaining bootstrap replications \( \hat{\theta}^{*1}, \hat{\theta}^{*2}, \ldots, \hat{\theta}^{*B} \)
4. Use bootstrap replications to:
   - estimate standard error of \( \hat{\theta} \)
   - estimate bias
   - obtain confidence interval
Using boot package for parametric bootstrap

Usage:

boot(data, statistic, R, sim="ordinary", stype="i",
    strata=rep(1,n), L=NULL, m=0, weights=NULL,
    ran.gen=function(d, p) d, mle=NULL, ...)

sim: A character string indicating the type of simulation required. Possible values are "ordinary" (the default), "parametric", "balanced", "permutation", or "antithetic". Importance resampling is specified by including importance weights; the type of importance resampling must still be specified but may only be "ordinary" or "balanced" in this case.

ran.gen: This function is used only when sim is "parametric" when it describes how random values are to be generated. It should be a function of two arguments. The first argument should be the observed data and the second argument consists of any other information needed (e.g. parameter estimates). The second argument may be a list, allowing any number of items to be passed to ran.gen'. The returned value should be a simulated data set of the same form as the observed data which will be passed to statistic to get a bootstrap replicate. It is important that the returned value be of the same shape and type as the original dataset. If ran.gen' is not specified, the default is a function which returns the original 'data' in which case all simulation should be included as part of statistic'. Use of sim="parametric" with a suitable ran.gen' allows the user to implement any types of nonparametric resampling which are not supported directly.

e: The second argument to be passed to ran.gen'. Typically these will be maximum likelihood estimates of the parameters. For efficiency 'mle' is often a list containing all of the objects needed by ran.gen' which can be calculated using the original data set only.

Example: assuming population distribution is normal

Suppose we are using the trimmed mean as a measure of center using continuous data.

```r
> x <- rcauchy(25)

> trimmed.mean <- function(x) {mean(x, trim=0.25) }

ran.gen.normal <- function(d,p)
{
 rnorm(length(d), mean = p$xbar, sd = p$s)
}

boot.normal.out <- boot(data = x, statistic = trimmed.mean,
 R=999, sim="parametric", ran.gen = ran.gen.normal,
 mle = list(xbar = mean(x), sd = sqrt(var(x))))

> boot.normal.out

PARAMETRIC BOOTSTRAP

Call:
 boot(data = x, statistic = stat.cauchy, R = 999, sim = 'parametric',
 ran.gen = ran.gen.normal, mle = list(xbar = mean(x), s = sqrt(var(x))))

Bootstrap Statistics:
 original bias std. error
 t1* -0.1694276 0.1512959 0.7842112
```

> hist(boot.normal.out$t)

>
For Cauchy data

Since mean and variance do not exist for Cauchy distribution, choice of measures of center and spread for simulating data are somewhat arbitrary.

```r
> ran.gen.cauchy <- function(d, p)
 {rcauhcy(length(d), location = p$med, scale = p$sc)}

> boot.cauchy.out <- boot(data=x, statistic=trimmed.mean, R=999, sim="parametric", ran.gen = ran.gen.cauchy, mle = list(med = median(x), sc = IQR(x)/2))
```