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Week 1

Wednesday, January 22, 2003

Review Course Outline

Review First Semester Final Exam

Statistical Inference

The basic framework:

X Data

Θ
Unknown
state of
nature

Objectives: use data X ∈X to learn about aspects of θ ∈Θ, e.g.

• Based on X , what is best guess for θ?

• How accurate is our best guess?

Need a link between θ and X .
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Frequentist Approach

• Assume f (x|θ) is known

• Develop procedures that work well on average in similar experiments.

Drawback: Don’t relate directly to your experiments.

Bayesian Approach

• Assume f (x|θ) and f (θ) known.

• Compute f (θ |x)

Drawbacks:

• Need f (θ)

• Need to compute features of f (x|θ).

Resampling Approach

• Assume little, or limit use of assumptions to suggesting estimators

• Use resampling to assess variability

This is often very computationally intensive.

The basic X ,θ , f (x|θ) framework is quite general:

• Standard parametric model:

X = (X1, . . . ,Xn) ∈ Rn

θ ∈ R
f (x|θ) = i.i.d N(θ ,1)

• Nonparametric model:

X = (X1, . . . ,Xn) ∈ Rn

θ = a distribution on R
f (x|θ) = i.i.d. θ

Some approaches do not use f (x|θ) (randomization theory).

Often we are really interested in one or two aspects of θ :

f (x|θ) = f (x|µ,σ)

• might want to learn about µ

• might not be interested in σ .

Parameters not of direct interest are called nuisance parameters.
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Friday, January 24, 2003

Suf£ciency

A £rst step in using f (x|θ) is to see what features of the data are important, what are
super¤uous (formally at least).

De£nition

A statistic T (X) is suf£cient for θ if the conditional distribution of X given T (X) does not
depend on θ .

Example

Let X1, . . . ,Xn be i.i.d. Bernoulli(p) and set

T (X) =
n

∑
i=1

Xi

Then for xi = 0,1 and t = 0, . . . ,n

fX ,T (x, t) = p∑xi(1− p)n−∑xi1{∑xi=t}

= pt(1− p)n−t1{∑xi=t}

fT (t) =

(
n
t

)
pt(1− p)n−t

So

fX |T (x|t) =
fX ,T (x, t)

fT (t)
=

1{∑xi=t}(n
t

)

In words: X |T = t is uniform on the
(n

t

)
vectors (x1, . . . ,xn) with xi = 0,1 and ∑xi = t.

This distribution does not depend on p, so T is suf£cient.

Suppose this experiments is performed. You get to see all of x1, . . . ,xn but I only get to see
T (x) = t. Are you better off?

Answer: I can get data y with the same distribution as x and the same value of t by choosing
y uniformly from its possible values given T (y) = t. So my data is equivalent to yours.

This assumes that the model is right.
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Suf£ciency Principle

A procedure based on assuming a particular form f (x|θ) should only depend on x through
a suf£cient statistic T (x). Two observations x and y with T (x) = T (y) where T is suf£cient
should result in the same actions.

Unfortunately we cannot use our de£nition of suf£ciency with our conditional probability
tools for continuous data, since X ,T (X) are not jointly continuous.

Instead, we will work with characterizations of suf£ciency that are valid.

Halmos-Savage Factorization Theorem

If f (x|θ) is the joint PMF or PDF of X , then T (X) is suf£cient for θ if and only if there
exist functions g(t|θ) and h(x) such that for all x and all θ

f (x|θ) = g(T (x)|θ)h(x)

Proof

This proof is only for the discrete case.

Suppose T is suf£cient. Then

f (x|θ) = P(X = x) = P(X = x,T (X) = T (x)) = fX |T (x|T (x))
︸ ︷︷ ︸

h(x)

fT (T (x)|θ)︸ ︷︷ ︸
g(T (x)|θ)

So a factorization exists.

For the converse, suppose
f (x|θ) = g(T (x)|θ)h(x)

for some g,h. Let At = {y : T (y) = t}. Then

fT (t) = ∑
y∈At

f (y|θ) = g(t|θ) ∑
y∈At

h(y)

So

fX |T (x|t) =
f (x|θ)1{T (x)=t}

fT (t)
=

g(t|θ)h(x)1{T (x)=t}
g(t|θ)∑y∈At

h(y)

=
h(x)1{T (x)=t}

∑y∈At
h(y)

=
h(x)1At

(x)

∑y∈At
h(y)

which does not depend on θ .

We can use the factorization theorem to verify that a statistic is suf£cient.
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Examples

1. X1, . . . ,Xn are i.i.d. Bernoulli(θ ), T (X) = ∑Xi. Then

f (x|θ) =
n

∏
i=1

θ xi(1−θ)1−xi = θ T (x)(1−θ)n−T (x)

︸ ︷︷ ︸
g(T (x)|θ)

× 1︸︷︷︸
h(x)

2. X1, . . . ,Xn i.i.d. N(θ ,1), T (X) = X . Then

f (x|θ) =
1

(2π)n/2
exp

{
−1

2 ∑(xi−θ)2
}

=
1

(2π)n/2
exp

{
−1

2 ∑(xi− x)2− n
2
(x−θ)2

}

=
1

(2π)n/2
exp

{
−1

2 ∑(xi− x)2
}

︸ ︷︷ ︸
h(x)

exp{−n
2
(x−θ)2}

︸ ︷︷ ︸
g(x|θ)

So X is suf£cient.

To use the factorization theorem to £nd a suf£cient statistic, we need to

1. Split f (x|θ) into part that depends on θ and part that doesn’t

2. Work out how the part that depends on θ depends on X .

Example

X1, . . . ,Xn i.i.d N(µ,σ 2), θ = (µ,σ 2). Then

f (x|µ,σ 2) =
1

(2πσ 2)n/2
exp

{
− 1

2σ2 ∑(xi−µ)2
}

=
1

(2πσ 2)n/2
exp

{
− 1

2σ2 ∑(xi− x)2− n
2σ2 (x−µ)2

}

=
1

(2πσ 2)n/2
exp

{
−n−1

2σ2 s2− n
2σ2 (x−µ)2

}

= g(s2,x|θ)×1

So (S2,X) is suf£cient.

Note: if T is suf£cient and T (X) = H(R(X)), then R is also suf£cient (look at the factor-
ization theorem).

So (∑Xi,∑X2
i ) is also suf£cient.
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Example

Suppose X1, . . . ,Xn are i.i.d. from an exponential family

f (x|θ) = h(x)c(θ)exp

{
k

∑
j=1

w j(θ)t j(x)

}

Then

f (x1, . . . ,xn|θ) =

(
n

∏
i=1

h(xi)

)
c(θ)n exp

{
k

∑
j=1

w j(θ)
n

∑
i=1

t j(xi)

}

=

(
n

∏
i=1

h(xi)

)
c(θ)n exp

{
k

∑
j=1

w j(θ)Tj(x)

}

with Tj(x) = ∑n
i=1 t j(xi). So (T1, . . . ,Tk) is suf£cient for θ .

Example

X1, . . . ,Xn i.i.d. Poisson(λ ).

f (x|λ ) =
λ x

x!
e−λ =

1
x!

e−λ ex logλ

So T1 = ∑Xi is suf£cient.

Example

Suppose X1, . . . ,Xn are i.i.d. U [0,θ ]. Then

f (x1, . . . ,xn|θ) =
1

θ n

n

∏
i=1

1
[0,θ ]

(xi)

=

(
n

∏
i=1

1
[0,∞)

(xi)

)
1

θ n

(
n

∏
i=1

1
(−∞,θ ]

(xi)

)

=

(
n

∏
i=1

1
[0,∞)

(xi)

)

︸ ︷︷ ︸
h(x)

1
θ n 1

(−∞,θ ]
(x

(n)
)

︸ ︷︷ ︸
g(x

(n)
|θ)

So X
(n)

= max{X1, . . . ,Xn} is suf£cient for θ .
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Example

Suppose X1, . . . ,Xn are i.i.d. U [θ1,θ2]. Then

f (x1, . . . ,xn|θ) =
1

(θ2−θ1)
n

n

∏
i=1

1
[θ1,θ2]

(xi)

=
1

(θ2−θ1)
n 1

[θ1,∞)
(x

(1)
)1

(−∞,θ2]
(x

(n)
)

So (X
(1)

,X
(n)

) is suf£cient.

Homework

Problem 6.3
Problem 6.6

Due Friday, January 31, 2003.
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Week 2

Monday, January 27, 2003

Minimal Suf£ciency

De£nition

A suf£cient statistic T is minimal suf£cient if for any other suf£cient statistic T ′, T is a
function of T ′, i.e. T = R(T ′) for some function R.

Lehman-Scheffé Theorem

Let f (x|θ) be a PMF or PDF of X and let X = {x : f (x|θ) > 0 for some θ}. Suppose T (X)
has the property that for every x,y ∈X there exists a nonzero, £nite number k = k(x,y)
such that

f (x|θ) = k(x,y) f (y|θ)

for all θ if and only if T (x) = T (y). Then T is minimal suf£cient.

To use this result, you need to show that

(i) If T (x) = T (y) then k(x,y) exists.

(ii) If k(x,y) exists, then T (x) = T (y).

If {x : f (x|θ) > 0} does not depend on θ , then we need to show that for all x,y ∈X

f (x|θ)

f (y|θ)

is constant in θ if and only if T (x) = T (y). That is, we need to show

(i) If T (x) = T (y) then f (x|θ)
f (y|θ) is constant.

8



Statistics 22S:194, Spring 2003 Tierney

(ii) If f (x|θ)
f (y|θ) is constant, then T (x) = T (y).

If T is suf£cient, then T (x) = T (y) = t implies

f (x|θ)

f (y|θ)
=

g(t|θ)h(x)
g(t|θ)h(y)

=
h(x)
h(y)

which is constant in θ . So

(i) is suf£ciency

(ii) is minimality

Examples

1. X1, . . . ,Xn i.i.d. N(θ ,1)

f (x|θ)

f (y|θ)
=

exp{−1
2 ∑(xi−θ)2}

exp{−1
2 ∑(yi−θ)2}

= exp{θ(∑xi−∑yi)}k(x,y)

If ∑xi = ∑yi then this is constant in θ .

If ∑xi 6= ∑yi then this is not constant in θ .

So T (X) = ∑Xi is minimal suf£cient for θ .

2. X1, . . . ,Xn i.i.d. N(µ,σ 2), θ = (µ,σ 2).

f (x|θ)

f (y|θ)
=

exp{− 1
2σ2 ∑(xi−µ)2}

exp{− 1
2σ2 ∑(yi−µ)2}

= exp

{
1

2σ2

(
∑y2

i −∑x2
i

)
+

µ
σ2

(
∑xi−∑yi

)}

If ∑xi = ∑yi and ∑x2
i = ∑y2

i , then this is constant in θ .

If ∑xi 6= ∑yi or ∑x2
i 6= ∑y2

i , then this is not constant in θ .

So T (X) = (∑Xi,∑X2
i ) is minimal suf£cient for θ .

So is (X ,S2).

3. X1, . . . ,Xn i.i.d. U [0,θ ], Θ = (0,∞).

f (x|θ) =
1

θ n 1
[0,θ ]

(x
(n)

)

for x ∈X = [0,∞)n.

If x
(n)

= y
(n)

, x,y ∈X , then f (x|θ) = f (y|θ) for all θ ∈Θ.
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If x
(n)
6= y

(n)
, say x

(n)
< y

(n)
, then for θ ∈ (x

(n)
,y

(n)
) we have f (x|θ) > 0 and f (y|θ) =

0. No £nite, nonzero k can make these equal.

So T (X) = X
(n)

is minimal suf£cient.

4. X1, . . . ,Xn i.i.d. U [θ ,θ +1], X = Rn, Θ = R.

f (x|θ) = ∏1
[θ ,θ+1]

(xi) = 1
[θ ,∞)

(x
(1)

)1
(−∞,θ+1]

(x
(n)

)

If x1 = y
(1)

and x
(n)

= y
(n)

, then f (x|θ) = f (y|θ) for allθ .

If x
(1)
6= y

(1)
or x

(n)
6= y

(n)
, then for some θ one of f (x|θ) and f (y|θ) is positive and

the other zero, so no nonzero, £nite multiplier k can make them equal.

So T (X) = (X
(1)

,X
(n)

) is minimal suf£cient for θ .

5. X1, . . . ,Xn i.i.d.

f (x|θ) = h(x)c(θ)exp

{
k

∑
j=1

w j(θ)t j(x)

}

Let Tj(x) = ∑n
i=1 t j(xi). Then

f (x1, . . . ,xn|θ)

f (y1, . . . ,yn|θ)
=

∏h(xi)

∏h(yi)
exp

{
k

∑
j=1

w j(θ)(Tj(x)−Tj(y))

}

If Tj(x) = Tj(y) for j = 1, . . . ,k, then this is constant in θ .

Suppose the w j have the property that

k

∑
j=1

w j(θ)ai

is constant in θ is and only if a1 = · · ·= a j = 0. This is true if the set

{(w1(θ), . . . ,wk(θ)) : θ ∈Θ}

contains an open set. Then the ratio is constant in θ only if T j(x) = Tj(y) for all j.

So under this condition on the w j, (T1(X), . . . ,Tk(X)) in minimal suf£cient for θ .

Homework

Problem 6.9
Problem 6.10

Due Friday, January 31, 2003.
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Wednesday, January 29, 2003

Ancillary Statistics

De£nition

A statistic is ancillary if its distribution does not depend on θ .

Example

X1, . . . ,Xn i.i.d. U [0,θ ]. S(X) = X
(1)

/X
(n)

is ancillary.

Example

Suppose θ ∈ Θ = R is a location parameter, f (x|θ) = f (x1−θ , . . . ,xn−θ), and S is loca-
tion invariant, i.e.

S(x1, . . . ,xn) = S(x1 + c, . . . ,xn + c)

for all c. Then S is ancillary for θ . To see this, let

Z ∼ f (x1, . . . ,xn)

Then
Z +θ = (Z1 +θ , . . . ,Zn +θ)∼ X

and
S(X) = S(Z +θ) = S(Z)

So the distribution of S does not depend on θ . Special cases:

S(X) = (X1−X , . . . ,Xn−X)

S(X) = X1− X̃ , . . . ,Xn− X̃)

S(X) =
1

n−1 ∑(Xi−X)2

Similar results hold for location-scale families. For a location-scale family,

(
X1−X

S
, . . . ,

Xn−X
S

)

is ancillary.

