next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 2 Up: 22S:194 Statistical Inference II Previous: Assignment 1

Solutions

6.3
The joint density for the data is

$\displaystyle f({x}_{1},\ldots,{x}_{n}\vert\mu,\sigma)$ $\displaystyle = \frac{1}{\sigma^{n}}\exp\{-\sum(x_{i}-\mu)/\sigma\} \prod 1_{(\mu,\infty)}(x_{i})$    
  $\displaystyle = \frac{1}{\sigma^{n}}\exp\left\{-\frac{n}{\sigma}\overline{x}+\frac{n\mu}{\sigma}\right\}1_{(\mu,\infty)}(x_{(1)})$    

So, by the factorization criterion, $ (\overline{X},X_{(1)})$ is sufficient for $ (\mu,\sigma)$.

6.6
The density of a single observation is

$\displaystyle f(x\vert\alpha,\beta)$ $\displaystyle = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1}e^{-x/\beta}$    
  $\displaystyle = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \exp\left\{(\alpha-1)\log x -\frac{1}{\beta}x\right\}$    

This is a two-parameter exponential family, so $ (T_{1},T_{2}) =
(\sum \log X_{i},\sum X_{i})$ is sufficient for $ (\alpha,\beta)$. Since $ \prod X_{i}$ is a one-to-one function of $ \sum\log X_i$, the pair $ (\prod X_{i},\sum X_{i})$ is also sufficient for $ (\alpha,\beta)$.

6.9
a.
Done in class already.

b.
$ \Theta=\mathbb{R}, \mathcal{X}=\mathbb{R}^{n}$, and

$\displaystyle f(x\vert\theta)=e^{-\sum x_{i}+n\theta} 1_{(\theta,\infty)}(x_{(1)})$    

Suppose $ x_{(1)} = y_{(1)}$. Then

$\displaystyle f(x\vert\theta)=\exp\{\sum y_{i}-\sum x_{i}\}f(y\vert\theta)$    

for all $ \theta$. So $ k(x,y)=\exp\{\sum y_{i}-\sum x_{i}\}$ works.

Suppose $ x_{(1)} \neq y_{(1)}$. Then for some $ \theta$ one of $ f(x\vert\theta), f(y\vert\theta)$ is zero and the other is not. So no $ k(x,y)$ exists.

So $ T(X)=X_{(1)}$ is minimal sufficient.

c.
$ \Theta=\mathbb{R}, \mathcal{X}=\mathbb{R}^{n}$. The support does not depend on $ \theta$ so we can work with ratios of densities. The ratio of densities for two samples $ x$ and $ y$ is

$\displaystyle \frac{f(x\vert\theta)}{f(y\vert\theta)}$ $\displaystyle = \frac{e^{-\sum(x_{i}-\theta)}}{e^{-\sum(y_{i}-\theta)}} \frac{\prod(1+e^{-(y_{i}-\theta)})^{2}}{\prod(1+e^{-(x_{i}-\theta)})^{2}}$    
  $\displaystyle = \frac{e^{-\sum x_{i}}}{e^{-\sum y_{i}}} \frac{\prod(1+e^{-y_{i}}e^{\theta})^{2}}{\prod(1+e^{-x_{i}}e^{\theta})^{2}}$    

If the two samples contain identical values, i.e. if they have the same order statistics, then this ratio is constant in $ \theta$.

If the ratio is constant in $ \theta$ then the ratio of the two product terms is constant. These terms are both polnomials of degree $ 2n$ in $ e^{\theta}$. If two polynomials are equal on an open subset of the real line then they are equal on the entire real line. Hence they have the same roots. The roots are $ \{-e^{x_{i}}\}$ and $ \{-e^{y_{i}}\}$ (each of degree 2). If those sets are equal then the sets of sample values $ \{x_i\}$ and $ \{y_i\}$ are equal, i.e. the two samples must have the same order statistics.

So the order statistics $ (X_{(1)}, \ldots,X_{(n)})$ are minimal sufficient.

d.
Same idea:

$\displaystyle \frac{f(x\vert\theta)}{f(y\vert\theta)} = \frac{\prod(1+(y_{i}-\theta)^{2})}{\prod(1+(x_{i}-\theta)^{2})}$    

If the two samples have the same order statistics then the ratio is constant. If the ratio is constant for all real $ \theta$ then two polynomials in $ \theta$ are equal on the complex plane, and so the roots must be equal. The roots are the complex numbers

$\displaystyle \theta = x_{j}\pm i, \theta = y_{j}\pm i$    

with $ i = \sqrt{-1}$. So again the order statistics are minimal sufficient.

