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Assignment 1

Problem 6.3
Problem 6.6

Due Friday, January 31, 2003.

Problem 6.9
Problem 6.10

Due Friday, January 31, 2003.

Problem 6.14
Problem 6.20

Due Friday, January 31, 2003.

Solutions

6.3 The joint density for the data is

f(x1, . . . , xn|µ, σ) =
1

σn
exp{−

∑
(xi − µ)/σ}

∏
1(µ,∞)(xi)

=
1

σn
exp

{
−n
σ
x+

nµ

σ

}
1(µ,∞)(x(1))

So, by the factorization criterion, (X,X(1)) is sufficient for (µ, σ).

6.6 The density of a single observation is

f(x|α, β) = 1

Γ(α)βα
xα−1e−x/β

=
1

Γ(α)βα
exp

{
(α− 1) log x− 1

β
x

}

This is a two-parameter exponential family, so (T1, T2) = (
∑
logXi,

∑
Xi) is

sufficient for (α, β). Since
∏
Xi is a one-to-one function of

∑
logXi, the pair

(
∏
Xi,
∑
Xi) is also sufficient for (α, β).

6.9 a. Done in class already.
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b. Θ = R,X = Rn, and

f(x|θ) = e−
∑

xi+nθ1(θ,∞)(x(1))

Suppose x(1) = y(1). Then

f(x|θ) = exp{
∑

yi −
∑

xi}f(y|θ)

for all θ. So k(x, y) = exp{∑ yi −
∑
xi} works.

Suppose x(1) 6= y(1). Then for some θ one of f(x|θ), f(y|θ) is zero and the
other is not. So no k(x, y) exists.

So T (X) = X(1) is minimal sufficient.

c. Θ = R,X = Rn. The support does not depend on θ so we can work with
ratios of densities. The ratio of densities for two samples x and y is

f(x|θ)
f(y|θ) =

e−
∑

(xi−θ)

e−
∑

(yi−θ)

∏
(1 + e−(yi−θ))2∏
(1 + e−(xi−θ))2

=
e−

∑
xi

e−
∑

yi

∏
(1 + e−yieθ)2∏
(1 + e−xieθ)2

If the two samples contain identical values, i.e. if they have the same order
statistics, then this ratio is constant in θ.

If the ratio is constant in θ then the ratio of the two product terms is
constant. These terms are both polnomials of degree 2n in eθ. If two
polynomials are equal on an open subset of the real line then they are
equal on the entire real line. Hence they have the same roots. The roots
are {−exi} and {−eyi} (each of degree 2). If those sets are equal then the
sets of sample values {xi} and {yi} are equal, i.e. the two samples must
have the same order statistics.

So the order statistics (X(1), . . . , X(n)) are minimal sufficient.

d. Same idea:
f(x|θ)
f(y|θ) =

∏
(1 + (yi − θ)2)∏
(1 + (xi − θ)2)

If the two samples have the same order statistics then the ratio is constant.
If the ratio is constant for all real θ then two polynomials in θ are equal
on the complex plane, and so the roots must be equal. The roots are the
complex numbers

θ = xj ± i, θ = yj ± i

with i =
√
−1. So again the order statistics are minimal sufficient.
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e. Θ = R,X = Rn. The support does not depend on θ so we can work with
ratios of densities. The ratio of densities for two samples x and y is

f(x|θ)
f(y|θ) = exp{

∑
|yi − θ| −

∑
|xi − θ|}

If the order statistics are the same then the ratio is constant. Suppose the
order statistics differ. Then there is some open interval I containing no xi

and no yi such that #{xi > I} 6= #{yi > I}. The slopes on I of∑ |xi− θ|
and

∑ |yi − θ| as functions of θ are

n− 2(#{xi > I}), n− 2(#{yi > I})

So
∑ |yi − θ| −∑ |xi − θ| has slope

2(#{xi > I} −#{yi > I}) 6= 0

and so the ratio is not constant on I.

So again the order statistic is minimal sufficient.

6.10 To thos that the minimal sufficient statistic is not complete we need to fins a
function g that is not identically zero but has expected value zero for all θ. Now

E[X(1)] = θ +
1

n+ 1

E[X(n)] = θ +
n

n+ 1

So g(X(1), X(n)) = X(n)−X(1)− n−1
n+1

has expected value zero for all θ but is not
identically zero for n > 1.

6.14 X1, . . . , Xn are i.i.d. from f(x−θ). This means Zi = Xi−θ are i.i.d. from f(z).
Now

X̃ = Z̃ + θ

X = Z + θ

So X̃ −X = Z̃ − Z is ancillary.

6.20 a. The joint density of the data is

f(x1, . . . , xn|θ) = 2n
(∏

xi

)
1(0,θ)(x(n))

1

θ2n

T = X(n) is sufficient (and minimal sufficient). X(n) has density

fT (t|θ) = 2nt2n−1 1

θ2n
1(0,θ)(t)

3



Statistics 22S:194, Spring 2003 Tierney

Thus

0 =

∫ θ

0

g(t)
2n

θ2n
t2n−1dt

for all θ > 0 means

0 =

∫ θ

0

g(t)t2n−1dt

for almost all θ > 0, and this in turn implies g(t)t2n−1 = 0 and hence
g(t) = 0 for all t > 0. So T = X(n) is complete.

b. Exponential family, T (X) =
∑
log(1 +Xi),

{w(θ) : θ ∈ Θ} = (1,∞)

which is an open interval.

c. Exponential family, T (X) =
∑
Xi,

{w(θ) : θ ∈ Θ} = {log θ : θ > 1} = (0,∞)

which is an open interval.

d. Exponential family, T (X) =
∑
e−Xi ,

{w(θ) : θ ∈ Θ} = {−eθ : θ ∈ R} = (−∞, 0)

which is an open interval.

e. Exponential family, T (X) =
∑
Xi,

{w(θ) : θ ∈ Θ} = {log θ − log(1− θ) : 0 ≤ θ ≤ 1} = [−∞,∞]

which contains an open interval.
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Assignment 2

Problem 7.6
Problem 7.11

Due Friday,February 7 , 2003.

Problem 7.13
Problem 7.14

Due Friday, February 7, 2003.

Solutions

7.6 The joint PDF of the data can be written as

f(x|θ) = θn
∏

x−2
i 1[θ,∞)(x(1))

a. X(1) is sufficient.

b. The likelihood increases up to x(1) and then is zero. So the MLE is θ̂ = X(1).

c. The expected value of a single observation is

Eθ[X] =

∫ ∞

θ

xθ
1

x2
dx = θ

∫ ∞

θ

1

x
dx =∞

So the (usual) method of moments estimator does not exist.