Ancillary statistics are often used for model criticism.
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Completeness

Let f (t|θ) be a family of PDF’s or PMF’s for a statistic T (X). The family is called complete
if Eθ [|g(T )|] < ∞ and

Eθ [g(T )] = 0

for all θ implies Pθ (g(T ) = 0) = 1 for all θ . If the family of PDF’s or PMF’s of T is
complete, then T is called complete.

Example

Suppose T ∼ Binomial(n, p), 0 < p < 1. Suppose

Ep[g(T )] =
n

∑
t=0

g(t)

(
n
t

)
pt(1− p)n−t = 0

for all p ∈ (0,1). Then
n

∑
t=0

g(t)

(
n
t

)(
p

1− p

)t

= 0

for all p ∈ (0,1), or
n

∑
t=0

g(t)

(
n
t

)
xt = 0

for all x > 0. A polynomial is zero on an open interval if and only if all its coef£cients are
zero. So g(t) = 0 for t = 0, . . . ,n.

Example

Suppose X1, . . . ,Xn are i.i.d. U [0,θ ], T (X) = X
(n)

, and so

f (t|θ) =

{
n

θ n tn−1 0 < t < θ
0 otherwise

Suppose ∫ θ

0

n
θ n tn−1g(t)dt = 0

for all θ > 0. Then ∫ θ

0
tn−1g(t)dt = 0

for all θ > 0. If g is continuous, this implied that tn−1g(t) = 0 for all t > 0 and hence
g(t) = 0 for all t > 0. If g is not continuous but measurable, it implies that g(t) = 0 for
“almost all” t > 0. So Pθ (g(X

(n)
) = 0) = 1 for all θ > 0.
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Example

Suppose X1, . . . ,Xn are i.i.d. from an exponential family

f (x|θ) = h(x)c(θ)exp

{
k

∑
j=1

w j(θ)t j(x)

}

Suppose the set
{(w1(θ), . . . ,wk(θ)) : θ ∈Θ}

contains an open set in Rk. Then (T1, . . . ,Tk) with

Tj =
n

∑
i=1

t j(Xi)

is complete.

Basu’s Theorem

If T (X) is complete and suf£cient and S(X) is ancillary, then T (X) and S(X) are indepen-
dent.

Proof

Let S be ancillary and T complete and suf£cient. For any set A let

g(t) = P(S(X) ∈ A|T (X) = t)−P(S(X) ∈ A)

Since T is suf£cient, P(S(X) ∈ A|T (X) = t) does not depend on θ . Since S is ancillary,
P(S(X) ∈ A) does not depend on θ . So g(t) does not depend on θ . But

Eθ [g(T )] = E[P(S ∈ A|T )−P(S ∈ A)]

= E[P(S ∈ A|T )]−P(S ∈ A)

= P(S ∈ A)−P(S ∈ A) = 0

for all θ . Since T is complete, g(T ) = 0 almost surely, and so P(S ∈ A|T ) = P(S ∈ A)
almost surely. This holds for all A, so S,T are independent.

Examples

1. Suppose X1, . . . ,Xn are i.i.d. U [0.θ ], Θ = (0,∞). Then Ui = Xi/θ ∼ U [0,1]. So
X

(1)
/X

(n)
= U

(1)
/U

(n)
is ancillary. Since X

(n)
is complete and suf£cient, X

(1)
/X

(n)

and X
(n)

are independent.

13
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2. Suppose X1, . . . ,Xn are i.i.d. N(θ ,1) with Θ = R. Then Zi = Xi−θ ∼ N(0,1) and

S2 =
1

n−1 ∑(Xi−X)2 =
1

n−1 ∑(Zi−Z)2

is ancillary. X is minimal suf£cient and complete. So X and S2 are independent.

3. Suppose X1, . . . ,Xn are i.i.d. N(µ,σ 2). Let Zi = (Xi−µ)/σ ∼ N(0,1) and

Ci = (Xi−X)/S = (Zi−Z)/SZ

Then (C1, . . . ,Cn) is ancillary. X ,S2 is suf£cient and complete. So (C1, . . . ,Cn) is
independent of (X ,S2).

Homework

Problem 6.14
Problem 6.20

Due Friday, January 31, 2003.
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Friday, January 31, 2003

Likelihood

De£nition

Let f (x|θ) be the joint PMF or PDF of X . Then given X = x is observed, the likelihood
function is the function of θ ,

L(θ |x) = f (x|θ)

Informally, if L(θ1|x) > L(θ2|x) then there is more support in the data for θ1 than for θ2.

Likelihood Principle

If x,y are such that L(θ |x) = c(x,y)L(θ |y) for all θ and for some c(x,y) 6= 0, then x and y
should lead to the same inferences about θ .

Stronger version: Two experiments that lead to the same likelihood function should lead to
the same inferences about θ .

It can be argued that L(θ |x) is essentially a minimal suf£cient statistic, or that T (x) is
minimal suf£cient if and only if it is a one-to-one function of the likelihood function.

The likelihood principle follows from the suf£ciency principle and the conditionality prin-
ciple.

Conditionality Principle

Consider two situations:

1. Experiment E1 is performed.

2. A fair coin is ¤ipped to choose between E1 and E2, and E1 is chosen and performed.

The two should lead to the same conclusions.

Examples

1. Suppose X ∼ Negative Binomial(r, p),

f (x|p) =

(
r−1
x−1

)
pr(1− p)x−r

15
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for x = r,r +1, . . .. Suppose r = 4,x = 7. Then

L(p|r,x) ∝ p4(1− p)3

Common approach: Estimate p as

p̂ =
r
x

=
4
7

and look at the sampling distribution of p̂.

2. Suppose X ∼ Binomial(n, p)

f (x|p) =

(
n
x

)
px(1− p)n−x

for x = 0, . . . ,n. Suppose x = 4,n = 7. Then

L(p|n,x) ∝ p4(1− p)3

Common approach: Estimate p as

p̂ =
x
n

=
4
7

and look at the sampling distribution of p̂.

The estimates, likelihood functions are the same. Sampling distributions of the estimators
and interval estimates based on these sampling distributions are not. (They are close for
large r,n.)

Some feel the conditionality principle implies that all inference should be done condition-
ally on any ancillary statistic (the random choice of experiment is ancillary).

There are ways of de£ning maximal ancillary statistics.

Many feel the conditionality and suf£ciency principles are compelling.

Together they imply the likelihood principle.

Many standard frequentist methods violate the likelihood principle (often not by much, but
the difference can be substantial in sequential experiments).

A fully Bayesian approach automatically satis£es the likelihood principle.

How excited should you get about these observations?

References
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Week 3

Monday, February 3, 2003

Point Estimation

A standard “£rst stab” at £tting a model to data is to ask: What value of θ is the “best
guess” for the “true” value of θ based on the data.

We will look at

1. Methods for £nding estimators.

2. Methods for deciding how good an estimator is.

For now, a point estimator of θ is any statistic T (X) you decide you want to use to produce
a guess for the value of θ .

Calling a statistc a point estimator says nothing about its quality or appropriateness.

Method of Moments

The oldest method of £nding point estimators is the method of moments.

Suppose X1, . . . ,Xn are i.i.d. f (x|θ1, . . . ,θk) and that we have k functions M1, . . . ,Mk such
that

µM j
= E[M j(X)] = µM j

(θ1, . . . ,θk)

are known. Let

m j =
1
n

n

∑
i=1

M j(Xi)

By the Law of Large Numbers, m j ≈ µM j
for large n.

18
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Method of Moments: Set

m1 = µM1
(θ1, . . . ,θk)

...

mk = µMk
(θ1, . . . ,θk)

and solve for θ1, . . . ,θk to get θ̃1, . . . , θ̃k.

Usually we try to use
M j(x) = x j

This choice leads to the traditional method of moments.

But sometimes other choices are used.

Examples

1. Suppose X1, . . . ,Xn are i.i.d. N(µ,σ 2). Then

1
n ∑Xi = µ

1
n ∑X2

i = µ2 +σ2

produces

µ̃ = X

σ̃2 =
1
n ∑(Xi−X)2 =

n−1
n

S2

This is reasonable; σ̃2 may be a bit different from what one might expect.

2. Suppose X1, . . . ,Xn are i.i.d. U [0,θ ]. Then

X =
θ
2

yields θ̃ = 2X .

Problem: Can have X
(n)

> 2X—in this case we know θ̃ is too small.

A better estimator would insure that this kind of inconsistency does not occur.

The method of moments is often easy to use.

The choice of M1, . . . ,Mk is arbitrary; the best choice is not obvious.

The estimators produced are often not ideal.

The basic idea is not easy to extend to non-i.i.d data.

The method of moments is often useful as a £rst step.

19
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Homework

Problem 7.6
Problem 7.11

Due Friday,February 7 , 2003.
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Wednesday, February 5, 2003

Maximum Likelihood

De£nition

Let L(θ |x) = f (x|θ) be the likelihood function for an observed X = x. For each x, let θ̂(x)
be the value that maximizes L(θ |x) as a function of θ with x held £xed. Then θ̂(x) is a
maximum likelihood estimator of θ .

Notes:

• θ̂ ∈Θ by construction.

• If L(θ ′|x) = f (x|θ ′) = 0, then θ̂ 6= θ ′.

• θ̂ may not exist.

• θ̂ may not be unique.

• θ̂ may exist and be unique but be hard to £nd.

Often we can £nd the MLE by

• differentiating and £nding roots

• checking for a global maximum

It is almost always easier to maximize

logL(θ |x)

instead of L(θ |x) (and equivalent). As a convention, log0 =−∞.

Examples

1. Suppose X1, . . . ,Xn are i.i.d. N(θ ,1) Then

L(θ |x) =
1

(2π)n/2
exp

{
−1

2 ∑(xi−θ)2
}

logL(θ |x) = const− 1
2 ∑(xi−θ)2

d
dθ

logL(θ |x) = ∑(xi−θ) = ∑xi−nθ = n(x−θ)
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The unique root is θ̂ = x.

The likelihood is continuously differentiable, and θ → ±∞ implies logL(θ |x)→
−∞. Therefore a global maximum exists, every global maximum is an interior local
maximum and thus a root of the derivative. Since there is only one such root, θ̂ = X
is the unique global maximizer.

Alternative:
d2

dθ 2 logL =−n < 0

for all θ , so logL is strictly concave and a zero of the derivative is a unique global
maximum.

2. Suppose X1, . . . ,Xn are i.i.d. N(µ,σ 2) = N(θ1,θ2).

L(θ |x) =
1

(2πθ2)
n/2

exp

{
− 1

2θ2
∑(xi−θ1)

2
}

logL(θ |x) = const− n
2

logθ2−
1

2θ2
∑(xi−θ1)

2

∂
∂θ1

=
1
θ2

∑(xi−θ1)

∂
∂θ2

=− n
2θ2

+
1

2θ 2
2

∑(xi−θ1)
2

Likelihood equations:

0 =
1
θ2

∑(xi−θ1)

0 =− n
2θ2

+
1

2θ 2
2

∑(xi−θ1)
2

Solution:

θ̂1 = x

θ̂2 =
1
n ∑(xi− x)2 =

n−1
n

s2

To see that this is a global maximum:

• for each θ2, θ̂1 = x maximizes L(θ1,θ2|x) over θ1.

• for θ1 = x, L(x,θ2|x) is strictly concave.

Global second derivative conditions are harder.
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More MLE Examples

Examples

1. X1, . . . ,Xn i.i.d. Bernoulli(p).

L(p|x) = p∑xi(1− p)n−∑xi

logL(p|x) = ∑xi log p+(n−∑xi) log(1− p)

Differentiate, set to zero for p ∈ (0,1):

0 =
∑xi

p
− n−∑xi

1− p
or

0 = (1− p)∑xi− p(n−∑xi) or

0 = ∑xi−np so

p̂ =
1
n ∑xi

This is an interior local maximum if 0 < ∑xi < n and a global maximum.

If ∑xi = 0, then L(p|x) is decreasing, so p̂ = 0.

If ∑xi = n, then L(p|x) is increasing, so p̂ = 1.

If Θ = (0,1), then p̂ does not exist in these boundary cases.

If Θ = [0,1], then p̂ exists for all samples, and in all cases p̂ = 1
n ∑xi.

2. X1, . . . ,Xn i.i.d. U [0,θ ].

L(θ |x) =
1

θ n 1
[0,θ ]

(x
(n)

)

This is maximized at θ = x
(n)

, so the MLE is θ̂ = X
(n)

.

This is a better estimator than the MM estimator, but we know it has to be a bit too
small.

Suppose we use U(0,θ) instead. Then the MLE, strictly speaking, does not exist:
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MLE Invariance

Suppose we are interested in a function τ(θ) and θ̂ is the MLE of θ . Is τ(θ̂) the MLE of
τ(θ)?

If τ is one-to-one, then the answer is yes: We can write

L∗(t|x) = L(τ−1(t)|x)

and if θ̂ maximizes L, then t̂ = τ(θ̂) maximizes L∗.

If τ is not one-to-one, then it is not clear what “the MLE of τ(θ)” really means—MLE’s
are de£ned assuming θ uniquely identi£es f (x|θ). If τ is not one-to-one, then we may have
several θ ’s, with possibly different values of L(θ |x), that have the same value of τ(θ).

Solution: De£ne L∗(t|x), the induced (or pro£le) likelihood, as

L∗(t|x) = sup{L(θ |x) : τ(θ) = t}

Now let t̂ be the value that maximizes L∗. Then

L∗(̂t|x) = sup
t
{L(θ |x) : τ(θ) = t}

= sup
θ

L(θ |x)

= L(θ̂ |x)

and

L(θ̂ |x) = sup{L(θ |x) : τ(θ) = τ(θ̂)}
= L∗(τ(θ̂)|x)

So τ(θ̂) is an MLE of τ(θ) based on this de£nition.

The property that
τ̂(θ) = τ(θ̂)

is called the invariance property of the MLE.