e.
$ \Theta=\mathbb{R}, \mathcal{X}=\mathbb{R}^{n}$. The support does not depend on $ \theta$ so we can work with ratios of densities. The ratio of densities for two samples $ x$ and $ y$ is

$\displaystyle \frac{f(x\vert\theta)}{f(y\vert\theta)} = \exp\{\sum\vert y_{i}-\theta\vert-\sum\vert x_{i}-\theta\vert\}$    

If the order statistics are the same then the ratio is constant. Suppose the order statistics differ. Then there is some open interval $ I$ containing no $ x_{i}$ and no $ y_{i}$ such that $ \char93
\{x_{i} > I\} \ne \char93 \{y_{i} > I\}$. The slopes on $ I$ of $ \sum\vert x_{i}-\theta\vert$ and $ \sum\vert y_{i}-\theta\vert$ as functions of $ \theta$ are

$\displaystyle n-2(\char93 \{x_{i} > I\}), n-2(\char93 \{y_{i} > I\})$    

So $ \sum\vert y_{i}-\theta\vert-\sum\vert x_{i}-\theta\vert$ has slope

$\displaystyle 2(\char93 \{x_{i} > I\}-\char93 \{y_{i} > I\}) \ne 0$    

and so the ratio is not constant on $ I$.

So again the order statistic is minimal sufficient.

6.10
To thos that the minimal sufficient statistic is not complete we need to fins a function $ g$ that is not identically zero but has expected value zero for all $ \theta$. Now

$\displaystyle E[X_{(1)}]$ $\displaystyle = \theta + \frac{1}{n+1}$    
$\displaystyle E[X_{(n)}]$ $\displaystyle = \theta + \frac{n}{n+1}$    

So $ g(X_{(1)},X_{(n)})=X_{(n)}-X_{(1)}-\frac{n-1}{n+1}$ has expected value zero for all $ \theta$ but is not identically zero for $ n > 1$.

6.14
$ {X}_{1},\ldots,{X}_{n}$ are $ i.i.d.$ from $ f(x-\theta)$. This means $ Z_{i}=X_{i}-\theta$ are $ i.i.d.$ from $ f(z)$. Now

$\displaystyle \widetilde{X}$ $\displaystyle = \widetilde{Z}+\theta$    
$\displaystyle \overline{X}$ $\displaystyle = \overline{Z}+\theta$    

So $ \widetilde{X}-\overline{X} = \widetilde{Z}-\overline{Z}$ is ancillary.

6.20
a.
The joint density of the data is

$\displaystyle f({x}_{1},\ldots,{x}_{n}\vert\theta)=2^{n}\left(\prod x_{i}\right) 1_{(0,\theta)}(x_{(n)})\frac{1}{\theta^{2n}}$    

$ T=X_{(n)}$ is sufficient (and minimal sufficient). $ X_{(n)}$ has density

$\displaystyle f_{T}(t\vert\theta) = 2nt^{2n-1}\frac{1}{\theta^{2n}}1_{(0,\theta)}(t)$    

Thus

$\displaystyle 0 = \int_{0}^{\theta}g(t)\frac{2n}{\theta^{2n}} t^{2n-1}dt$    

for all $ \theta > 0$ means

$\displaystyle 0 = \int_{0}^{\theta}g(t)t^{2n-1}dt$    

for almost all $ \theta > 0$, and this in turn implies $ g(t)t^{2n-1}=0$ and hence $ g(t)=0$ for all $ t > 0$. So $ T=X_{(n)}$ is complete.

b.
Exponential family, $ T(X)=\sum \log(1+X_{i})$,

$\displaystyle \{w(\theta):\theta \in \Theta\} = (1,\infty)$    

which is an open interval.

c.
Exponential family, $ T(X)=\sum X_{i}$,

$\displaystyle \{w(\theta): \theta \in \Theta\} = \{\log \theta: \theta > 1\} = (0,\infty)$    

which is an open interval.

d.
Exponential family, $ T(X)=\sum e^{-X_{i}}$,

$\displaystyle \{w(\theta): \theta \in \Theta\} = \{-e^{\theta}: \theta \in \mathbb{R}\} = (-\infty,0)$    

which is an open interval.

e.
Exponential family, $ T(X)=\sum X_{i}$,

$\displaystyle \{w(\theta): \theta \in \Theta\} = \{\log \theta-\log(1-\theta): 0 \le \theta \le 1\} = [-\infty,\infty]$    

which contains an open interval.


next up previous
Link to Statistics and Actuarial Science main page
Next: Assignment 2 Up: 22S:194 Statistical Inference II Previous: Assignment 1
Luke Tierney 2003-05-04