7.11 a. The likelihood and log likelihood are

L(θ|x) = θn
(∏

xi

)θ−1

logL(θ|x) = n log θ + (θ − 1)
∑
log xi

The derivative of the log likelihood and its unique root are

d

dθ
L(θ|x) = n

θ
+
∑
log xi

θ̂ = − n∑
log xi

Since logL(θ|x)→ −∞ as θ → 0 or θ →∞ and the likelihood is differen-
tiable on the parameter space this root is a global maximum.
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Now − logXi ∼ Exponential(1/θ) = Gamma(1, 1/θ). So −∑ logXi ∼
Gamma(n, 1/θ). So

E

[
− n∑

logXi

]
= n

∫ ∞

0

θn

xΓ(n)
xn−1e−θxdx

= n
Γ(n− 1)
Γ(n)

θ =
n

n− 1θ

and

E

[(
n∑
logXi

)2
]
= n2Γ(n− 2)

Γ(n)
θ2 =

n2

(n− 1)(n− 2)θ
2

So

Var(θ̂) = θ2 n2

n− 1

(
1

n− 2 −
1

n− 1

)
=

θ2n2

(n− 1)2(n− 2) ∼
θ2

n
→ 0

as n→∞.
b. The mean of a single observation is

E[X] =

∫ 1

0

θxθdx =
θ

θ + 1

So

X =
θ

θ + 1

is the method of moments equation, and

θ̃X +X = θ̃ or

θ̃(X − 1) = −X or

θ̃ =
X

1−X

We could use the delta method to find a normal approximation to the
distribution of θ̂. The variance of the approximate disrtibtion is larger
than the variance of the MLE.

7.13 The likelihood is

L(θ|x) = 1
2
exp{−

∑
|xi − θ|}

We know that the sample median X̃ minimizes
∑ |xi − θ|, so θ̂ = X̃. The

minimizer is unique for odd n. For even n any value between the two middle
order statistics is a minimizer.
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7.14 We need the joint “density” of W,Z:

P (W = 1, Z ∈ [z, z + h)) = P (X ∈ [z, z + h), Y ≥ z + h) + o(h)

= h
1

λ
e−z/λe−z/µ + o(h)

= h
1

λ
e−z( 1

λ
+ 1

µ) + o(h)

and, similarly,

P (W = 0, Z ∈ [z, z + h)) = h
1

µ
e−z( 1

λ
+ 1

µ) + o(h)

So

f(w, z) = lim
h↓0

1

h
P (W = w,Z ∈ [z, z + h)) = 1

λwµ1−w
e−z( 1

λ
+ 1

µ)

and therefore

f(w1, . . . , wn, z1, . . . , zn|λ, µ) =
1

λ
∑

wiµn−
∑

wi
e−

∑
zi(

1

λ
+ 1

µ
)

Since this factors,

f(w1, . . . , wn, z1, . . . , zn|λ, µ) =
1

λ
∑

wi
e−

∑
zi/λ

1

µn−
∑

wi
e−

∑
zi/µ

it is maximized by maximizing each term separately, which produces

λ̂ =

∑
zi∑
wi

µ̂ =

∑
zi

n−∑wi

In words, if the Xi represent failure times, then

λ̂ =
total time on test

number of observed failures
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Assignment 3

Problem 7.22
Problem 7.23

Due Friday, February 14, 2003.

Problem 7.33

Due Friday, February 14, 2003.

Problem 7.38
Problem 7.39

Due Friday, February 14, 2003.

Solutions

7.22 We have

X|θ ∼ N(θ, σ2/n)

θ ∼ N(µ, τ 2)

a. The joint density of X, θ is

f(x, θ) = f(x|θ)f(θ) ∝ exp
{
− n

2σ2
(x− θ)2 − 1

2τ 2
(θ − µ)2

}

This is a joint normal distribution. The means and variances are

E[θ] = µ E[X] = E[θ] = µ

Var(θ) = τ 2 Var(X) = Var(θ) +
σ2

n
= τ 2 +

σ2

n

The covariance and correlation are

Cov(θ,X) = E[Xθ]− µ2 = E[θ2]− µ2 = µ2 + τ 2 − µ2 = τ 2

ρ =
τ 2

√
(τ 2 + σ2/n)σ2/n

b. This means that the marginal distribution of X is N(µ, τ 2 + σ2/n).

8
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c. The posterior distribuiton of θ is

f(θ|x) ∝ exp
{
− n

2σ2
(X − θ)2 − 1

2τ 2
(θ − µ)2

}

∝ exp
{(

n

σ2
x+

1

τ 2
µ

)
θ − 1

2

(
n

σ2
+
1

τ 2

)
θ2

}

This is a normal distribution with mean and variance

Var(θ|X) =
(
n

σ2
+
1

τ 2

)−1

=
τ 2σ2/n

τ 2 + σ2/n

E[θ|X] = Var(θ|X)
(
n

σ2
X +

1

τ 2
µ

)
=

τ 2

τ 2 + σ2/n
X +

σ2/n

τ 2 + σ2/n
µ

7.23 We have S2|σ2 ∼ Gamma((n− 1)/2, 2σ2/(n− 1)) and

f(σ2) =
1

Γ(α)βα

1

(σ2)α+1
e−1/(βσ2)

The posterior distribution σ2|S2 is therefore

f(σ2|s2) ∝ 1

(σ2)(n−1)/2
e−s2(n−1)/(2σ2) 1

(σ2)α+1
e−1/(βσ2)

= IG(α + (n− 1)/2, (1/β + (n− 1)s2/2)−1)

If Y ∼ IG(a, b), then V = 1/Y ∼ Gamma(a, b). So

E[Y ] = E[1/V ] =

∫ ∞

0

1

v

1

Γ(a)ba
va−1e−v/bdv

=
1

bΓ(a)

∫ ∞

0

za−2e−zdz

=
Γ(a− 1)
bΓ(a)

=
1

b(a− 1)

So the posterior mean of σ2 is

E[σ2|S2] =
1/β + (n− 1)S2/2

α+ (n− 3)/2

9
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7.33 From Example 7.3.5 the MSE of p̂B is

E[(p̂B − p)2] =
np(1− p)

(α + β + n)2
+

(
np+ α

α + β + n
− p

)2

=
np(1− p)

(
√
n/4 +

√
n/4 + n)2

+

(
np+

√
n/4√

n/4 +
√
n/4 + n

− p

)2

=
np(1− p) + (np+

√
n/4− p(

√
n+ n))2

(
√
n+ n)2

=
np(1− p) + (

√
n/4− p

√
n)2

(
√
n+ n)2

=
n

(
√
n+ n)2

(
p(1− p) + (1/2− p)2

)

=
n

(
√
n+ n)2

(
p− p2 + 1/4 + p2 − p)2

)

=
n/4

(
√
n+ n)2

which is constant in p.

7.38 a. The population density is

θxθ−1 = θx−1eθ log x

So T (X) = 1
n
logXi is efficient for τ(θ) = Eθ[logX1].

τ(θ) =

∫ 1

0

log xθxθ−1dx

= −
∫ ∞

0

yθe−θydy = 1/θ

b. The population density is

log θ

θ − 1θ
x =

log θ

θ − 1e
x log θ

So
∑
log f(xi|θ) = n(log log θ − log(θ − 1)) +

∑
xi log θ

∑ ∂

∂θ
log f(xi|θ) = n

(
1

θ log θ
− 1

θ − 1 +
x

θ

)

=
n

θ

(
1

log θ
− θ

θ − 1 + x
)
=
n

θ

(
x−

(
θ

θ − 1 −
1

log θ

))

So X is efficient for τ(θ) = θ
θ−1

− 1
log θ

7.39 Done in class.
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Assignment 4

Problem 7.44
Problem 7.48

Due Friday, February 21, 2003.

Problem 7.62
Problem 7.63
Problem 7.64

Due Friday, February 21, 2003.