Homework

Problem 7.13
Problem 7.14

Due Friday, February 7, 2003.
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Friday, February 7, 2003

Bayes Estimators

The Bayesian approach uses a prior distribution and a likelihood to compute a posterior
distribution and bases all inferences on the posterior distribution.

We can also use a posterior distribution to produce point estimators.

The posterior mean is a common choice.

The median is another possibility.

Example

Let X1, . . . ,Xn be i.i.d. Bernoulli(p). Suppose we use a prior that is Beta(α,β ). Then the
posterior is

f (p|x) =
f (x|p) f (p)

f (x)
∝ f (x|p) f (p)

∝ p∑xi(1− p)n−∑xi pα−1(1− p)β−1

= pα+∑xi−1(1− p)β+n−∑xi−1

∼ Beta
(
α +∑xi,β +n−∑xi

)

So

E[p|x] = α +∑xi

α +β +n
=

α
α +β

α +β
α +β +n

+
1
n ∑xi

n
α +β +n

For α,β ≈ 0, E[p|x]≈ 1
n ∑xi.

For α,β > 0, 0 < E[p|x] < 1.

Conjugate Families

Let F = { f (x|θ) : θ ∈ Θ} be a class of PMF’s or PDF’s. A collection Π of prior distribu-
tions on Θ is conjugate for F if the posterior distribution is in Π for any prior distribution
in Π and any x ∈X .

The family Π = { f (p) = Beta(α,β ) : α,β > 0} is conjugate for

F = {n i.i.d. Bernoulli(p)}
= {n i.i.d. Geometric(p)}
= {Binomial(n, p)}
= {Negative Binomial(n, p)}
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Examples

1. X1, . . . ,Xn i.i.d. Poisson(λ ), λ ∼ Gamma(α,β )

f (λ |x) ∝ f (x|λ ) f (λ )

∝ λ ∑xie−nλ λ α−1eλ/β

= λ α+∑xi−1e−λ (n+1/β )

∼ Gamma(α +∑xi,(n+1/β )−1)

So

E[λ |x] = α +∑xi

n+1/β
= αβ

1
1+nβ

+ x
nβ

1+nβ
The family Π = { f (λ ) = Gamma(α,β ) : α,β > 0} is conjugate for

F = Poisson i.i.d.

= Poisson Process

= Exponential i.i.d., mean 1/λ

2. X1, . . . ,Xn i.i.d. N(θ ,σ 2), σ2 known, θ ∼ N(µ,τ2).

f (θ |x) ∝ f (x|θ) f (θ)

∝ exp

{
− 1

2σ2 ∑(xi−θ)2− 1
2τ2 (θ −µ)2

}

∝ exp

{
− n

2σ2 θ 2− 1
2τ2 θ 2 +

θ
σ2 ∑xi +

θ
τ2 µ

}

This is of the form

exp

{
−1

2
(θ −a)2

b

}

with

a
b

=
1

σ2 ∑xi +
µ
τ2

1
b

=
n

σ2 +
1
τ2

So f (θ |x)∼ N(a,b), with

a =
1

σ2 ∑xi + µ/τ2

n/σ 2 +1/τ2 =
τ2

τ2 +σ2/n
x+

σ2/n
τ2 +σ2/n

µ

b =
τ2σ2/n

τ2 +σ2/n
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Homework

Problem 7.22
Problem 7.23

Due Friday, February 14, 2003.
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Week 4

Monday, February 10, 2003

Methods of Evaluating Estimators

Mean Squared Error

A useful measure of the quality of an estimator W of a quantity τ(θ) is the mean square
error (MSE):

MSE(W,θ) = Eθ [(W − τ(θ))2]

Notes:

MSE(W,θ) measures the average error.

Other “loss functions” are possible but are less convenient.

MSE(W,θ) is a function of θ .

We can decompose MSE(W,θ) into

MSE(W,θ) = Eθ [(W − τ(θ))2] = Varθ (W )+(Eθ [W ]− τ(θ))2

= Varθ (W )+Bias(W,θ)2

Bias

The bias of W is
Bias(W,θ) = Eθ [W ]− τ(θ)

W is called unbiased if Bias(W,θ) = 0 for all θ .

So there are two components to the MSE: bias and variance. Sometimes we can trade off
one against the other.
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Example

Let X1, . . . ,Xn be i.i.d. N(µ,σ).

X and S2 are unbiased for µ and σ 2. So

MSE(X ,µ,σ 2) = Var(X) =
σ2

n

MSE(S2,µ,σ 2) = Var(S2) =
2σ4

n−1

The MLE is µ̂ = X , σ̂2 = n−1
n S2. The MSE of σ̂2 is

MSE(σ̂2,µ,σ 2) =

(
n−1

n

)2 2σ4

n−1
+

1
n2 σ4

=
σ4

n2 (2(n−1)+1) =
σ4

n2 (2n−1)

But
2n−1

n2 <
2

n−1
for n≥ 1, so

MSE(σ̂2) < MSE(S2)

Often a variance-bias tradeoff is useful.

Finding Optimal Estimators?

Ideally, we would like to £nd an estimator W ∗ such that

MSE(W ∗,θ)≤MSE(W,θ)

for all θ and all other estimators W .

Unfortunately, this is usually impossible. Take

W ≡ 7

Then

MSE(W,θ) = Var(W )+(E[W ]− τ(θ))2

= 0+(7− τ(θ))2 = (7− τ(θ))2

which is zero if τ(θ) = 7.

This is not a “reasonable” estimator.
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“Reasonable” estimators will have Varθ (W ) > 0 for most if not all θ .

We need to restrict ourselves to “reasonable” estimators to develop a nice theory. “Reason-
able” means the estimator must make some effort to “track” the target. This needs to be
given a precise de£nition to be useful.

A few possibilities:

Unbiasedness—require E[W ] = τ(θ) for all θ .

Invariance—shifting τ(θ) by a shifts W by a.

Consistency—Wn
P→ τ(θ) for all θ .

The cleanest theory is available for unbiased estimation.

Requiring (exact) unbiasedness can be very restrictive. It can (though it usually doesn’t)
lead to really stupid estimators. An example where this is the case:

Example

Suppose X ∼ Poisson(θ) and
τ(θ) = e−2θ

Suppose W is unbiased for τ(θ). Then

e−2θ =
∞

∑
k=0

w(k)
θ k

k!
e−θ

for all θ > 0, or

e−θ =
∞

∑
k=0

w(k)
θ k

k!

But

e−θ =
∞

∑
k=0

(−1)k θ k

k!

and power series are unique on their radius of convergence. So we must have w(k) = (−1)k.
Thus the only unbiased estimator of τ(θ) = e−2θ is

W =

{
−1 if X is odd

+1 if X is even

This is a pretty silly estimator.
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Homework

Problem 7.33

Due Friday, February 14, 2003.
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Wednesday, February 12, 2003

De£nition

An estimator W ∗ is a best unbiased estimator of τ(θ) if it satis£es Eθ [W ∗] = τ(θ) for all
θ , and for any other estimator W with Eθ [W ] = τ(θ) for all θ we have

Varθ (W ∗)≤ Varθ (W )

for all θ . W ∗ is also called a uniformly minimum variance unbiased estimator (UMVUE).

Finding UMVUE’s by trial and error is hard. We will look at two approaches:

1. Find a lower bound on the best possible variance (CramÁer-Rao lower bound). If an
estimator W ∗ achieves this lower bound, then it must be UMVUE. (We can charac-
terize when this is possible.)

2. Show that there is a restricted class C of estimators such that for any unbiased W
there is a W ′ ∈ C that is at least as good.

Show that under some conditions C has only one element.

Then if W ∈C is that element, W must be the UMVUE (Lehmann-Scheffé approach)

Cramer-Rao Lower Bound

Let X1, . . . ,Xn have joint PDF f (x|θ) for θ ∈ Θ, an open subset of R, and let W be any
estimator such that Eθ [W ] is differentiable with respect to θ over Θ. Suppose that f (x|θ)
satis£es

d
dθ

∫
· · ·

∫
h(x) f (x|θ)dx1 · · ·dxn =

∫
· · ·

∫
h(x)

∂
∂θ

f (x|θ)dx1 · · ·dxn

for any h(x) with Eθ [|h(X)|] < ∞ for all θ . Then

Varθ (X)≥
(

d
dθ Eθ [W ]

)2

Eθ

[(
∂

∂θ log f (X |θ)
)2
]

Variations:

For discrete data, replace
∫

by ∑.

For Θ an open subset of Rm and W real-valued,

Varθ (X)≥ ∇Eθ [W ]︸ ︷︷ ︸
1×m

(
Eθ

[
∂

∂θi
log f (X |θ)

∂
∂θ j

log f (X |θ)

])−1

i j︸ ︷︷ ︸
m×m

∇Eθ [W ]T︸ ︷︷ ︸
m×1

32



Statistics 22S:194, Spring 2003 Tierney

Cramer-Rao Lower Bound

Proof

The proof uses the Cauchy-Schwartz inequality in the form

Var(X)≥ Cov(X ,Y )2

Var(Y )

with X = W and Y = ∂
∂θ log f (X |θ). First,

Eθ

[
∂

∂θ
log f (X |θ)

]
= Eθ

[
∂

∂θ f (X |θ)

f (X |θ)

]

=
∫ ∂

∂θ f (x|θ)

f (x|θ)
f (x|θ)dx

=
∫ ∂

∂θ
f (x|θ)dx

=
∂

∂θ

∫
f (x|θ)dx =

∂
∂θ

1 = 0

Similarly,

Cov

(
W,

∂
∂θ

log f (X |θ)

)
=

∫
W (x)

∂
∂θ f (x|θ)

f (x|θ)
f (x|θ)dx

=
∫

W (x)
∂

∂θ
f (x|θ)dx

=
∂

∂θ

∫
W (x) f (x|θ)dx

=
∂

∂θ
Eθ [W ]

and

Varθ

(
∂

∂θ
log f (x|θ)

)
= Eθ

[(
∂

∂θ
log f (X |θ)

)2
]

So from the Cauchy-Schwartz inequality,

Varθ (W )≥

(
∂

∂θ Eθ [W ]
)2

E

[(
∂

∂θ log f (X |θ)
)2
]
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The quantity in the denominator is called the Fisher information for θ ,

In(θ) = E

[(
∂

∂θ
log f (X |θ)

)2
]

θ ∈ R

=

(
E

[
∂

∂θi
log f (X |θ)

∂
∂θ

log f (X |θ)

])

i j

θ ∈ Rm

If X1, . . . ,Xn are i.i.d. from f , then

log f (x1, . . . ,xn|θ) = ∑ f (xi|θ)

and therefore
In(θ) = nI1(θ)

Equality in the CRLB

Equality in the CRLB occurs if and only if there is equality in the Cauchy-Schwartz in-
equality. This happens if and only if

∂
∂θ

log f (x|θ) = a(θ)+b(θ)W (x)

for some a(θ),b(θ). This implies

log f (x|θ) = C(x)+B(θ)W (x)+A(θ)

f (x|θ) = exp{C(x)}exp{A(θ)}exp{B(θ)W (x)}

So f is an exponential family with suf£cient statistic W (X).

Conversely, if
f (x|θ) = c(θ)h(x)exp{t(x)w(θ)}

then
∂

∂θ
log f (x|θ) =

c′(θ)

c(θ)
+ t(x)w′(θ)

So

E[t(X)] =− c′(θ)

c(θ)w′(θ)

and t(X) is a UMVUE for − c′(θ)
c(θ)w′(θ) .

An unbiased estimator is called ef£cient if it achieves the CRLB for all θ .
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Computing the Fisher Information

Suppose ∫ ∂ 2

∂θ 2 f (x|θ)dx =
∂ 2

∂θ 2

∫
f (x|θ)dx = 0

for all θ . Then

Eθ

[
− ∂ 2

∂θ 2 log f (X |θ)

]
=−

∫
f f ′′− f ′ f ′

f 2 f dx

=−
∫

f ′′dx+
∫ (

f ′

f

)2

f dx

= I(θ)

or

I(θ) =−
(

Eθ

[
∂ 2

∂θi∂θ j
log f (X |θ)

])

i j

Differentiability assumptions hold for all exponential families.

Examples

1. X1, . . . ,Xn i.i.d. N(θ ,1).

log f (x|θ) = const− 1
2 ∑(xi−θ)2

∂
∂θ

log f (x|θ) = ∑(xi−θ) = n(x−θ)

I(θ) = E[(n(X−θ))2] = n2Var(X) = n

− ∂ 2

∂θ 2 log f (x|θ) = n

So for W that are unbiased for θ , Var(W )≥ 1/n. So X is UMVUE.

2. X1, . . . ,Xn i.i.d. Poisson(θ ).

log f (x|θ) = const+nx logθ −nθ
∂

∂θ
log f (x|θ) =

nx
θ
−n =

n
θ

(x−θ)

I(θ) =
n2

θ 2 E[(X−θ)2] =
n2

θ 2

θ
n

=
n
θ

− ∂ 2

∂θ 2 log f (x|θ) =
nx
θ 2

I(θ) =
n

θ 2 E[X ] =
n
θ

So if W is unbiased for θ , then Var(W )≥ θ/n. So X is UMVUE of θ .
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3. X1, . . . ,Xn i.i.d. U [0,θ ]

∂
∂θ

∫ θ

0
h(x)

1
θ

dx 6=
∫ θ

0
h(x)

(
− 1

θ 2

)
dx

for all h(x). So the CRLB does not apply.

4. Suppose we want an unbiased estimator of θ 2 for Poisson data. The lower bound is

Var(W )≥ 4θ 2 θ
n

=
4
n

θ 3

Is this attainable? No!

Homework

Problem 7.38
Problem 7.39

Due Friday, February 14, 2003.
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Friday, February 14, 2003

Finding Best Unbiased Estimators

Rao-Blackwell Theorem

Let W be an unbiased estimator of τ(θ) and let T be a suf£cient statistic for θ . Let φ(T ) =
E[W |T ]. Then φ(T ) is an unbiased estimator of τ(θ) and

Varθ (φ(T ))≤ Varθ (W )

for all θ .

Proof

Since T is suf£cient, E[W |T ] does not depend on θ . So φ(T ) is a statistic. Furthermore,

Eθ [φ(T )] = Eθ [E[W |T ]] = Eθ [W ] = τ(θ)

So φ(T ) is unbiased for τ(θ). Finally,

Varθ (W ) = Varθ (E[W |T ])+Eθ [Var(W |T )]

≥ Varθ (E[W |T ])

= Varθ (φ(T ))

Example

Suppose X1, . . . ,Xn are i.i.d. Geometric(p). Want a good estimator of p.

An unbiased estimator of p is

W =

{
1 if X1 = 1

0 if X1 6= 1
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T = ∑Xi is suf£cient.

E[W |T = t] = P(W = 1|T = t)

=
P(W = 1,∑n

2 Xi = t−1)

P(∑n
1 Xi = t)

=
p
(t−2

n−2

)
pn−1(1− p)t−n

(t−1
n−1

)
pn(1− p)t−n

=

(t−2
n−2

)
(t−1

n−1

)

=
(t−2)!(n−1)!
(t−1)!(n−2)!

=
n−1
t−1

So

φ(∑Xi) =
n−1

∑Xi−1

is unbiased for p and better than W .

It is in fact the UMVUE.

Lehmann-Scheffé Theorem

Let T be a complete, suf£cient statistic for θ , and let φ(T ) have expectation τ(θ) for all θ .
Then φ(T ) is the only function of T with expectation τ(θ) for all θ , and it is the UMVUE
of τ(θ).

Proof

Suppose φ ′ is another function with Eθ [φ ′(T )] = τ(θ). Then

Eθ [φ(T )−φ ′(T )] = 0

for all θ , and so by completeness

Pθ (φ(T ) = φ ′(T )) = 1

for all θ .

If W is unbiased for τ(θ), then φ ′(T ) = E[W |T ] is at least as good. But φ ′(T ) is unbiased,
so φ ′ = φ , and thus φ(T ) is at least as good as any unbiased estimator W .
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Examples

1. Suppose X1, . . . ,Xn are i.i.d. U [0,θ ]. Then W = n+1
n X

(n)
is unbiased for θ . Since it

is a function of a complete, suf£cient statistic, it is the UMVUE.

2. Suppose X1, . . . ,Xn are i.i.d. Poisson(θ ) and τ(θ) = θ 2. Then

W = X
2− X

n
= X(X −1/n)

is unbiased for τ(θ). Since X is complete and suf£cient, W is the UMVUE. Note
that W < 0 is possible.

3. Suppose X1, . . . ,Xn are i.i.d. Bernoulli(p) and τ(p) = p(1− p). An unbiased estima-
tor is given by

W = X1(1−X2)

T = ∑Xi is complete and suf£cient, so

φ(T ) = E[W |∑Xi]

is the UMVUE. Now

E[W |∑Xi = t] = P(X1 = 1,X2 = 0|∑Xi = t)

=
P(X1 = 1,X2 = 0,∑n

3 Xi = t−1)

P(∑n
1 Xi = t)

=





0 t = 0
p(1−p)(n−2

t−1)pt−1(1−p)n−t−1

(n
t)pt(1−p)n−t t = 1, . . . ,n

=





0 t = 0
(n−2

t−1)
(n

t)
t = 1, . . . ,n

=

{
0 t = 0
t(n−t)
n(n−1) t = 1, . . . ,n

=
t(n− t)
n(n−1)

So the UMVUE of τ(p) = p(1− p) is

φ(T ) =
∑Xi(n−∑Xi)

n(n−1)
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Homework

Problem 7.44
Problem 7.48

Due Friday, February 21, 2003.
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Week 5

Monday, February 17, 2003

Loss Function Optimality

A general framework: the usual three,

Θ parameter space

X sample space

f (x|θ) model

and

A action space

L(θ ,a) loss function

δ (x) decision rules

Loss function:

L(θ ,a) = loss when action a is taken and state of nature is θ

Decition rule δ (x) : (X)→A :

δ (x) = action to take if x is observed

Examples

1. Point estimation with squared error loss:

Θ = R
A = Θ = R

L(θ ,a) = (θ −a)2

Decision rules are estimators.
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2. Hypothesis tests:

Θ = Θ0∪Θ1, with Θ0,Θ1 disjoint

A = {Reject H0,Accept H0}

L(θ ,a) =





1 if θ ∈Θ0 and a = Reject H0

1 if θ ∈Θ1 and a = Accept H0

0 otherwise

Decision rules are test criteria.

Loss functions used for estimation usually satisfy L(θ ,a) ≥ 0 and L(θ ,a) = 0 if and only
if θ = a.

A number of different loss functions can be used for estimation problems:

1. Squared error loss
L(θ ,a) = (θ −a)2

2. Absolute error loss
L(θ ,a) = |θ −a|

3. Asymmetric loss

L(θ ,a) =

{
c(θ −a) if θ ≥ a

d(a−θ) otherwise

4. Bounded loss

L(θ ,a) =
(θ −a)2

1+(θ −a)2

The actual loss incurred by using decitin rule δ when the state of nature is θ and X is
observed is the random variable

actual loss = L(θ ,δ (X))

We compare decision rules in terms of the expected loss, also called the risk function:

De£nition

The risk function of a decision rule δ is

R(θ ,δ ) = Eθ [L(θ ,δ (X))]

We want to £nd decision rules with low risk. But risk depends on θ . Often risk functions
cross:
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Example

Suppose X ∼ N(θ ,1), L(θ ,a) is squared error loss, δ1(X) = X , and δ2(X) = 3. Then

R(θ ,δ1) = 1

R(θ ,δ2) = (θ −3)2

When risk functions do cross they are not comparable. If the do not cross we can compare
them:

De£nition

A decision rule δ1 is as good as, or at least as good as, a decision rule δ2 is R(θ ,δ1) ≤
R(θ ,δ2) for all θ .

A decision rule δ1 is better than δ2 if it is as good as |delta2 and R(θ ,δ1) < R(θ ,δ2) for
some θ .

A decision rule δ is admissible if no better decision rule exists.

Example

Let X1, . . . ,Xn be i.i.d. N(µ,σ 2). Want to estimate σ 2 with squared error loss. Consider
estimators of the form

δb(X) = bS2

Now

R((µ,σ 2),δb) = Var(bS2)+(E[bS2]−σ2)2

= b2 2σ4

n−1
+(b−1)2σ4

=

[
2b2

n−1
+(b−1)2

]
σ4

The value b = (n−1)/(n+1) minimizes the risk for all σ 2, so δ
(n−1)/(n+1)

(X) = n−1
n+1S2 is

the best estimator in this class.
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Wednesday, February 19, 2003

Loss Function Optimality

Many papers are written on £nding admissible estimators.

Many (not all) standard estimators are admissible.

For X ∼ N(θ ,1) and square error loss the estimator δ (X) = X is admissible.

For X1 ∼ N(θ1,1), X2 ∼ N(θ2,1), X1,X2 independent, and loss function

L(θ ,a) = (θ1−a1)
2 +(θ2−a2)

2

the decision rule δ (X) = (X1,X2) is admissible.

For X1, . . . ,Xn independent, Xi ∼ N(θi,1), and loss function

L(θ ,a) = ∑(θi−ai)
2

the decision rule δ (X) = (X1, . . . ,Xn) is not admissible if n ≥ 3. Shrinkage estimators can
beat it. This is known as Stein’s paradox.

Bayes Risk and Bayes Rules

If a prior distribution π(θ) is available then the average risk, or Bayes risk, can be used to
compare decision rules:

De£nition

The Bayes risk for a decision rule δ and a prior π is

B(π,δ ) = Eπ [R(θ ,δ )] =
∫

Θ
R(θ ,δ )dθ

The Bayes rule δ π is the decision rule that minimizes the Bayes risk.

The Bayes risk can be written as

B(π,δ ) = E[R(θ ,δ )] = E[E[L(θ ,δ (X))|θ ]] = E[E[L(θ ,δ (X))|X ]]

Suppose we de£ne a decision rule δ ∗ as

δ ∗(x) = argmin
a

E[L(θ ,a)|X = x]

Then for any decision rule δ

B(π,δ ) = E[E[L(θ ,δ (X))|X ]]≥ E[E[L(θ ,δ ∗(X))|X ]] = B(π,δ ∗)

So δ ∗ is a Bayes rule.
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Examples

1. For estimation with squared error loss the Bayes rule, often called the Bayes estima-
tor, is the posterior mean

δ π(X) = E[θ |X ]

2. For estimation with absolute error loss the Bayes rule is the posterior median.

So if X1, . . . ,Xn are i.i.d. Bernoulli(p) wnd the prior distribution on p is Beta(α,β ), then
the Bayes rule for squared error loss is

δ π(X) = E[p|X ] =
∑Xi +α

α +β +n

Bayes Estimators Are Not Unbiased

Suppose W = E[θ |X ] is a Bayes estimator, i.e. a Bayes rule under squared error loss, and
is unbiased. Then

E[(W −θ)2] = E[E[(W −θ)2|θ ]]

= E[E[W 2−2Wθ +θ 2|θ ]]

= E[W 2]−2E[θE[W |θ ]]+E[θ 2]

= E[W 2]−E[θ 2]

On the other hand,

E[(W −θ)2] = E[E[(W −θ)2|X ]]

= E[W 2]−2E[WE[θ |X ]]+E[θ 2]

= E[θ 2]−E[W 2]

So we must have E[W 2] = E[θ 2] and thus

E[(W −θ)2] = 0

So W can only be unbiased if it is perfect! (Assumes E[W 2] < ∞.)

Homework

Problem 7.62
Problem 7.63
Problem 7.64

Due Friday, February 21, 2003.
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Friday, February 21, 2003

Hypothesis Testing

A hypothesis is a statement about a parameter.

In a testing problem, there are two hypotheses:

H0 : the null hypothesis

H1 : the alternative hypothesis

Usually these are complementary, i.e. one and only one of H0 and H1 is true.

Examples:

H0 : θ = θ0
H1 : θ 6= θ0

H0 : θ = θ0
H1 : θ > θ0

or
H0 : θ ≤ θ0
H1 : θ > θ0

Less common forms:

H0 : θ 6= θ0
H1 : θ = θ0

or
H0 : θ 6∈ θ0±δ
H1 : θ ∈ θ0±δ

The null hypothesis often corresponds to a claim that a treatment has no effect.

The alternative then usually says that the treatment has some effect (θ 6= θ0) or an effect in
a particular direction (θ > θ0).

A hypothesis testing procedure is a rule for determining, based on data X , whether to reject
H0 in favor of H1 or not.

The set of X values for which H0 is rejected is called the critical region R, or the rejection
region, of the test.

A hypothesis test can also be expressed in term of a test function,

φ(X) =

{
1 if X rejects H0

0 if X does not reject H0

A test function corresponding to a rejection region R takes on only the values 0 or 1. In
fact,

φ(X) = 1R(X)

As a technical device it is useful to allow other values in [0,1]; then

φ(X) = P(reject H0|observe X)
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i.e. you ¤ip a coin with success probability φ(X) if you observe X .

Most hypothesis tests are developed in terms of a test statistic W = W (X).

The corresponding rejection region then looks something like

R = {X : W (X) > c}

for some choice of c.

Examples:
H0 : µ = 3
H1 : µ 6= 3

W = |X−3|
R = {W > 0.5}

or
H0 : σ = 2
H1 : σ > 2

W = S/2

R = {W > 1.5}

A nice feature about hypothesis tests is that the errors you can make are easy to think about:

H0 H1
Reject H0 Type I Error OK
Don’t Reject H0 OK Type II Error

We want test procedures that make both errors have small probability.

For the moment we will look at ways of coming up with classes of tests, or test statistics,
like

RejectH0 : µ = µ0

in favor ofH1 : µ > µ0

if X is too large, i.e.
R = {X > c}

for some c.

Choosing c and n affects our error probabilities.

After looking at ways of generating such families of tests, we will look at ways of compar-
ing them.
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Example

Suppose λ is the mean of a Poisson population.

H0 : λ = 7 R1 = {X > c1} reject if X is large

H1 : λ > 7 R2 = {S2 > c2} reject if S2 is large

Which is better? (R1 is.)
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Week 6

Monday, February 24, 2003

Methods for Constructing Tests

Likelihood Ratio Tests

The likelihood ratio test statistic for testing

H0 : θ ∈Θ0
H1 : θ ∈Θ\Θ0

is

Λ(X) =
supΘ0

L(θ |X)

supΘ L(θ |X)

(I use Λ, the text uses λ .)

A likelihood ratio test is any test that has critical region equivalent to

{x : Λ(x)≤ c}

for some c.

Rationale:

numerator is maximum over Θ0 only; denominator is unrestricted maximum.

mathematically, denominator ≥ numerator

If denominator is much larger than the numerator, then there is strong evidence
against H0 in favor of H1.

If the denominator and the numerator are close, then there is little evidence against
H0 in favor of H1.
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Example

X1, . . . ,Xn i.i.d. N(θ ,1).
H0 : θ = θ0
H1 : θ 6= θ0

Λ(x) =
(2π)−n/2 exp

{
−1

2 ∑(xi−θ0)
2
}

(2π)−n/2 exp
{
−1

2 ∑(xi− x)2
}

= exp

{
1
2 ∑(xi− x)2− 1

2 ∑(xi−θ0)
2
}

= exp
{
−n

2
(x−θ0)

2
}

since

∑(xi−θ0)
2 = ∑(xi− x)2 +n(x−θ0)

2

So

{Λ(x) < c}=

{
|x−θ0|>

√
2logc

n

}

or
{|x−θ0|> c}

is a likelihood ratio test.

It is usually useful to try to simplify the LRT in this way, mainly because we will need to
pick a particular c or think about different values of c.

Theorem

If T is a suf£cient statistic, then the LRT only depends on the data through T . Furthermore,
the LRT based on the distribution of T is equivalent to the LRT based on the full data.