Solutions

7.44 X1, . . . , Xn are i.i.d. N(θ, 1). W = X − 1/n has

E[W ] = θ2 +
1

n
− 1
n
= θ2

Since X is sufficient and complete, W is the UMVUE of θ. The CRLB is

(2θ)2

In(θ)
=
(2θ)2

n
=
4θ2

n

Now

E[X
2
] = θ2 +

1

n

E[X
4
] = E[(θ +X/

√
n)4]

= θ4 + 4θ3 1√
n
E[Z] + 6θ2 1

n
E[Z2] + 4θ

1

n3/2
E[Z3] +

1

n2
E[Z4]

= θ4 + 6θ2 1

n
+
3

n2

So

Var(W ) = Var(X
2
) = θ4 + 6θ2 1

n
+
3

n2
− θ4 − 1

n2
− 2
n
θ2

=
4

n
θ2 +

2

n2
>
4

n
θ2

11
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7.48 a. The MLE p̂ = 1
n

∑
Xi has variance Var(p̂) =

p(1−p)
n
. The information is

In(p) = −E
[
∂2

∂θ2

(∑
Xi log p+

(
n−

∑
Xi

)
log(1− p)

)]

= −E
[
∂

∂θ

(∑
Xi

p
− n−∑Xi

1− p

)]

= −
(
−np
p2
− n− np

(1− p)2

)
=
n

p
+

n

1− p
=

n

p(1− p)

So the CRLB is p(1−p)
n
.

b. E[X1X2X3X4] = p4.
∑
Xi is sufficient and complete.

E[W |
∑

Xi = t] = P (X1 = X2 = X3 = X4 = 1|
∑

Xi = t)

=

{
0 t < 4
P (X1=X2=X3=X4=1,

∑n
5
Xi=t−4)

P (
∑n

1
Xi=t)

t ≥ 4

=




0 t < 4
p4(n−4

t−4)pt−4(1−p)n−t

(nt)pt(1−p)n−t
t ≥ 4

=
t(t− 1)(t− 2)(t− 3)
n(n− 1)(n− 2)(n− 3)

So the UMVUE is (for n ≥ 4)

p̂(p̂− 1/n)(p̂− 2/n)(p̂− 3/n)
(1− 1/n)(1− 2/n)(1− 3/n)

No unbiased estimator eists for n < 4.

7.62 a.

R(θ, aX + b) = Eθ[(aX + b− θ)2]

= a2Var(X) + (aθ + b− θ)2

= a2σ
2

n
+ (b− (1− a)θ)2

b. For η = σ2

nτ2+σ2 ,

δπ = E[θ|X] = (1− η)X + ηµ

So

R(θ, δπ) = (1− η)2
σ2

n
+ (ηµ− ηθ)2 = (1− η)2

σ2

n
+ η2(µ− θ)2

= η(1− η)τ 2 + η2(µ− θ)2

12
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c.

B(π, δπ) = E[E[(θ − δπ)
2|X]]

= E[E[(θ − E[θ|X])2|X]]

= E[Var(θ|X)] = E

[
σ2τ 2

σ2 + nτ 2

]
=

σ2τ 2

σ2 + nτ 2
= ητ 2

7.63 From the previous problem, when the prior mean is zero the risk of the Bayes
rule is

R(θ, δπ) =
τ 4 + θ2

(1 + τ 2)2

So for τ 2 = 1

R(θ, δπ) =
1

4
+
1

4
θ2

and for τ 2 = 10

R(θ, δπ) =
100

121
+
1

121
θ2

With a smaller τ 2 the risk is lower near the prior mean and higher far from the
prior mean.

7.64 For any a = (a1, . . . , an)

E[
∑

L(θi, ai)|X = x] =
∑

E[L(θi, ai)|X = x]

The independence assumptions imply that (θ1, Xi) is independent of {Xj : j 6=
i} and therefore.

E[L(θi, ai)|X = x] = E[L(θi, ai)|Xi = xi]

for each i. Since δπi is a Bayes rule for estimating θi with loss L(θi, ai) we have

E[L(θi, ai)|Xi = xi] ≥ E[L(θi, δ
πi(Xi))|Xi = xi] = E[L(θi, δ

πi(Xi))|X = x]

with the final equality again following from the independence assumptions. So

∑
E[L(θi, ai)|Xi = xi] ≥

∑
E[L(θi, δ

πi(Xi))|X = x]

= E[
∑

L(θi, δ
πi(Xi))|X = x]

and therefore

E[
∑

L(θi, ai)|X = x] ≥ E[
∑

L(θi, ai)|Xi = xi]

for all a, which implies that δπ(X) = (δπ1(X1), . . . , δ
πn(Xn)) is a Bayes rule for

estimating θ = (θ1, . . . , θn) with loss
∑
L(θi, ai) and prior

∏
πi(θi).

13
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Assignment 5

Problem 8.5
Problem 8.6

Due Friday, February 28, 2003.

Solutions

8.5 a. The likelihood can be written as

L(θ, ν) =
θnνnθ∏
xθ+1
i

1[ν,∞)(x(1))

For fixed θ, this increases in ν for ν ≤ x(1) and is then zero. So ν̂ = x(1),
and

L∗(θ) = max
ν

L(θ, ν) = θn
∏(

x(1)

xi

)θ
1∏
xi

∝ θne−θT

So θ̂ = n/T .

b. The likelihood ratio criterion is

Λ(x) =
L∗(1)

L∗(θ̂)
=

e−T

(
n
T

)n
e−n

= const× T ne−T

This is a unimodal function of T ; it increases from zero to a maximum at
T = n and then decreases back to zero. Therefore for any c > 0

R = {x : Λ(x) < c} = {x : T < c1 or T > c2}

c. The conditional density of X2, . . . , Xn, given X1 = x and Xi ≥ X1, is

f(x2, . . . , xn|x1, xi ≥ x1) =
f(x1) · · · f(xn)

f(x1)P (X2 > X1|X1 = x1) · · ·P (Xn > X1|X1 = x1)

=
f(x2) · · · f(xn)

P (X2 > x1) · · ·P (Xn > x1)

and

P (Xi > y) =

∫ ∞

y

θνθ

xθ+1
dx =

νθ

yθ

14
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So

f(x2, . . . , xn|x1, xi ≥ x1) = θn−1

n∏

i=2

xθ
1

xθ+1
i

1{xi>x1}

Let Y1 = Xi/x1, i = 2, . . . , n. Then

fY (y2, . . . , yn|x1, xi > x1) = xn−1
1 f(y2x1, . . . , ynx1|x1, xi > x1)

=
θn−1

yθ+1
2 , . . . , yθ+1

n

i.e. Y2, . . . , Yn are i.i.d. with density θ/y
θ+1, and T = log Y2 + · · ·+ log Yn.

If Z = log Y , then

fZ(z) = fY (y)
dy

dz
=

θ

e(θ+1)z
ez = θe−θz

and thus T |{X1 = x1, Xi > X1} ∼ Gamma(n−1, 1/θ). By symmetry, this
means that T |X(1) ∼ Gamma(n− 1, 1/θ), which is indepentent of X(1), so
T has this distribution unconditionaly as well.