Proof

Let f (x|θ) be the PDF or PMF of X , q(t|θ) the PMF or PDF of T . Then from results
related to the factorization theorem, there exist g, h1 and h2 such that

f (x|θ) = g(T (x)|θ)h1(x)

q(t|θ) = g(t|θ)h2(t)
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So

Λ(x) =
supΘ0

f (x|θ)

supΘ f (x|θ)
=

supΘ0
g(T (x)|θ)

supΘ g(T (x)|θ)

Λ∗(T (x)) =
supΘ0

q(T (x)|θ)

supΘ q(T (x)|θ)
=

supΘ0
g(T (x)|θ)

supΘ g(T (x)|θ)

Bayes Tests

In the Bayesian framework we have

likelihood

prior

from which we compute a posterior distribution.

In particular, if our hypotheses are

H0 : θ ∈Θ0
H1 : θ 6∈Θ0

then we can compute P(θ ∈Θ0|X).

A formal test can be constructed as

R = {x : P(θ ∈Θ0|X = x) < c}

Possible values of c might be

c = 1/2

c = 0.05

Example

Suppose X1, . . . ,Xn|θ are i.i.d. N(θ ,σ 2) and θ ∼ N(µ,τ2), with µ,σ 2,τ2 known.

Then

θ |X = x∼ N

(
nτ2x+σ2µ

nτ2 +σ2 ,
σ2τ2

nτ2 +σ2

)

Suppose we use c = 0.05, Θ0 = (−∞,θ0]. Then

R =



x :

θ0−
nτ2x+σ2µ

nτ2+σ2

στ/
√

nτ2 +σ2
<−z0.05
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where zα is such that P(Z > zα) = α if Z ∼ N(0,1).

So

R =

{
x :

nτ2x+σ2µ
nτ2 +σ2 > θ0 +

στ√
nτ2 +σ2

z0.05

}

If τ is very large, then
R≈ {x : x > θ0 +σz0.05/

√
n}

This is the standard frequentist test.

It is much harder to obtain standard two-sided tests as approximate Bayesian tests.

Union-Intersection and Intersection-Union Tests

Sometimes we can write
H0 : θ ∈

⋂

γ∈Γ
Θγ

for some index set Γ, £nite or in£nite.

If we have tests with critical regions Rγ for

H0 : θ ∈Θγ
H1 : θ 6∈Θγ

for each γ , then we can form a critical region for the intersection H0 as

R =
⋃

γ∈Γ
Rγ

Two examples:

H0 : θ = θ0 ↔ {θ ≤ θ0}∩{θ ≥ θ0}
H0 : θ(y) = θ0(y)∀y ↔

⋂

y

{θ(y) = θ0(y)}

Similarly, if H0 can be written as

H0 : θ ∈
⋃

γ∈Γ
Θγ

and we have critical regions Rγ for each subproblem, then we can form a critical region for
the union null hypothesis as

R =
⋂

γ∈Γ
Rγ
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Example

Often a material is only acceptable if several parameters are within speci£ed limits, say
θ1 > θ1,0 and θ2 > θ2,0. Often this will be set up as the alternative hypothesis, with H0
corresponding to failure to meet the standard, i.e.

H0 : θ1 ≤ θ1,0 or θ2 ≤ θ2,0

Homework

Problem 8.5
Problem 8.6

Due Friday, February 28, 2003.
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Wednesday, February 26, 2003

First Midterm Exam

The exam will cover the material covered in readings, in class and in assignments from
Chapters 6 and 7.

The exam is closed book.

The exam will include some information on distributions along the lines of the Table of
Common Distributions in the text.
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Friday, February 28, 2003

Evaluating Test Procedures

H0 H1
Reject H0 Type I Error OK
Don’t Reject H0 OK Type II Error

For θ ∈Θ0
P(Type I Error|θ) = P(X ∈ R|θ)

For θ 6∈Θ0
P(Type II Error|θ) = P(X 6∈ R|θ)

Switching between R,Rc is a bit awkward, so we arbitrarily choose one of them to work
with: The power function of a test with rejection region R is

β (θ) = P(X ∈ R|θ)

In terms of test functions φ ,
β (θ) = E[φ(X)|θ ]

Some use 1−β (θ) instead. This is called the operating characteristic (OC) function.

Example

Suppose X1, . . . ,Xn are i.i.d. N(θ ,1),

H0 : θ ≤ θ0
H1 : θ > θ0

and
R = {x : x > θ0 + c/

√
n}

Then

β (θ) = P(X > θ0 + c/
√

n|θ)

= P(Z > c+
√

n(θ0−θ))
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Ideally, we want

β (θ) = 0 if θ ≤ θ0

β (θ) = 1 if θ > θ0

Increasing n improves β for a £xed c and θ 6= θ0

Changing c shifts the whole curve to the right or left

• this improves one error at the expense of the other

• you can’t argue in general that one c is better than another.

To compare different tests, it is useful to £x one of the error probabilities.

Casella and Berger de£ne:

1. size of a test:
sup

θ∈Θ0

β (θ)

2. a test is a level α test, 0≤ α ≤ 1, if its size is at most α .

Ideally, we would like to £x the size at α and £x β (θ 1) for some interesting θ1 as θ .

We can usually only do this if we control n.

This is a major consideration in designing experiments.
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Without control of n, we usually make H0 be the hypothesis whose incorrect rejection
probability we most want to control.

A research hypothesis we want to “prove” is usually set up as H1. That way,

H0 : the research hypothesis is false

has the bene£t of the doubt.

Homework

Problem 8.14
Problem 8.17

Due Friday, March 7, 2003.
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Week 7

Monday, March 3, 2003

Most Powerful Tests

Consider testing
H0 : θ ∈Θ0
H1 : θ ∈Θ\Θ0

De£nition

A test in a class C of possible tests is uniformly most powerful of class C if its power
function β (θ) satis£es

β (θ)≥ β ′(θ)

for all θ ∈Θ\Θ0 and all β ′ that are power functions for tests in C .

Usually the class C involves a constraint on the size of the tests.

Neyman-Pearson Lemma

Consider testing
H0 : θ = θ0
H1 : θ = θ1

The data X have PMF or PDF f (x|θi), i = 0,1. De£ne a rejection region so that

x ∈ R if f (x|θ1) > k f (x|θ0)

x 6∈ R if f (x|θ1) < k f (x|θ0)

for some k ≥ 0 (what happens at equality is unspeci£ed). Let

α = P(X ∈ R|θ = θ0)

Then
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(a) Any test of this form is UMP level α

(b) If there exists a test of this form with k > 0 then every UMP level α test is a size α
test, and and every UMP level α test is of this form (except for a set of probability
zero under θ = θ0 and θ = θ1).

Example

X1, . . . ,Xn i.i.d. N(θ ,1). Consider θ0 = 0 and θ1 = 1. Then

f (x|θ1)

f (x|θ0)
=

exp
{
−1

2 ∑x2
i +∑xi−n/2

}

exp
{
−1

2 ∑x2
i

} = exp{nx−n/2}

So
R = {x : x > c}= {x : f (x|θ1) > enc−n/2 f (x|θ0)}

This test is UMP size α = P(z >
√

nc)

This is true for any θ1 > 0.

Proof

Look at the continuous case–discrete case is analogous. If

α = P(X ∈ R|θ0)

then the test has size α and hence is a level α test.

Let φ be a test function of the speci£ed form and let φ ′ be any other level α test. Then

(φ(x)−φ ′(x))( f (x|θ1)− k f (x|θ0))≥ 0

for all x. So

0≤
∫

(φ(x)−φ ′(x))( f (x|θ1)− k f (x|θ0))dx

= β (θ1)−β ′(θ1)− k(β (θ0)−β ′(θ0))

To prove (a), note that since φ ′ is level α , we have

β ′(θ0)≤ α = β (θ0)

Since k ≥ 0, this implies
β (θ1)≥ β ′(θ1)

So φ is at least as powerful as φ ′, and hence φ is UMP level α .
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To prove (b), suppose φ ′ is UMP level α . Since φ is also UMP level α , we must have

β (θ1) = β ′(θ1)

Since k > 0, this implies
β ′(θ0) = β (θ0) = α

So φ ′ is size α . Furthermore,
∫

(φ(x)−φ ′(x))( f (x|θ1)− k f (x|θ0))dx = 0

implies that φ(x) = φ ′(x) for almost all x where f (x|θ1) 6= k f (x|θ0).

Homework

Problem 8.15
Problem 8.25

Due Friday, March 7, 2003.
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Wednesday, March 5, 2003

More Most Powerful Tests

Corollary

Suppose T is suf£cient for θ with f (x|θ) = g(T (x)|θ)h(x). Let R be de£ned in terms of a
subset S of the range of T (x) as

R = {x : T (x) ∈ S}

where

α = P(T ∈ S|θ0)

t ∈ S if g(t|θ1) > kg(t|θ0)

t 6∈ S if g(t|θ1) < kg(t|θ0)

for some k ≥ 0. Then this test is UMP level α

Proof

This test is a Neyman-Pearson test.

Corollary

Consider testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ\Θ0. Suppose a test based on a suf£cient
statistic T satis£es

(i) the test is a level α test

(ii) for some θ0 ∈Θ0 we have P(T ∈ S|θ0) = α .

(iii) for this θ0 and each θ ′ ∈Θ\Θ0 there exists a k′ ≥ 0 such that

t ∈ S if g(t|θ ′) > k′g(t|θ0)

t 6∈ S if g(t|θ ′) < k′g(t|θ0)

Then this test is UMP level α for H0 against H1.
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Proof

Let φ ∗ be any other level α test.

Fix θ ′ ∈Θ\Θ0.

Then φ ∗ is a level α test of H0 : θ = θ0 against H1 : θ = θ ′. By the Neyman-Pearson
lemma,

β (θ ′)≥ β ∗(θ ′)

Since θ ′ was arbitrary, this shows that β (θ)≥ β ∗(θ) for all θ ∈Θ\Θ0

Example

Let X1, . . . ,Xn be i.i.d. N(θ ,1).

H0 : θ ≤ θ0 against H1 : θ > θ0.

R = {X > c}
Set α = P(X > c|θ = θ0).

For θ < θ0,
P(X > c|θ) < α

so this is a size α test. Now

g(t|θ) = const× exp
{
−n

2
(t−θ)2

}

Look at
g(t|θ ′)
g(t|θ0)

= exp
{n

2
[θ 2

0 −θ ′2 +2t(θ ′−θ0)]
}

for θ ′ > θ0. This is strictly increasing in t, so

t > c ⇔ g(t|θ ′) > k′g(t|θ0)

with
k′ = exp

{n
2
(θ 2

0 −θ ′2 +2c(θ ′−θ0))
}

Homework

Problem 8.28
Problem 8.33

Due Friday, March 7, 2003.
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Friday, March 7, 2003

Monotone Likelihood Ratio

Suppose T is a univariate suf£cient statistic for θ , a real-valued parameter. Then { f (x|θ) :
θ ∈Θ} has monotone likelihood ratio (MLR) if for every θ1 < θ2

f (x|θ2)

f (x|θ1)
=

g(T (x)|θ2)

g(T (x)|θ1)

is a non-decreasing function of T (x) over the set

T = {t : g(t|θ1) > 0 or g(t|θ2)}

(If you get non-increasing, just use −T (X).)

Karlin-Rubin Theorem

Consider testing H0 : θ ≤ θ0 against H1 : θ > θ0. Suppose T is suf£cient and f (x|θ) has
MLR. Then for any c a test with R = {T > c} is UMP level α for α = P(T > c|θ = θ0).

Proof

(i) The power function is increasing (H.W.)

(ii) The test has power α by construction.

(iii)

k′ = inf
t∈T

g(t|θ ′)
g(t|θ0)

where
T = {t : t > c and g(t|θ1) > 0 or g(t|θ2) > 0}

Examples

1. X1, . . . ,Xn i.i.d. N(θ ,1), T = X .

g(t|θ2)

g(t|θ1)
= exp{nX(θ2−θ1)}× const
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2. X1, . . . ,Xn i.i.d. Poisson(θ ), T = X

g(t|θ2)

g(t|θ1)
=

(
θ2

θ1

)nX

×xonst

3. X1, . . . ,Xn i.i.d. g(t|θ) = exp{w(θ)t}c(θ)

g(t|θ2)

g(t|θ1)
= exp{t(w(θ2)−w(θ1))}× const

has MLR if w is non-decreasing.

Unbiased Tests

It is not always possible to £nd UMP tests.

Example

X1, . . . ,Xn i.i.d. N(θ ,1), H0 : θ = θ0, H1 : θ 6= θ0.

For a given α and a given θ1 > θ0,

R1 = {X > θ0 + zα/
√

n}

is UMP level α for H ′
1 : θ = θ1. Furthermore, any test with the same size and power must

be essentially the same.

But for θ2 < θ0 the same argument shows that the UMP test has to be

R2 = {X < θ0− zα/
√

n}

These cannot both hold, so there is no UMP test.

Neither R1 nor R2 are very good for H1 : θ 6= θ0 since each has low power on its “blind”
side.

To reduce the class of tests we consider to “reasonable” ones, we can require that our test
be “unbiased’.”

A test with power function β is unbiased if

sup
θ∈Θ0

β (θ)≤ inf
θ∈Θ\Θ0

β (θ)

We need some additional tools to deal with this restriction.
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Generalized Neyman-Pearson Lemma

Let c1, . . . ,cm be constants, f1(x), . . . , fm+1(x) real-valued functions, and C a class of func-
tions φ(x) with 0≤ φ(x)≤ 1 for all x and

∫
φ(x) fi(x)dx = ci

for i = 1, . . . ,m. If φ ∗ ∈ C satis£es

φ ∗(x) = 1 if fm+1(x) >
m

∑
i=1

ki fi(x)

φ ∗(x) = 0 if fm+1(x) <
m

∑
i=1

ki fi(x)

for some k1, . . . ,km, then φ ∗ maximizes
∫

φ(x) fm+1(x)dx over C .

Proof

Since 0≤ φ ≤ 1 for all x and all φ ∈ C ,

(φ ∗(x)−φ(x))( fm+1(x)−
m

∑
i=1

ki fi(x))≥ 0

for all x and all φ ∈ C . So

0≤
∫

(φ ∗(x)−φ(x))( fm+1(x)−
m

∑
i=1

ki fi(x))dx

=
∫

φ ∗(x) fm+1dx−
∫

φ(x) fm+1(x)dx

+
m

∑
i=1

ki

(∫
φ ∗(x) fi(x)dx−

∫
φ(x) fi(x)dx

)

=
∫

φ ∗(x) fm+1dx−
∫

φ(x) fm+1(x)dx

Example

X1, . . . ,Xn i.i.d. N(θ ,1). Want to test

H0 : θ = θ0
H1 : θ 6= θ0
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For any test φ the power function β is continuously differentiable.