For θ = 1,

T ∼ Gamma(n− 1, 1)
2T ∼ Gamma(n− 1, 2) = χ2

n−1

8.6 a. The likelihood ratio criterion is

Λ =

(
n+m∑
Xi+

∑
Yi

)n+m

e−n−m

(
n∑
Xi

)n

e−n
(

n∑
Yi

)m

e−m

=
(n+m)n+m

nnmm

(
∑
Xi)

n(
∑
Yi)

m

(
∑
Xi +

∑
Yi)n+m

The test rejects if this is small.

b. The likelihood ratio criterion is of the form Λ = const × T n(1 − T )m. So
the test rejects if T is too small or too large.

c. Under H0, T ∼ Beta(n,m).

15
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Assignment 6

Problem 8.14
Problem 8.17

Due Friday, March 7, 2003.

Problem 8.15
Problem 8.25

Due Friday, March 7, 2003.

Problem 8.28
Problem 8.33

Due Friday, March 7, 2003.

Solutions

8.14 Use R = {x :∑ xi > c}. α = 0.01 means

0.01 = P (
∑

Xi > c|p = 0.49) ≈ P

(
Z >

c− 0.49√
0.49× 0.51

√
n

)

So
c− 0.49√
0.49× 0.51

√
n = 2.326

β = 0.99 implies

0.99 = P (
∑

Xi > c|p = 0.51) ≈ P

(
Z >

c− 0.51√
0.49× 0.51

√
n

)

So
c− 0.51√
0.49× 0.51

√
n = −2.326

So

c− 0.49 = 2.326
√
0.49× 0.51 1√

n

c− 0.51 = −2.326
√
0.49× 0.51 1√

n

or
√
n× 0.002 = 2× 2.326

√
0.49× 0.51

n = (100)2 × (2.326)2 × 0.49× 0.51
= 13521

16
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8.17 For X1, . . . , Xn i.i.d. Beta(µ, 1)

L(µ|x) = µn
∏

xµ−1
i

= µneµ
∑

log xie−
∑

log xi

So

µ̂ = − n∑
log xi

L(µ̂|x) =
(
− n∑

log xi

)n

exp{−n−
∑
log xi}

and

Λ(x) =

(
− n+m∑

log xi+
∑

log yi

)n+m

exp{−n−m−∑ log xi −
∑
log yi}

(
− n∑

log xi

)n

exp{−n−∑ log xi}
(
− m∑

log yi

)m

exp{−m−∑ log yi}

=
(n+m)n+m

nnmm
T n(1− T )m

So
{Λ < c} = {T < c1 or T > c2}

for suitable c1, c2.

Under H0, − logXi,− log Yi are i.i.d. exponential, so T ∼ Beta(n,m).
To find c1 and c2 either cheat and use equal tail probabilities (the right thing
to do by symmetry if n = m), or solve numerically.

8.15

L(σ2|x) = 1

(σ2)n/2
exp

{
− 1

2σ2

∑
x2
i

}

L(σ2
1)

L(σ2
0)
=

(
σ0

σ1

)n/2

exp

{
1

2

∑
x2
i

(
1

σ2
0

− 1

σ2
1

)}

If σ1 > σ2 then this is increasing in
∑
x2
i . So

L(σ2
1)/L(σ

2
0) > k

for some k if and only if
∑
X2

i > c for some c.

Under H0 : σ = σ0,
∑
X2

i /σ
2
0 ∼ χ2

n, so

c = σ2
0χ

2
n,α

17



Statistics 22S:194, Spring 2003 Tierney

8.25 a. For θ2 > θ1

g(x|θ2)

g(x|θ1)
=
exp

{
− (x−θ2)2

2σ2

}

exp
{
− (x−θ1)2

2σ2

} = const× exp{x(θ2 − θ1)/σ
2}

This in increasing in x since θ2 − θ1 > 0.

b. For θ2 > θ1

g(x|θ2)

g(x|θ1)
=
θx2e

−θ2/x!

θx1e
−θ1/x!

= const×
(
θ2

θ1

)x

which is increasing x since θ2/θ2 > 1.

c. For θ2 > θ1

g(x|θ2)

g(x|θ1)
=

(
n
x

)
θs2(1− θ2)

n−x

(
n
x

)
θs1(1− θ1)n−x

= const×
(
θ2/(1− θ2)

θ1/(1− θ1)

)x

This is increasing in x since θ/(1− θ) is increasing in θ.

8.28 a.
f(x|θ2)

f(x|θ1)
= eθ1−θ2

(1 + ex−θ1)2

(1 + ex−θ2)2
= const×

(
eθ1 + ex

eθ2 + ex

)2

Let

g(y) =
A+ y

B + y

g′(y) =
B + y − A− y

(B + y)2
=

B − A

(B + y)2

Then g′(y) ≥ 0 if B ≥ A. So we have MLR in x.

b. Since the ratio is increasing in x, the most powerful test is of the form
R = {x > c}. Now

Fθ(x) = 1−
1

1 + ex−θ

So for H0 : θ = 0 and α = 0.2 = 1/(1 + e
c), so

1 + ec = 5

ec = 4

c = log 4 = 1.386

The power is

β(1) =
1

1 + elog(4)−1
=

1

1 + 4/e
= 0.405

c. Since we have MLR, the test is UMP. This is true for any θ0. This only

works for n = 1; otherwise there is no one-dimensional sufficient statistic.

18
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8.33 a.
P (Y1 > k or Yn > 1|θ = 0) = P (Y1 > k|θ = 0) = (1− k)n = α

So k = 1− α1/n.

b.

β(θ) = P (Yn > 1 or Y1 > k|θ)
= P (Yn > 1|θ) + P (Y1 > k and Yn ≤ 1)

=

{
1 θ > 1

1− (1− θ)n + (1−max{k, θ})n θ ≤ 1

c.
f(x|θ) = 1(θ,∞)(Y1)1(−∞,θ+1)(Yn)

Fix θ′ > 0. Suppose k ≤ θ′. Then β(θ′) = 1.

Suppose k > θ′. Take k′ = 1 in the NP lemma. Then

f(x|θ′) < f(x|θ0)⇒ 0 < Y1 < θ′ < k, so x 6∈ R
f(x|θ′) > f(x|θ0)⇒ 1 < Yn < θ′ + 1, so x ∈ R

So R is a NP test for any θ′.

So R is UMP.

d. The power is one for all n if θ > 1.
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Assignment 7

Problem 8.31
Problem 8.34

Due Friday, March 14, 2003.

Problem 8.49
Problem 8.54

Due Friday, March 14, 2003.

Problem 8.55
Problem 8.56

Due Friday, March 14, 2003.

Solutions

8.31 a. The joint PMF of the data is

f(x|λ) = λ
∑

xie−nλ

∏
xi!

For λ2 > λ1,

f(x|λ2)

f(x|λ1)
=

(
λ2

λ1

)∑
xi

en(λ1−λ2)

is increasing in
∑
xi, so has MLR. So a test which rejects the null hypoth-

esis if X > c is UMP of its size.

b. If λ = 1, then X ∼ AN(1, 1/n), so c ≈ 1 + zα/
√
n.

If λ = 2, then X ∼ AN(2, 2/n), so

P (X > 1 + zα/
√
n|λ = 2) ≈ P

(
Z >

(
zα√
n
− 1
)√

n

2

)

= P

(
Z >

zα√
2
−
√
n

2

)

For α = 0.05, zα = 1.645.

For β(2) = 0.9,
zα√
2
−
√
n

2
= −z0.1 = −1.282
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so
n = (zα +

√
2z1−β)

2 = (1.645 +
√
2× 1.282)2 = 11.27

so this suggest using n = 12.

It might be better to use the variance-stabilizing transformation
√
X. Ei-

ther way, use of the CLT is a bit questionable.

8.34 a. T ∼ f(t− θ), T0 ∼ f(t). So

P (T > c|θ) = P (T0 + θ > c)

This is increasing in θ.

b. First approach: MLR implies that T > c is UMP of θ1 against θ2 for size
α = P (T > c|θ1). Since φ

′(t) ≡ α is size α and β ′(t) = E[φ′(T )|θ] = α for
all θ, UMP implies that β(θ2) ≥ β ′(θ2) = α = β(θ1).

Second approach: Let α = P (T > c|θ1), h(t) = g(t|θ2)/g(t|θ1). Then

P (T > c|θ2)− α = E[φ(T )− α|θ2]

=
E[(φ(T )− α)h(T )|θ1]

E[h(T )|θ1]

≥ h(c)E[φ(T )− α|θ1]

E[h(T )|θ1]

=
h(c)(α− α)

E[h(T )|θ1]

= 0

Can also go back to the NP proof.

8.49 a. The p-value is P (X ≥ 7|θ = 0.5) = 1 − P (X ≤ 6|θ = 0.5) = 0.171875.
This can be computed in R with

> 1 - pbinom(6,10,0.5)

[1] 0.171875

b. The p-value is P (X ≥ 3|λ = 1) = 1− P (X ≤ 2|λ = 1) = 0.0803014. This
can be computed in R with

> 1 - ppois(2, 1)

[1] 0.0803014

c. If λ = 1 then the sufficient statistic T = X1 + X2 + X3 has a Poisson
distribution with mean λT = 3. The observed value of T is t = 9, so the
p-value is P (T ≥ 9|λT = 3) = 1− P (T ≤ 8|λT = 3) = 0.001102488.
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8.54 a. From problem 7.22 the posterior distribution of θ|x is normal with mean
and variance

E[θ|X = x] =
τ 2

τ 2 + σ2/n
x

Var(θ|X = x) =
τ

1 + nτ 2/σ2

So

P (θ ≤ 0|x) = P

(
Z ≤ − (τ

2/(τ 2 + σ2/n))x√
τ 2/(1 + nτ 2/σ2)

)
= P

(
Z ≥ τ√

(σ2/n)(τ 2 + σ2/n)
x

)

b. The p-value is

P (X ≥ x|θ = 0) = P

(
Z ≥ 1

σ/
√
n
x

)

c. For τ = σ = 1 the Bayes probability is larger than the p-value for x > 0
since

1√
(σ2/n)(1 + σ2/n)

<
1√
1/n

d . As n→∞,
τ√

(σ2/n)(τ 2 + σ2/n)
x =

1√
(σ2/n)(1 + σ2/(τ 2n))

x→ 1

σ/n

and therefore P (θ ≤ 0|x) converges to the p-value.

8.55 The risk functions for these tests are given by

R(θ, δ) =

{
b(θ0 − θ)(1− β(θ)) for θ < θ0

c(θ − θ0)2β(θ) for θ ≥ θ0

=

{
b(θ0 − θ)P (Z + θ > θ0 − zα) for θ < θ0

c(θ − θ0)2P (Z + θ ≤ θ0 − zα) for θ ≥ θ0

=

{
b(θ0 − θ)(1− Φ(θ0 − θ − zα) for θ < θ0

c(θ − θ0)2Φ(θ0 − θ − zα) for θ ≥ θ0

where Z is a stnadard normal random variable and Φ is the standard normal
CDF.

8.56 The risk function for a test δ and zero-one loss is

R(θ, δ) =

{
1− β(θ) for θ ∈ Θ1

β(θ) for θ ∈ Θ0

22



Statistics 22S:194, Spring 2003 Tierney

For the two tests in the problem this produces

R(p, δI) =

{
1− P (X ≤ 1|p) for p > 1/3

P (X ≤ 1|p) for p ≤ 1/3

and

R(p, δI) =

{
1− P (Xge41|p) for p > 1/3

P (X ≥ 4|p) for p ≤ 1/3
A graph of the risk functions is

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

p

r2

Test I
Test II

Test II has lower risk for large and small values of p; Test I has lower risk for p
between 1/3 and approximately 5.5.

These risk function graphs were produced in R using

b <- pbinom(1, 5, p)

b1 <- pbinom(1, 5, p)

b2 <- 1-pbinom(3, 5, p)

r1<-ifelse(p <= 1/3, b1, 1-b1)

r2<-ifelse(p <= 1/3, b2, 1-b2)

plot(p,r2,type="l")

lines(p,r1, lty = 2)

legend(0.7,0.7,c("Test I", "Test II"), lty=c(1,2))
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Assignment 8

Problem 9.1
Problem 9.2

Due Friday, March 28, 2003.

Problem 9.4

Due Friday, March 28, 2003.

Problem 9.12
Problem 9.13

Due Friday, March 28, 2003.

Solutions

9.1 Since L ≤ U ,
{L ≤ θ ≤ U}c = {L > θ} ∪ {U < θ}

Also
{L > θ} ∩ {U < θ} = ∅

So
P ({L ≤ θ ≤ U}c) = P (L > θ) + P (U < θ) = α1 + α2

and thus
P (L ≤ θ ≤ U) = 1− α1 − α2

9.2 This can be interpreted conditionally or unconditionally. Given X1, . . . , Xn,

P (Xn+1 ∈ x± 1.96/
√
n|x) = P (Z ∈ x− θ ± 1.96/√n)

≤ P (Z ∈ 0± 1.96/√n)
< 0.95 if n > 1

≤ 0.95 if n = 1

Equality holds only if n = 1 and x = θ.

Unconditionally,

P (Xn+1 ∈ X ± 1.96/
√
n) = P (Z − Z ∈ 0± 1.96/√n

= P

(
Z ′ ∈ 0± 1.96

√
n
√
1 + 1/n

)

= P (Z ′ ∈ 0± 1.96/
√
n+ 1)

< 0.95 for n ≥ 1
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9.4 In this problem

Xi are i.i.d. N(0, σ
2
X)

Yi/
√
λ0 are i.i.d. N(0, σ

2
X)

a.

Λ =

(
n+m∑

X2
i +

∑
Y 2
i /λ0

)(n+m)/2

(
n∑
X2
i

)n/2 (
m∑
Y 2
i /λ0

)m/2

= CT n/2(1− T )m/2

with

T =
1

1 +
∑

Y 2
i

λ0

∑
X2
i

=
1

1 + m
n
F

So Λ < k if and only if F < c1 or F > c2.

b. F/λ0 ∼ Fm,n. Choose c1, c2 so c1 = Fm,n,1−α1
, c2 = Fm,n,α2

, α1 + α2 = α,
and f(c1) = f(c2) for

f(t) =

(
1

1 + m
n
t

)n/2(
1− 1

1 + m
n
t

)m/2

c.

A(λ) = {X,Y : c1 ≤ F ≤ c2}

=

{
X,Y : c1 ≤

∑
Y 2
i /m

λ
∑
X2

i /n
≤ c2

}

C(λ) =

{
λ :

∑
Y 2
i /m

c2
∑
X2

i /n
≤ λ ≤

∑
Y 2
i /m

c1
∑
X2

i /n

}

=

[ ∑
Y 2
i /m

c2
∑
X2

i /n
,

∑
Y 2
i /m

c1
∑
X2

i /n

]

This is a 1− α level CI.