For any test to be unbiased it is necessary (but not suf£cient) that β ′(θ0) = 0.

We can use the generalized Neyman-Pearson lemma to £nd a most powerful test of

H0 : θ = θ0
H1 : θ = θ1

such that β (θ0) = α and β ′(θ0) = 0: Take

f3(x) = f (x|θ1)

f2(x) =
∂

∂θ
f (x|θ0) c2 = 0

f1(x) = f (x|θ0) c1 = α

The most powerful test with these restrictions rejects if

f3(x) > k1 f1(x)+ k2 f2(x)

for some k1 and k2 that satisfy the two restrictions.

Now
f3(x) > k1 f1(x)+ k2 f2(x)

means

exp
{
−n

2
(x−θ1)

2
}

> k1 exp
{
−n

2
(x−θ0)

2
}

+ k2n(x−θ2)exp
{
−n

2
(x−θ0)

2
}

or
exp
{
−n

2
(θ 2

1 −θ 2
0 )+nx(θ1−θ0)

}
≥ k1 + k2n(x−θ0)

The exponential term can be increasing or decreasing.

We can get R to be one-sided or two-sided.

To get β ′(θ0) = 0 we need two-sided, symmetric about θ0. With this choice R is also
unbiased.

To get β (θ0) = α , we need

R = {x : x < θ0− zα/2/
√

n or x > θ0 + zα/2/
√

n}
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For each α ′ < α the UMP size α test is the same shape but less powerful.

So this is a UMPU level α test.

Similar ideas work with many one-parameter exponential families.

Nuisance parameters can sometimes be handled in this way as well.

Homework

Problem 8.31
Problem 8.34

Due Friday, March 14, 2003.
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Week 8

Monday, March 10, 2003

P-Values

In a research setting it is usual to give not

“the test rejected H0 at the 0.1 level”

but to compute and report the

p-value = smallest level where test would reject

= largest level where test would not reject

p = 0.049 and p = 0.007 both reject at the α = 0.05 level, but suggest a difference in the
strength of evidence.

Some unfortunate terminology:

p≤ 0.05 “statistically signi£cant”

p≤ 0.01 “highly statistically signi£cant”

Older programs would mark these as * and **.

This is the reason for occasional comments about “star gazing”.

Even p-values do not tell the whole story:

• if p is small, you need to worry if the results are of practical signi£cance.

• if p is large, you need to think about whether it could have been otherwise (was there
any power at plausible alternatives?)

Another way to look at p-values is provided by

68



Statistics 22S:194, Spring 2003 Tierney

De£nition

A p-value p(X) is a statistic such that 0≤ p(X)≤ 1 for all X and small values of p(X) give
evidence in favor of H1. A p-value is valid if

Pθ (p(X)≤ α)≤ α

for all θ ∈Θ0 and all α ∈ [0,1].

If p(X) is a valid p-value, then the rejection region

R = {x : p(x)≤ α}

is a level α test.

Usually p(X) is de£ned in terms of a test statistic:

Theorem

Suppose W (X) is a test statistic such that large values of W (X) are exvidence for H1. De£ne

p(x) = sup
θ∈Θ0

Pθ (W (X)≥W (x))

Then p(X) is a valid p-value.

Proof

Let pθ (x) = Pθ (W (X)≥W (x)) and let Fθ be the CDF of −W (X). Then

pθ (x) = Pθ (−W (X)≤−W (x)) = Fθ (−W (x))

and
Pθ (pθ (X)≤ α) = Pθ (Fθ (−X(X))≤ α)≤ α

[If Fθ is continuous then equality holds by the probability integral transform; in general,
this inequality holds.] For θ ∈Θ0 we have pθ (X)≤ p(X), and therefore

Pθ (p(X)≤ α)≤ Pθ (pθ (X)≤ α)≤ α
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Example

Suppose X1, . . . ,Xn are a random sample from a N(µ,σ 2) distribution and we want to test

H0 :µ ≤ µ0

H1 :µ > µ0

The LRT is the t test which rejects H0 when

W (X) =
X−µ0

S/
√

n

is large. For µ ≤ µ0 and any σ > 0

pθ (x) = P

(
X−µ0

S/
√

n
≥W (x)

)

= P

(
X−µ
S/
√

n
≥W (x)+

µ0−µ
S/
√

n

)

≤ P

(
X−µ
S/
√

n
≥W (x)

)

= P(Tn−1 ≥W (x))

The maximum always occurs at the boundary value µ = µ0.

A Graphical representation: We can plot the CDF’s of p(X) for different θ values.

Often there is a boundary value θ0 for which p(X) is uniformly distributed.

If the test provided by W (X) is unbiased for all choices of α , then we have

Pθ(p(X)≤ α)≥ α

for all θ ∈Θ1.
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Homework

Problem 8.49
Problem 8.54

Due Friday, March 14, 2003.
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Wednesday, March 12, 2003

Testing as a Decision Problem

Θ,X , f as usual.

A = {a0,a1}= {accept H0, reject H0}
Some loss functions:

L(θ ,a) =

{
0 if θ ∈Θ0 and a = a0 or θ ∈Θ1 and a = a1

1 otherwise

= zero-one loss

L(θ ,a) =





c if θ ∈Θ0 and a = a1

d if θ ∈Θ1 and a = a0

0 otherwise

= generalized zero-one loss

For H0 : θ ≤ θ0 against H1 : θ > θ0 we could use

L(θ ,a0) =

{
0 θ ≤ θ0

c(θ −θ0) θ > θ0

L(θ ,a1) =

{
0 θ > θ0

d(θ0−θ) θ ≤ θ0

Relation to power:

βδ (θ) = Pθ (δ (X) = a1)

R(θ ,δ (X)) = L(θ ,a0)Pθ (δ (X) = a0)+L(θ ,a1)Pθ (δ (X) = a1)

= L(θ ,a0)(1−βδ (θ))+L(θ ,a1)βδ (θ)

= L(θ ,a0)+(L(θ ,a1)−L(θ ,a0))βδ (θ)

For generalized zero-one loss, the posterior expected losses are

E[L(θ ,a)|X ] =

{
dP(θ ∈Θ1|X) a = a0

cP(θ ∈Θ0|X) a = a1

So the Bayes rule chooses a1 if

cP(θ ∈Θ0|X) < dP(θ ∈Θ1|X)

or if

posterior odds of Θ1 vs Θ0 =
P(θ ∈Θ1|X)

P(θ ∈Θ0|X)
>

c
d
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Locally Most Powerful Tests

If we can’t £nd a UMP test we can look for a test φ ∗ such that for some ∆ and all θ within
∆ of Θ0 β ∗(θ) ≥ β (θ) for all other tests φ . Such tests are called locally most powerful
(LMP).

This makes sense since we are usually most concerned about a test sort of near Θ0

For H0 : θ = θ0 against H1 : θ > θ0, LMP means maximize β ′(θ0).

For H0 : θ = θ0 against H1 : θ 6= θ0, LMP means maximize β ′′(θ0).

Generalized NP lemma helps here too.

Cautions on Testing

If p-values is small, make sure differences are of practical importance.

If p-value is not small, think about power at plausible alternatives.

Setting up H1 as a research hypothesis, only rejecting if evidence is strong is a good strat-
egy.

But understanding differences can be hard.

Often we understand what θ = 0 means but not how to think about θ 6= 0.

Sometimes we would like to use
H0 : θ = 0
H1 : θ 6= 0

as a pre-test for checking assumptions.

This can be very dangerous unless there is strong prior information in favor of H0.
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Homework

Problem 8.55
Problem 8.56

Due Friday, March 14, 2003.
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Friday, March 3, 2000

Interval and Set Estimation

Motivation

In point estimation we give a single guess for θ or τ(θ).

This is useful when we need a single number (e.g. to set an instrument).

But a point estimate is almost surely wrong.

Moreover, some estimators are better than others.

There are two approaches for for dealing with this issue:

Informal approach:

In a frequentist analysis, always report an estimate and a standard error (esti-
mated SD of sampling distribution).

In a Bayesian analysis, always report a summary of location and spread of the
posterior distribution.

Formal approach:

Use the data X to determine a set C(X)⊂Θ of values that are supported by the
data in some formally de£ned sense.

Possible Shapes

In one dimension, set estimators are often restricted to produce intervals,

C(X) = [L(X),U(X)]

It is sometimes useful to allow open, half-open, or half-in£nite intervals.

In higher dimensions, there is no clear natural shape to require—one could ask for connect-
edness, convexity, a rectangle, etc..

The set or interval produced by a set estimator is a set-valued random variable, or a random
set.

Objectives

There are two con¤icting objectives:
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We want the set to be small, to make a precise statement.

We want the set to be “right,” i.e. to contain θ .

It is fairly clear what we mean by an interval being small—we look at its length.

The length might be random, so we can take its expected value,

Eθ [U(X)−L(X)]

(at least for bounded intervals this is sensible).

What about being “right?”

The frequentist approach: For each θ we can compute

Pθ (interval covers θ) = Pθ (L≤ θ and U ≥ θ)

= Pθ (L≤ θ ≤U)

= coverage probability

This may depend on θ , so we look at the worst case:

Con£dence Coef£cient = inf
θ

Pθ (C(X) covers θ)

Example

X1, . . . ,Xn i.i.d. N(θ ,σ 2), σ2 known.

X estimates θ .

SE(X) = σ/
√

n

Often we report “X , give or take σ/
√

n or two.”

Suppose we use
[L,U ] = X±2σ/

√
n

Then

Pθ (L≤ θ ≤U) = Pθ (X−2σ/
√

n≤ θ ≤ X +2σ/
√

n)

= Pθ

(√
n

X−θ
σ
≤ 2,
√

n
X−θ

σ
≥−2

)

= Pθ

(
−2≤√n

X−θ
σ
≤ 2

)

= P(−2≤ Z ≤ 2)≈ 0.95

The coverage probability is ≈ 0.95 for all θ , so the con£dence coef£cient is ≈ 0.95.
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Suppose n = 4, x = 3.7, σ = 1. Then

[`,u] = 3.7±2×1/2 = 3.7±1 = [2.7,4.7]

is an observed 95% CI for θ .

It is not true that P(θ ∈ [2.7,4.7]) = 0.95.

It looks like this is what is being said, but it is not.

Homework

Problem 9.1
Problem 9.2

Due Friday, March 28, 2003.
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Week 9

Monday, March 24, 2003

Inverting Tests

Suppose X1, . . . ,Xn are i.i.d N(θ ,σ 2) with σ 2 known.

For any θ0, a UMPU test of H0 : θ = θ0 against H1 : θ 6= θ0 is

R = {x : |x−θ0|> zα/2σ/
√

n}
This test has size α , so

P(X− zα/2σ/
√

n≤ θ0 ≤ X + zα/2σ/
√

n|θ = θ0) = 1−α

for any θ0. So
Pθ (X − zα/2σ/

√
n≤ θ ≤ X + zα/2σ/

√
n) = 1−α

and so X± zα/2σ/
√

n is a 1−α-level CI for µ .

Inverting a test requires a family of tests, one for each θ0 ∈Θ.

The set estimate obtained by inverting a family of tests is the set of all θ that would not be
rejected by the corresponding tests.

Theorem

For each θ0 ∈ Θ let A(θ0) be the acceptance region of a level α test of H0 : θ = θ0. For
each x ∈X de£ne C(x) as

C(x) = {θ0 : x ∈ A(θ0)}
Then the random set C(X) is a con£dence set with con£dence coef£cient at least 1−α .
Conversely, let C(X) be a con£dence set with con£dence coef£cient at least 1−α . For any
θ0 ∈Θ de£ne

A(θ0) = {x : θ0 ∈C(x)}
Then A(θ0) is the acceptance region of a level α test of H0 : θ = θ0 against, say, H0 : θ 6= θ0
for each θ0 ∈Θ.
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Proof

Suppose {A(θ) : θ ∈Θ} are acceptance regions of level α tests. Then

1−α ≤ Pθ (X ∈ A(θ)) = Pθ (θ ∈C(X))

For the converse, if C(X) is a con£dence set with con£dence level at least 1−α , then

α ≥ Pθ0
(C(X) does not cover θ0) = Pθ0

(X 6∈ A(θ0))

so A(θ0) is the acceptance region of a level α test.

Examples

1. Suppose X1, . . . ,Xn are i.i.d. N(µ,σ 2) and we want an interval estimate for σ 2.

The likelihood ratio statistic for testing H0 : σ2 = σ2
0 against H1 : σ2 6= σ2

0 is

Λ =

(
1

σ0

)n/2
e−nσ̂2/(2σ0)

(
1

σ̂2

)n/2
e−n/2

= f

(
σ̂2

σ2
0

)

c2

k

c1

For R = {Λ < k} use

R =

{
σ̂2 < σ2

0
1
n

χ2
1−α1

or σ̂2 > σ2
0

1
n

χ2
α2

}

where α1 +α2 = α and

f

(
1
n

χ2
1−α1

)
= f

(
1
n

χ2
α2

)

So
A(σ2

0 ) = {S2 : σ2
0 χ2

1−α1
≤ (n−1)S2 ≤ σ2

0 χ2
α2
}

and therefore

C(X) = {σ 2 : S2 ∈ A(σ2)}
= {σ2 : (n−1)S2 ≥ σ2χ2

1−α1
and (n−1)S2 ≤ σ2χ2

α2
}

= [(n−1)S2/χ2
α2

,(n−1)S2/χ2
1−α1

]

Usually we cheat and use α1 = α2 = α/2, which is not quite right.

79



Statistics 22S:194, Spring 2003 Tierney

2. Suppose X1, . . . ,Xn are i.i.d. Poisson(λ ) and we want a lower con£dence limit on λ .

Look at the LR test for
H0 : λ = λ0
H1 : λ > λ0

The test statistic is

Λ =





1 X ≤ λ0(
λ0
X

)nX
en(X−λ0) X > λ0

Λ > k if and only if ∑Xi > c for some c.