9.12 All of the following are possible choices:

1.
√
n(X − θ)/S ∼ tn−1

2. (n− 1)S2/θ ∼ χ2
n−1

3.
√
n(X − θ)/

√
θ ∼ N(0, 1)

The first two produce the obvious intervals.

For the third, look for those θ with

−zα/2 < Q(X, θ) =
X − θ√
θ/n

< zα/2

If x ≥ 0, then Q(x, ·) is decreasing, and the confidence set is an interval.
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α/2

zα/2

-z

θ
0

L

U

If x < 0, then Q(X, θ) is negative with a single mode. If x is large enough (close
enough to zero, then the confidence set is an interval, corresponding to the two
solutions to Q(x, θ) = −zα/2.
If x is too small, then there are no solutions and the confidence set is empty.

α/2

0
U

-z

L
0

-z α/2

9.13 a. U = logX ∼ exp(1/θ), θU ∼ exp(1). So

P (Y/2 < θ < Y ) = P (1/2 < θU < 1)

= e−1 − e−1/2 = 0.239

26



Statistics 22S:194, Spring 2003 Tierney

b. θU ∼ exp(1).

P (− log(1− α/2) < θU < − log(α/2)) = 1− α

P

(− log(1− α/2)

U
< θ <

− log(α/2)
U

)
= 1− α

[− log(1− α/2)Y,− log(α/2)Y ] = [0.479Y, 0.966Y ]

c. The interval in b. is a little shorter,

b

a
=
0.487

0.5

though it is not of optimal length.
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Assignment 9

Problem 9.27
Problem 9.33

Due Friday, April 4, 2003.

Problem 10.1

Due Friday, April 4, 2003.

Solutions

9.27 a. The posterior density is

π(λ|X) ∝ 1

λn
e−

∑
xi/λ

1

λa+1
e−1/(bλ)

=
1

λn+a+1
e−[1/b+

∑
xi]/λ

= IG(n+ a, [1/b+
∑

xi]
−1)

The inverse gamma density is unimodal, so the HPD region is an interval
[c1, c2] with c1, c2 chosen to have equal density values and P (Y > 1/c1) +
P (Y < 1/c2) = α, with Y ∼ Gamma(n+ a, [1/b+∑ xi]

−1).

.b The distribution of S2 is Gamma((n − 1)/2, 2σ2/(n − 1)). The resulting
posterior density is therefore

π(σ2|s2) ∝ (s2)(n−1)/2−1

(σ2/(n− 1))(n−1)/2
e−(n−1)s2/σ2 1

(σ2)a+1
e−1/(bσ2)

∝ 1

(σ2)(n−1)/2+a+1
e−[1/b+(n−1)s2]/σ2

= IG((n− 1)/2 + a, [1/b+ (n− 1)s2]−1)

As in the previous part, the HPD region is an interval that can be deter-
mined by solving a corresponding set of equations.

c. The limiting posterior distribution is IG((n − 1)/2, [(n − 1)s2]−1). The
limiting HPD region is an interval [c1, c2] with c1 = (n− 1)s2/χ2

n−1,α1
and

c2 = (n− 1)s2/χ2
n−1,1−α2

where α1+α2 = α and c1, c2 have equal posterior
density values.
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9.33 a. Since 0 ∈ Ca(x) for all a, x,

Pµ=0(0 ∈ Ca(X)) = 1

For µ < 0,

Pµ(µ ∈ Ca(X)) = Pµ(min{0, X − a} ≤ µ)

= Pµ(X − a ≤ µ) = Pµ(X − µ ≤ a) = 1− α

if a = zα. For µ > 0,

Pµ(µ ∈ Ca(X)) = Pµ(max{0, X − a} ≥ µ)

= Pµ(X + a ≥ µ) = Pµ(X − µ ≥ −a) = 1− α

if a = zα.

b. For π(µ) ≡ 1, f(µ|x) ∼ N(x, 1).

P (min{0, x− a} ≤ µ ≤ max{0, x− a}|X = x) = P (x− a ≤ µ ≤ x+ a|X = x)

= 1− 2α

if a = zα and −zα ≤ x ≤ zα. For a = zα and x > zα,

P (min{0, x− a} ≤ µ ≤ max{0, x− a}|X = x) = P (−x ≤ Z ≤ a)

→ P (Z ≤ z) = 1− α

as x→∞.

10.1 The mean is µ = θ/3, so the method of moments estimator is Wn = 3Xn. By

the law of large numbers Xn
P→ µ = θ/3, so Wn = 3Xn

P→ θ.
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Assignment 10

Problem 10.3
Problem 10.9 (but only for e−λ; do not do λe−λ)

Due Friday, April 11, 2003.

Problem: Find the approximate joint distribution of the maximum likelihood
estimators in problem 7.14 of the text.

Due Friday, April 11, 2003.

Problem: In the setting of problem 7.14 of the text, suppose n = 100,
∑
Wi = 71,

and
∑
Zi = 7802. Also assume a smooth, vague prior distribution. Find the

posterior probability that λ > 100.

Due Friday, April 11, 2003.

Solutions

10.3 a. The derivative of the log likelihood is

∂

∂θ

(
n

2
log θ −

∑
(Xi − θ)2

2θ

)
= − n

2θ
+

∑
(Xi − θ)2

1θ2
+
2
∑
(Xi − θ)

2θ

= − n

2θ
+

∑
X2

i − nθ2

2θ2
= n

W − θ − θ2

2θ2

So the MLE is a root of the quadratic equation θ2+ θ−W = 0. The roots
are

θ1,2 =
1

2
±
√
1

4
+W

The MLE is the larger root since that represents a local maximum and
since the smaller root is negative.

b. The Fisher information is

In(θ) = −nE
[
∂

∂θ

(
θ2 + θ −W

2θ2

)]

=
nE[W ]

θ3
− n

2θ2
= n

E[W ]− θ/2

θ3

= n
θ2 + θ − θ/2

θ3
= n

θ + 1/2

θ2

So θ̂ ∼ AN(θ, θ2

n(θ+1/2)
).
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10.9 (but only for e−λ; do not do λe−λ)

The UMVUE of e−λ is Vn = (1− 1/n)nX and the MLE is e−X . Since

√
n(Vn − e−X) =

√
nO(1/n) = O(1/

√
n)

both
√
n(Vn−e−λ) and

√
n(eX−e−λ) have the same normal limiting distribution

and therefore their ARE is one.

In finite samples one can argue that the UMVUE should be preferred if unbi-
asedness is deemed important. The MLE is always larger than the UMVUE in
this case, which might in some contexts be an argument for using the UMVUE.
A comparison of mean square errors might be useful.

For the data provided, e−X = 0.0009747 and Vn = 0.0007653.

Problem: Find the approximate joint distribution of the maximum likelihood
estimators in problem 7.14 of the text.