For each λ0, £nd the smallest integer c(λ0) such that

Pλ0

(
∑Xi ≥ c(λ0)

)
≤ α

sum(Xi)

c(
L

am
bd

a)

Lambda

The smallest λ with c(λ )≥ ∑Xi is a lower con£dence limit.

Using the CLT:

√
X ∼ AN

(√
λ ,

1
4n

)

c(λ )≈ n

(√
λ +

1
2
√

n
zα

)2

so

∑Xi ≥ c(λ )⇔
√

X ≥
√

λ +
1

2
√

n
zα

⇔
√

X− 1
2
√

n
zα ≥

√
λ

⇔
(√

X− 1
2
√

n
zα

)2

≥ λ

Can also solve quadratic for the usual normal approximation.
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Homework

Problem 9.4

Due Friday, March 28, 2003.
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Wednesday, March 26, 2003

Pivotal Quantities

A random variable Q(X ,θ) is a pivotal quantity, or a pivot, if its distribution is independent
of all unknown parameters.

Examples

1. X1, . . . ,Xn i.i.d. N(θ ,1), Q =
√

n(X −θ)∼ N(0,1).

2. X1, . . . ,Xn i.i.d. N(θ ,σ 2), Q =
√

n(X−θ)/S∼ tn−1.

3. X1, . . . ,Xn i.i.d. N(µ,σ 2), Q = (n−1)S2/σ2 ∼ χ2
n−1.

Pivotal quantity method:

1. Choose a set A such that
P(Q(X ,θ) ∈ A) = 1−α

2. Let C(x) = {θ : Q(x,θ) ∈ A}

Then C(X) is a (1−α)-level con£dence set.

Usually there is a “reasonable” choice of A based on monotonicity ideas.

Example

Suppose X1, . . . ,Xn are i.i.d. N(µ,σ 2) and we want a con£dence set for σ 2.

Let

Q =
(n−1)S2

σ2 ∼ χ2
n−1

A = [χ2
n−1,1−α/2,χ2

n−1,α/2]

Then

C(x) = {σ 2 : χ2
n−1,1−α/2 ≤ (n−1)S2/σ2 ≤ χ2

n−1,α/2}

=

[
(n−1)S2

χ2
n−1,α/2

,
(n−1)S2

χ2
n−1,1−α/2

]
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Bayesian Intervals

Suppose

θ ∼ f (θ)

X |θ ∼ f (x|θ)

Then
f (θ |x) ∝ f (x|θ) f (θ)

is the PDF of the posterior distribution.

Given the posterior distribution and a level 1−α , we can compute sets of posterior proba-
bility 1−α .

Such sets are called credible sets.

Intervals are called credible intervals.

A credible region’s probability of containing θ is a posterior probability, not a coverage
probability based on conceptual repetitions of the experiment.

There is a relation:

E[P(θ ∈C(X)|X)] =
∫∫

1C(x)(θ) f (θ |x)dθ f (x)dx

=
∫∫

1C(x)(θ) f (θ ,x)dθdx

=
∫∫

1C(x)(θ) f (x|θ)dx f (θ)dθ

=
∫

Pθ (θ ∈C(X)) f (θ)dθ

So P(θ ∈C(X)|X = x)≥ 1−α for all x implies
∫

Pθ (θ ∈C(X)) f (θ)dθ ≥ 1−α

But Pθ (θ ∈C(X))¿ 1−α for some θ is possible.

Example

Suppose X1, . . . ,Xn are i.i.d. N(θ ,σ 2), θ ∼ N(µ,τ2), and µ,σ 2,τ2 are known.

We know that

θ |X = x∼ N

(
nτ2

nτ2 +σ2 X +
σ2

nτ2 +σ2 µ,

(
στ√

nτ2 +σ2

)2
)
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So a lower 1−α level credible bound is

nτ2

nτ2 +σ2 X +
σ2

nτ2 +σ2 µ− zα
στ√

nτ2 +σ2

i.e.

P

(
θ >

nτ2

nτ2 +σ2 X +
σ2

nτ2 +σ2 µ− zα
στ√

nτ2 +σ2

∣∣∣∣X = x

)
= 1−α

A two-sided 1−α credible interval is

nτ2

nτ2 +σ2 X +
σ2

nτ2 +σ2 µ± zα/2

στ√
nτ2 +σ2

If τ is very large, then θ |C = x is approximately

N(x,σ 2/n)

So for a vague prior, the “usual” CI’s are credible intervals with

con£dence level = posterior probability of containment

Choosing the Smallest Credible Set

How should you choose a credible interval/set for a given probability level?

Suppose f is a PDF. For a given α , we can choose C such that
∫

C
f dx = 1−α

and
area of C =

∫

C
dx

is minimized. Equivalently, we want to maximize − ∫
C dx.

Use the generalized Neyman-Pearson lemma:

f2 ≡−1

f1 = f

The maximal negative area occurs if C is described by φ with

φ(x) =

{
1 if −1 > k f (x)

0 if −1 < k f (x)

=

{
1 if f (x) > c

0 if f (x) < c

for some k, which has to be be negative, or some c =−1/k.

This says: choose the highest posterior density region:
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p=1-alpha

c

Homework

Problem 9.12
Problem 9.13

Due Friday, March 28, 2003.
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Friday, March 28, 2003

Evaluating Con£dence Sets

Minimizing Interval Length

One approach is to ask for minimum (expected) length given the con£dence level.

For X1, . . . ,Xn i.i.d. N(µ,σ 2)

[X−bS/
√

n,X−aS/
√

n]

with P(a < Tn−1 < b) = 1−α has expected length

E[length] = E[(b−a)S/
√

n] = (b−a)σ × const(n)

We minimize b−a subject to P(a < Tn−1 < b) = 1−α by choosing a,b at contour levels,
i.e. a =−tn−1,α/2,b = tn−1,α/2.

This criterion is useful in principle for choosing tail allocations.

It is a bit messy as a theoretical criterion.

It depends on the measurement scale.

It also does not work for one-sided intervals.

Exploiting Relations to Testing

Alternative approach: try to exploit the relation to testing.

We have an optimality theory for testing; let’s map it to con£dence sets.

In testing we have Θ0,β (θ),Θ1 = Θc
0.

We constrain β on Θ0, optimize it on Θ1 = Θc
0.

In con£dence sets, we have a family of tests with a family of θ0’s and a family of βθ0
’s.

We consider

acceptance regions A(θ0)

alternate hypotheses Θ1(θ0)

power functions βθ0
(θ)
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De£ne for θ ,θ ′ the probability of false coverage as

Pθ (θ ′ ∈C(X)) θ ∈Θ1(θ
′)

For two-sided intervals:

Pθ (θ ′ ∈ [L(X),U(X)]) θ 6= θ ′

One-sided:

Pθ (θ ′ ∈ [L(X),∞)) θ ′ < θ
Pθ (θ ′ ∈ (−∞,U(X)] θ ′ > θ

Relation to power:
1−βθ ′(θ) = Pθ (false coverage of θ ′)

A 1−α con£dence set that minimizes the probability of false coverage among a class of
such sets is called uniformly most accurate, UMA.

A 1−α con£dence set is unbiased if

Pθ (θ ′ ∈C(X))≤ 1−α

when θ ∈Θ1(θ
′).

Theorem

Let X ∼ f (x|θ). For each θ0 ∈Θ let A∗(θ0) be the acceptance region of a UMP level α test
of H0 : θ = θ0 against H1 : θ ∈Θ1(θ0). Let C∗(X) be the 1−α con£dence set obtained by
inverting the tests. Then for any other 1−α con£dence set C,

Pθ (θ ′ ∈C∗(X))≤ Pθ (θ ′ ∈C(X))

for all θ ,θ ′ with θ ∈Θ1(θ
′). That is, C∗ is UMA level 1−α .

Proof

Suppose θ ,θ ′ satisfy θ ∈Θ1(θ
′). Let A(θ ′) be the acceptance region of the 1−α level test

from inverting C(X). Since A∗(θ ′) is UMP,

Pθ (θ ′ ∈C∗(X)) = Pθ (X ∈ A∗(θ ′)) = 1−β ∗
θ ′(θ)

≤ 1−βθ (θ) = Pθ (X ∈ A(θ ′))

= Pθ (θ ′ ∈C(X))

87



Statistics 22S:194, Spring 2003 Tierney

Suppose UMP tests are not available.

Then we can look at UMPU tests.

Unbiased tests correspond to unbiased intervals/sets.

If we have a family of UMPU tests, then they invert to UMAU con£dence sets.

Relating False Coverage to Length

Theorem

Let X be real-valued, X ∼ f (x|θ), with θ real-valued. Let C(X) = [L(X),U(X)] be a CI for
θ . If L(x),U(x) are both strictly increasing in x, then for any θ ∗

Eθ∗ [U(X)−L(X)] =
∫

θ 6=θ ∗
Pθ∗(L(X)≤ θ ≤U(X))dθ

Proof

Eθ∗[U(X)−L(X)] =
∫

X

[U(x)−L(x)] f (x|θ ∗)dx

=
∫

X

∫ U(x)

L(x)
dθdx

=
∫

Θ

∫ L−1(θ)

U−1(θ)
f (x|θ ∗)dxdθ

=
∫

Θ
Pθ∗(U−1(θ)≤ X ≤ L−1(θ))dθ

=
∫

Θ
Pθ∗(L(X)≤ θ ≤U(X))dθ

=
∫

θ 6=θ ∗
Pθ∗(L(X)≤ θ ≤U(X))dθ

Examples

1. X1, . . . ,Xn i.i.d. N(θ ,1). X− zα/
√

n is a UMA lower con£dence bound for θ .

2. X1, . . . ,Xn i.i.d. N(θ ,1). X± zα/2/
√

n is a UMAU con£dence interval for θ .

3. X1, . . . ,Xn i.i.d. N(θ ,σ 2). X± tn−1,α/2S/
√

n is a UMAU con£dence interval for θ .
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Homework

Problem 9.12
Problem 9.13

Due Friday, March 28, 2003.
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Week 10

Monday, March 31, 2003

Consistency

Often an estimator W is described by a rule that can be applied to any sample size.

We can capture the idea that W is “reasonable” by looking at a sequence Wn as n→ ∞ and
requiring that W “do the right thing” if n is large.

De£nition

A sequence Wn of estimators of τ(θ) is (weakly) consistent if Wn
P→ τ(θ) as n→ ∞ for all

θ . Wn is strongly consistent if Wn
a.s.→ τ(θ).

From our study of convergence in probability, we know that if

MSE(Wn,θ) = Eθ [(Wn− τ(θ))2]→ 0

then Wn is consistent for τ(θ).

Since MSE = Var+Bias2, if
Var(Wn)→ 0

and
Bias(Wn)→ 0

then Wn is consistent.

Examples

1. X is consistent for µ .

2. S2 is consistent for σ 2.

3. S is consistent for σ .
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4. X
2

is consistent for µ2.

Theorem

Under suitable regularity conditions the MLE θ̂ is consistent for θ .

To get a feel for why this is so, suppose X1, . . . ,Xn are i.i.d. from f (x|θ0), i.e. θ0 is the
“true” parameter value. Look at

g(θ) = Eθ0

[
log

(
f (X |θ)

f (X |θ0)

)]

By Jensen’s inequality,

g(θ)≤ logEθ0

[
f (X |θ)

f (X |θ0)

]

= log
∫

f (x|θ)

f (x|θ0)
f (x|θ0)dx

= log
∫

f (x|θ)dx = 0

with equality if and only if

Pθ0
( f (X |θ) = f (X |θ0)) = 1

i.e. if and only if θ = θ0 for an identi£able θ .

So g(θ) has a strict global maximum at θ0 with g(θ0) = 0.

Now look at the average log likelihood:

1
n
(logLn(θ |X)− logL(θ0|X)) =

1
n
`n(θ |X) =

1
n ∑ log

f (Xi|θ)

f (Xi|θ0)

Then

Eθ0

[
1
n
`n(θ |X)

]
= g(θ)

and by the strong law of large numbers,

1
n
`n(θ |X)

a.s.→ g(θ) < 0

for all θ 6= θ0 and
1
n
`n(θ |X)

a.s.→ 0

for θ = θ0.

91



Statistics 22S:194, Spring 2003 Tierney

So for all large n, all θ other than θ0 are eventually ruled out in pairwise comparisons.

This proves consistency if Θ is a £nite set.

It can be made to work if Θ is compact and g, `n are continuous.

Dropping compactness is hard.

Homework

Problem 10.1

Due Friday, April 4, 2003.
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Wednesday, April 2, 2003

Second Midterm Exam

The exam will cover the material covered in readings, in class and in assignments from
Chapters 8 and 9.

The exam is closed book.

The exam will include some information on distributions along the lines of the Table of
Common Distributions in the text.
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Friday, April 4, 2003

Approximate Normality

Suppose n is large enough so that θ̂ is close to θ0. Then for θ near θ0,

1
n
`n(θ |X)≈ 1

n
`n(θ0|X)+

1
n

∂
∂θ

`n(θ0|X)(θ −θ0)+
1
2n

∂ 2

∂θ 2 `n(θ0|X)(θ −θ0)
2

Maximize this quadratic to get the approximate MLE:

θ̂ −θ0 =−
1
n`′n(θ0|X)
1
n`′′n(θ0|X)

Now
1
n
`′′(θ0|X) =

1
n ∑ ∂ 2

∂θ 2 log f (Xi|θ0)
a.s.→−I1(θ0)

by the strong law of large numbers. Furthermore,

1
n
`′(θ0|X) =

1
n ∑ ∂

∂θ
log f (Xi|θ0) =

1
n ∑Yi

with

E[Yi] = 0

Var(Yi) = I1(θ0)

So by the central limit theorem,

1√
n ∑Yi

D→ N(0, I1(θ0))

By Slutsky’s theorem,

√
n(θ̂ −θ0)≈−

1√
n`′n(θ0|X)

1
n`′′n(θ |X)

D→ N

(
0,

I1(θ0)

I1(θ0)
2

)
= N(0, I1(θ0)

−1)

or
θ̂ ∼ AN(θ0, In(θ0)

−1)

This holds in m dimensions as well.