Solution: The log-likelihood is

`(λ, µ) = −
∑

wi log λ− (n−
∑

wi) log µ−
∑

zi

(
1

λ
+
1

µ

)

So

∂

∂λ
`(λ, µ) = −

∑
wi

λ
+

∑
zi

λ2

∂

∂µ
`(λ, µ) = −n−

∑
wi

µ
+

∑
zi

µ2

∂2

∂λ2
`(λ, µ) =

∑
wi

λ2
− 2

∑
zi

λ3

∂2

∂µ2
`(λ, µ) =

n−∑wi

µ2
− 2

∑
zi

µ3

∂2

∂λ∂µ
`(λ, µ) = 0

E[Wi] =
µ

λ+ µ

E[Zi] =
λµ

λ+ µ

So

E

[
− ∂2

∂λ2
`(λ, µ)

]
= 2

n

λ2

µ

λ+ µ
− n

λ2

µ

λ+ µ
=

n

λ2

µ

λ+ µ

E

[
− ∂2

∂µ2
`(λ, µ)

]
=

n

µ2

λ

λ+ µ
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and thus

[
λ̂
µ̂

]
∼ AN

([
λ
µ

]
,

[
λ2(λ+µ)

nµ
0

0 µ2(λ+µ)
nλ

])

Problem: In the setting of problem 7.14 of the text, suppose n = 100,
∑
Wi =

71, and
∑
Zi = 7802. Also assume a smooth, vague prior distribution. Find

the posterior probability that λ > 100.

Solution: The MLE’s are

λ̂ =

∑
Zi∑
Wi

= 109.89

µ̂ =

∑
Zi

n−∑Wi

The observed information is

În(λ̂, µ̂) =

[∑
Wi

λ̂2
0

0 n−
∑

Wi

µ̂2

]

Thus the marginal posterior distribution of λ is approximately

N(λ̂, λ̂2/
∑

Wi) = N(109.89, 170.07)

So

P (λ > 100|X) ≈ P

(
Z >

100− 109.89√
170.07

)
≈ 0.7758
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Assignment 11

Problem: Let X1, . . . , Xn be a random sample from a Pareto(1, β) distribution with
density f(x|β) = β/xβ+1 for x ≥ 1. Find the asymptotic relative efficiency of the
method of moments estimator of β to the MLE of β.

Due Friday, April 18, 2003.

Problem: Let X1, . . . , Xn be i.i.d. Poisson(λ) and let W = e−X . Find the parametric

bootstrap variance Var∗(W ) and show that Var∗(W )/Var(W )
P→ 1 as n→∞.

Due Friday, April 18, 2003.

1. Let X1, . . . , Xn be a random sample that may come from a Poisson distribution
with mean λ. Find the sandwich estimator of the asymptotic variance of the
MLE λ̂ = X.

2. Let g(x) = e−x for x > 0 be an exponential density with mean one and let
f(x|θ) be a N(θ, 1) density. Find the value θ∗ corresponding to the density of
the form f(x|θ) that is closest to g in Kullback-Liebler divergence.

Due Friday, April 18, 2003.

Solutions

Problem: Let X1, . . . , Xn be a random sample from a Pareto(1, β) distribution
with density f(x|β) = β/xβ+1 for x ≥ 1. Find the asymptotic relative efficiency
of the method of moments estimator of β to the MLE of β.

Solution: The mean is finite and E[X] = β/(β − 1) if β > 1. So the method
of moments estimator is β̂MM = X/(X − 1) if X > 1 and undefined otherwise.
The variance is finite and Var(X) = β

(β−1)2(β−2)
if β > 2. So for β > 2 the

central limit theorem implies that

√
n(X − β/(β − 1)) D→ N

(
0,

β

(β − 1)2(β − 2)

)

Since β̂MM = g(X) with g(x) = x/(x − 1) and g′(x) = −1/(x − 1)2, we have
g′(β/(β − 1)) = −(β − 1)2 and the delta method shows that

√
n(β̂MM − β)

D→ N

(
0,
g′(β/(β − 1))2β
(β − 1)2(β − 2)

)
= N(0, β(β − 1)2/(β − 2))
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The MLE is β̂ = n/(
∑
logXi) and the Fisher information is In(β) = n/β2. So

the asymptotic relative efficiency of the method of moments estimator to the
MLE is

ARE(β̂MM, β̂) =
β2

β(β − 1)2/(β − 2) =
β(β − 2)
(β − 1)2

for β > 2. For β ≤ 2 the method of moments estimator will exist for large
n but will not he

√
n-consistent; it makes sense to say the asymptotic relative

efficiency is zero in this case.

Problem: Let X1, . . . , Xn be i.i.d. Poisson(λ) and let W = e−X . Find the

parametric bootstrap variance Var∗(W ) and show that Var∗(W )/Var(W )
P→ 1

as n→∞.
Solution: Using the MGF of the Poisson distribution we have

E[W |λ] =M∑
Xi
(−1/n) = exp{nλ(e−1/n − 1)}

E[W 2|λ] =M∑
Xi
(−2/n) = exp{nλ(e−2/n − 1)}

The variance of W is therefore

Var(W |λ) = E[W 2|λ]− E[W |λ]2

= exp{nλ(e−2/n − 1)} − exp{2nλ(e−1/n − 1)}
= exp{2nλ(e−1/n − 1)}(exp{nλ(e−2/n − 2e−1/n + 1)} − 1)
= exp{2nλ(e−1/n − 1)}(exp{nλ(e−1/n − 1)2} − 1)
= λbng(anλ, bnλ)

with

g(x, y) =

{
e2x ey−1

y
if y 6= 0

e2x if y = 0

an = n(e−1/n − 1)

bn = n(e−1/n − 1)2 = a2
n

n

The bootstrap variance is

Var∗(W ) = Var(W |λ = X)

= exp{2nX(e−1/n − 1)}(exp{nX(e−1/n − 1)2} − 1)
= Xbng(anX, bnX)

Now g is continuous, an → 1 and bn → 0. So by the law of large numbers,
Slutsky’s theorem, and the continuous mapping theorem

Var∗(W )

Var(W |λ) =
Xg(anX, bnX)

λg(anλ, bnλ)

P→ λg(λ, 0)

λg(λ, 0)
= 1
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Problem:

1. Let X1, . . . , Xn be a random sample that may come from a Poisson dis-
tribution with mean λ. Find the sandwich estimator of the asymptotic
variance of the MLE λ̂ = X.

2. Let g(x) = e−x for x > 0 be an exponential density with mean one and let
f(x|θ) be a N(θ, 1) density. Find the value θ∗ corresponding to the density
of the form f(x|θ) that is closest to g in Kullback-Liebler divergence.

Solution:

1. For the Poisson distribution

∂

∂λ
log f(X|λ) = X − λ

λ
∂2

∂λ2
log f(X|λ) = −X

λ2

So the sandwich estimator of the asymptotic variance of the MLE is

V̂ar(
√
n(λ̂− λ) =

1
n

∑(
∂
∂λ
log f(Xi|λ̂)

)2

(
1
n

∑
∂2

∂λ2 log f(Xi|λ̂)
)2 =

1

n

∑
(Xi −X)2

2. The Kullback-Liebler divergence from any distribution with density g to a
N(θ, 1) distribution is

KL(g, f) =

∫
log

g(x)

f(x|θ)g(x)dx = const +
1

2

∫
(x− θ)2g(x)dx

This is minimized by θ∗ = Eg[X]; for this particular choice of g this means
θ∗ = 1.
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Assignment 12

Problem 10.30 (b)

Due Friday, April 25, 2003.

Problem: Consider the setting of Problem 10.31. Derive an expression for −2 log Λ,
where Λ is the likelihood ratio test statistic, and find the approximate distribution
of this quantity under the null hypothesis.

Due Friday, April 25, 2003.

Problem 10.38

Due Friday, April 25, 2003.

Solutions

10.30 (b) For the Huber M-estimator ψ(−∞) = −k and ψ(∞) = k, so η = 1/(1+1) = 1/2
and the breakdown is 50%.

The formula for the breakdown given in this problem is only applicable to
monotone ψ functions. For redescending ψ functions the estimating equation
need not have a unique root. To resolve this one can specify that an estimator
should be determined using a local root finding procedure starting at, say, the
sample median. In this case the M-estimator inherits the 50% breakdown of
the median. See Huber, pages 53–55, for a more complete discussion.

Problem: Consider the setting of Problem 10.31. Derive an expression for
−2 log Λ, where Λ is the likelihood ratio test statistic, and find the approximate
distribution of this quantity under the null hypothesis.

Solution: The restricted likelihood corresponds to n1+n2 Bernoulli trials with
S1 + S2 successes and common success probability p, so the MLE of p is p̂ =
(S1+S2)/(n1+n2). The unrestricted likelihood consists of two independent sets
of Bernoulli trials with success probabilities p1 and p2, and the correpsonding
MLS’s are p̂1 = S1/n1 and p̂2 = S2/n2. The likelihood ratio statistic is therefore

Λ =
p̂S1+S2(1− p̂)F1+F2

p̂1
S1(1− p̂1)F1 p̂S2

2 (1− p̂2)F2

=

(
p̂

p̂1

)S1
(
p̂

p̂2

)S2
(
1− p̂

1− p̂1

)F1
(
1− p̂

1− p̂2

)F2

and

−2 log Λ = 2
(
S1 log

p̂1

p̂
+ S2 log

p̂2

p̂
+ F1 log

1− p̂1

1− p̂
+ F2 log

1− p̂2

1− p̂

)
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The restricted parameter space under the null hypothesis is one-dimensional
and the unrestricted parameter space is two-dimensional. Thus under the null
hypothesis the distribution of −2 log Λ is approximately χ2

1.

10.38 The log likelihood for a random sample from a Gamma(α, β) distribution is

logL(β) = n

(
− log Γ(α)− α log β + (α− 1) 1

n

∑
logXi −X/β

)

So the score function is

Vn(β) =
∂

∂β
logL(β) = n

(
−α
β
+
X

β2

)
= n

x− αβ

β2

and the Fisher information is

In(β) = −nE
[
α

β2
− 2X

β3

]
= n

2αβ

β3
− n

α

β2
= n

α

β2

So the score statistic is

Vn(β)√
In(β)

=
√
n
X − αβ√

αβ
=
√
n
X − αβ√

αβ2
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Assignment 13

Problem 10.41

Due Friday, May 2, 2003.

Problem: Let x1, . . . , xn be constants, and suppose

Yi = β1(1− e−β2xi) + εi

with the εi independent N(0.σ
2) ramdom variables.

a. Find the normal equations for the least squares estimators of β1 and β2.

b. Suppose β2 is known. Find the least squares estimator for β1 as a function of
the data and β2.

Due Friday, May 2, 2003.

Problem: Let x1, . . . , xn be constants, and suppose

Yi = β1 + β2xi + εi

Let y∗ be a constant and let let x∗ satisfy

y∗ = β0 + β1x
∗

that is, x∗ is the value of x at which the mean response is y∗.

a. Find the maximum likelihood estimator x̂∗ of x∗.

b. Use the delta method to find the approximate sampling distribution of x̂∗.

Due Friday, May 2, 2003.

Solutions

10.41 This problem should have stated that r is assumed known.

a. The log likelihood for p is

logL(p) = const + n(r log p+ x log(1− p))
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The first and second partial derivatives with respoct to p are

∂

∂p
=
nr

p
− nx

1− p

∂2

∂p2
= −nr

p2
− nx

(1− p)2

So the Fisher information is In(p) =
nr

p2(1−p)
and the score test statistic is

√
n

nr
p
− nx

1−p√
nr

p2(1−p)

=

√
n

r

(
(1− p)r + px√

1− p

)

b. The mean is µ = r(1 − p)/p. The score statsitic can be written in terms
of the mean as

√
n

r

(
(1− p)r + px√

1− p

)
=
√
n

µ− x√
µ+ µ2/r

A confidence interval is give by

C =

{
µ :

∣∣∣∣∣
√
n

µ− x√
µ+ µ2/r

∣∣∣∣∣ ≤ zα/2

}

The endpoints are the solutions to a quatriatic,

U,L =
r(8x+ z2

α/2)±
√
rz2

α/2

√
16rx+ 16x2 + rz2

α/2

8r − 2z2
α/2

To use the continuity corection, replace x with x + 1
2n
for the upper end

point and x− 1
2n
for the lower end point.

Problem: Let x1, . . . , xn be constants, and suppose

Yi = β1(1− e−β2xi) + εi

with the εi independent N(0.σ
2) ramdom variables.

a. Find the normal equations for the least squares estimators of β1 and β2.

b. Suppose β2 is known. Find the least squares estimator for β1 as a function
of the data and β2.

Solution:
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a. The mean response is µi(β) = β1(1−e−β2xi). So the partial derivatives are

∂

∂β1

µi(β) = 1− e−β2xi

∂

∂β2

µi(β) = β1(1− e−β2xi)xi

So the normal equations are

n∑

i=1

β1(1− e−β2xi)2 =
n∑

i=1

(1− e−β2xi)Yi

n∑

i=1

β2
1(1− e−β2xi)2xi =

n∑

i=1

β1(1− e−β2xi)xiYi

b. If β2 is known then the least squares estimator for β1 can be found by
solving the first normal equation:

β̂1 =

∑n
i=1(1− e−β2xi)Yi∑n
i=1(1− e−β2xi)2

Problem: Let x1, . . . , xn be constants, and suppose

Yi = β1 + β2xi + εi

Let y∗ be a constant and let let x∗ satisfy

y∗ = β0 + β1x
∗

that is, x∗ is the value of x at which the mean response is y∗.

a. Find the maximum likelihood estimator x̂∗ of x∗.

b. Use the delta method to find the approximate sampling distribution of x̂∗.

Solution: This prolem should have explicitly assumed normal errors.

a. Since x∗ = (y∗ − β1)/β2, the MLE is

x̂∗ =
y∗ − β̂1

β̂2

by MLE invariance.

b. The partial derivatives of the function g(β1, β2) = (y
∗ − β1)/β2 are

∂

∂β1

g(β1, β2) = −
1

β2

∂

∂β2

g(β1, β2) = −
y∗ − β1

β2
2

40



Statistics 22S:194, Spring 2003 Tierney

So for β2 = 0 the variance of the approximate sampling distribution is

V̂ar(x̂∗) = ∇gσ2(XTX)−1∇gT

=

1
nβ2

2

∑
x2
i − 2xy∗−β1

β3
2

+ (y∗−β1)2

β4
2∑

(xi − x)2

=

1
nβ2

2

∑
(xi − x)2 + (y∗−β1−β2x)2

β4
2∑

(xi − x)2

=
1

nβ2
2

+
(y∗ − β1 − β2x)

2

β4
2

∑
(xi − x)2

So by the delta method x̂∗ ∼ AN(x∗, V̂ar(x̂∗)). The approximation is
reasonably good if β2 is far from zero, but the actual mean and variance
of x̂∗ do not exist.
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