So under suitable regularity conditions (similar to the ones needed for the CRLB) the MLE
is asymptotically normal.
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If θ̂ is the MLE and we want to estimate τ(θ), then

τ(θ̂)∼ AN

(
τ(θ0),

τ ′(θ0)
2

In(θ0)

)

These results also hold, under some conditions, in some non-i.i.d. situations.

The expected information In(θ0) can be approximated by the observed information

În(θ̂) =− ∂ 2

∂θ 2 logL(θ̂ |X)

Examples

1. X1, . . . ,Xn i.i.d. Poisson(λ )

λ̂ = X

∂
∂λ

logL(λ |X) =
∂

∂λ
(∑Xi logλ −nλ ) = n

(
X
λ
−1

)

∂ 2

∂λ 2 logL(λ |X) =−nX
λ 2

So In(λ ) = n
λ , În(λ̂ ) = n

X
, and

λ̂ = X ∼ AN(λ ,λ/n)

and
λ̂ −λ√
X/
√

n

D→ N(0,1)

2. X1, . . . ,Xn i.i.d. Gamma(α , 1).

logL(α|X) = const−n logΓ(α)+(α−1)∑ logXi

Closed form of the MLE is not available. The method of moments estimator

α̃ = X

is a good initial guess; we can £nd α̂ numerically by solving

−Γ′(α)

Γ(α)
+

1
n ∑ logXi = 0

We can approximate the distribution of α̂ as N(α, In(α)−1), and In(α) is approxi-
mately

În(α̂) =

[
Γ′′(α̂)

Γ(α̂)
−
(

Γ′(α̂)

Γ(α̂)

)2
]
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3. X1, . . . ,Xn i.i.d. Geometric(p).

f (x|p) = pn(1− p)∑xi−n

logL(p|X) = n log p+
(
∑Xi−n

)
log(1− p)

∂
∂ p

logL(p|X) = n

(
1
p
− X−1

(1− p)

)

∂ 2

∂ p2 logL(p|X) =−n

(
1
p2 +

X−1
(1− p)2

)

So p̂ = 1/X and

In(p) =
n
p2 +

n/p−n
(1− p)2 =

n
p2(1− p)

T̂n(p̂) =
n
p̂2 +

n/ p̂−n
(1− p̂)2 =

n
p̂2(1− p̂)

Homework

Problem 10.3
Problem 10.9 (but only for e−λ ; do not do λe−λ )

Due Friday, April 11, 2003.
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Week 11

Monday, April 7, 2003

Asymptotic Ef£ciency

De£nition

A sequence of estimators Wn is asymptotically ef£cient for τ(θ) if
√

n(Wn − τ(θ))
D→

N(0,v(θ)) with

v(θ) =
[τ ′(θ)]2

Eθ

[(
∂

∂θ log f (X |θ)
)2
]

Thus the MLE is asymptotically ef£cient.

Is this de£nition reasonable?

Theorem

Suppose a sequence of estimators Wn satis£es is
√

n(Wn− τ(θ))
D→ N(0,v(θ)) with v(θ)

continuous. Then, under suitable regularity conditions,

v(θ)≥ [τ ′(θ)]2

Eθ

[(
∂

∂θ log f (X |θ)
)2
]

The following example shows that the continuity requirement on v(θ), or something like
it, is needed:
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Example

Let X1, . . . ,Xn be i.i.d. N(θ ,1) and let

Wn =

{
X if |X |> n1/4

aX if |X | ≤ n1/4

Then
√

n(Wn−θ)
D→ N(0,v(θ)) with v(θ) = 1 for θ 6= 0 and v(θ) = a2 for θ = 0. If a < 1

(e.g. a = 0) then this estimator is superef£cient.

Is this example entirely arti£cial?

Suppose the sequence of estimators Wn of θ satis£es
√

n(Wn−θ)
D→ N(0,v(θ)) for some

v(θ). We can constuct a new sequence Vn by taking a single Newton step from Wn towards
the MLE:

Vn = Wn−
`′n(Wn)

`′′n(Wn)

This new sequence is asymptotically ef£cient (under suitable regularity conditions):

√
n(Vn−θ) =

√
n(Wn−θ)−√n

`′n(Wn)

`′′n(Wn)

≈√n(Wn−θ)−√n
`′n(θ)

`′′n(Wn)
−√n

(Wn−θ)`′′n(θ)

`′′n(Wn)

=
√

n
`′n(θ)

`′′n(θ)
+
√

n
`′n(θ)

n

(
n

`′(Wn)
− n

`′(θ)

)
−√n(Wn−θ)

(
1− `′′n(θ)

`′′n(Wn)

)

≈√n
`′n(θ)

`′′n(θ)

D→ N(0, I(θ)−1)

with

I(θ) = Eθ

[(
∂

∂θ
log f (X |θ)

)2
]

since `′′n(θ)/n
P→−I(θ) and `′′n(Wn)/n

P→−I(θ).

Non-Normal Limiting Distributions

Some MLE’s have non-normal limiting distributions:

Example

Suppose X1, . . . ,Xn are i.i.d. U [0,θ ]. Then the MLE is θ̂n = X
(n)

. Now for x < nθ

P(n(θ − θ̂) > x) =
(

1− x
nθ

)n
→ e−x/θ
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So the limiting distribution of n(θ − θ̂) is exponential with mean one.

Variance-Stabilizing Transforms

For constructing CI’s, it is useful to have normal approximations with variances that do not
depend on the paameter.

Supose Wn ∼ AN(θ ,σ 2
W (θ)/n). Then for a smooth function g

g(Wn)∼ AN(g(θ),g′(θ)2σ2
W (θ))

Suppose g′(θ)2σ2
W (θ)≡ 1, say. Then

g′(θ) =
1√

σ2
W (θ)

and thus

g(θ) =
∫

1√
σ2

W (θ)

Examples

1. If X1, . . . ,Xn are i.i.d. Poisson(λ ), then Wn = Xn ∼AN(λ ,λ/n). So σ 2
W (λ ) = λ , and

g(λ ) =
∫

1√
λ

dλ = 2
√

λ

So 2
√

X ∼ AN(2
√

λ ,1/n).

2. If Xn∼Binomial(n, p), then Wn = Xn/n∼AN(p, p(1− p)/n). So σ 2
W (p) = p(1− p),

and

g(p) =
∫

1√
p(1− p)

d p

=
∫

2√
1− y2

dy p = y2

= 2sin−1(y)

= 2sin−1(
√

p)

So 2sin−1(
√

Xn/n)∼ AN(2sin−1(
√

p),1/n).
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Homework

Problem: Find the approximate joint distribution of the maximum likelihood estimators in
problem 7.14 of the text.

Due Friday, April 11, 2003.

100



Statistics 22S:194, Spring 2003 Tierney

Wednesday, April 9, 2003

Approximating Posterior Distributions

The posterior distribution of θ is given by

f (θ |x) ∝ f (x|θ) f (θ)

Let θ̂ be the MLE and set T =
√

n(θ − θ̂). Then the density of T |X is

f (t|x) ∝
f (x|θ̂ + t/

√
n) f (θ̂ + t/

√
n)

f (x|θ̂) f (θ̂)

Note that θ and T are random variables; the conditioning makes x and hence θ̂ constants.

Now take logs and expand around θ̂ :

log f (t|x)≈ 0+
t√
n

∂
∂θ

log f (x|θ̂)+
t2

2n
∂ 2

∂θ 2 log f (x|θ̂)+ log
f (θ̂ + t/

√
n)

f (θ̂)

= 0+0+
t2

2n
∂ 2

∂θ 2 log f (x|θ̂)+ log
f (θ̂ + t/

√
n)

f (θ̂)

=− t2

2n
În(θ̂)+ log

f (θ̂ + t/
√

n)

f (θ̂)

≈− t2

2n
În(θ̂)

If this were exact, we would have

T |X ∼ N(0,n/În(θ̂)) or

θ |X ∼ N(θ̂ , În(θ̂)−1)

Under suitable regularity conditions, the postarior distribution of θ is approximately

N(θ̂ , În(θ̂)−1)

for 1-dimensional and m-dimentional θ .

Some notes:

1. This is a legitimate distributional statement, since θ̂ and În(θ̂) are £xed conditional
on X .

2. The prior has been neglected here. It could be included by using the posterior mode
and second derivative at the postarior mode instead of the MLE.
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3. The observed information

În(θ̂) =− ∂ 2

∂θ 2 logL(θ̂ |X)

is the right thing to use—it is not being used to approximate the expected information
In(θ0).

4. Results are based on the law of large numbers, not the CLT.

Examples

1. X1, . . . ,Xn i.i.d. Bernoulli(p). The prior distribution of p is assumed smooth.

logL(p|x) = ∑xi log p+(n−∑xi) log(1− p)

∂
∂ p

logL(p|x) =
∑xi

p
− n−∑xi

1− p

p̂ = x

∂ 2

∂ p2 logL(p|x) =−∑xi

p2 −
n−∑xi

(1− p)2

So
În(p̂) =

n
p̂(1− p̂)

and p|X is approximately N( p̂, p̂(1− p̂)/n).

Supose n = 100,∑xi = 46. What is P(p < 0.5|X)?

SD(p|X)≈
√

0.46×0.54/100≈ 0.05

P(p < 0.5|X) = P

(
p−0.46

0.05
<

0.04
0.05

)

≈ P(Z < 0.8) = 0.79

Similarly,
P(0.36 < p < 0.56|X)≈ 0.95
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2. X1, . . . ,Xn i.i.d N(µ,σ 2), prior on (µ,σ 2) is smooth.

logL(µ,σ 2|x) =−n
2

logσ 2− 1
2σ2 ∑(xi−µ)2

∂
∂ µ

logL(µ,σ 2|x) =
1

σ2 ∑(xi−µ)

∂
∂σ2 logL(µ,σ 2|x) =− n

2σ2 +
1

2σ4 ∑(xi−µ)2

∂ 2

∂ µ2 logL(µ,σ 2|x) =− n
σ2

∂ 2

(∂σ2)2 logL(µ,σ 2|x) =
n

2σ4 −
1

σ6 ∑(xi−µ)2

∂ 2

∂ µ∂σ 2 logL(µ,σ 2|x) =− 1
2σ4 ∑(xi−µ)

Now µ̂ = x, σ̂2 = 1
n ∑(xi− x)2. So

În(µ̂ , σ̂2) =

[ n
σ̂2 0
0 n

2σ̂4

]

and thus

În(µ̂ , σ̂2)−1 =

[
σ̂2/n 0

0 2σ̂4/n

]

So µ,σ 2|X is approximately

N

([
µ̂
σ̂2

]
,

[
σ̂2/n 0

0 2σ̂4/n

])

Homework

Problem: In the setting of problem 7.14 of the text, suppose n = 100, ∑Wi = 71, and
∑Zi = 7802. Also assume a smooth, vague prior distribution. Find the posterior
probability that λ > 100.

Due Friday, April 11, 2003.
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Friday, April 11, 2003

Limiting Distribution of Order Statistics

Suppose Yn has a Beta(αn,βn) distribution, αn → ∞, βn → ∞, and pn = αn/(αn + βn)→
p ∈ (0,1). Then √

αn +βn(Yn− pn)
D→ N(0, p(1− p))

This can be shown using the central limit theorem for Gamma variables and the bivariate
delta method.

Suppose F is continuous with positive density at the p-th population quantile F−1(p). Let
X1, . . . ,Xn be a random sample from F and Ui = F(Xi). Then Ui∼U [0,1], X

(k) = F−1(U
(k)),

and U
(k) ∼ Beta(k,n− k +1). So for p ∈ (0,1)

√
n(X

({np})−F−1(p))≈√n
1

f (F−1(p))
(U

({np})− p)
D→ N

(
0,

p(1− p)

f (F−1(p))2

)

by the delta method.

Example

Suppose X1, . . . ,Xn are i.i.d. N(µ,σ 2) and let X̃n be the sample median. Then

√
n(X̃n−µ)

D→ N

(
0,

1/4

1/(
√

2πσ)2

)
= N

(
0,

π
2

σ2
)

Asymptotic Relative Ef£ciency

We can compare two asymptotically normal estimators using their asymptotic reative ef£-
ciency:

De£nition

Suppose
√

n(Wn−τ(θ))
D→N(0,σ 2

W ) and
√

n(Vn−τ(θ))
D→N(0,σ 2

V ). Then the asymptotic
relative ef£ciency of Vn to Wn is

ARE(Vn,Wn) =
σ2

W

σ2
V
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Example

Suppose X1, . . . ,Xn are i.i.d. N(µ,σ 2). Then the asymptotic relative ef£ciency of the sam-
ple median to the sample mean is

ARE(X̃n,Xn) =
σ2

π
2 σ2 =

2
π

= 0.6366

So using the mean we need only 64% as many observatons to achieve the same accuracy
as the median.

Example

Suppose X1, . . . ,Xn are i.i.d. Gamma(α,1). The method of moments estimator of α is
X ∼ AN(α,α/n). The maximum likelihood estimator must be calculated numerically, or
we can use a one step Newton approximation starting from the MM estimator. The negative
second derivative of the single observation log likelihood is

− ∂ 2

∂α2 (− logΓ(α)− (α−1) logx− x) =
d2

dα2 logΓ(α)

So the asumptotic relative ef£ciency of the MM estimator to the MLE is

ARE(Xn, α̂n) =

[
α

d2

dα2 logΓ(α)

]−1

α 0.5 1 2 5 10 100
ARE(Xn, α̂n) 0.4053 0.6079 0.7753 0.9037 0.9509 0.9950

The function ψ1(α) = d2

dα2 logΓ(α) is known as the trigamma function.

Homework

Problem: Let X1, . . . ,Xn be a random sample from a Pareto(1,β ) distribution with density
f (x|β ) = β/xβ+1 for x≥ 1. Find the asymptotic relative ef£ciency of the method of
moments estimator of β to the MLE of β .

Due Friday, April 18, 2003.
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Week 12

Monday, April 14, 2003

The Bootstrap

Suppose X1, . . . ,Xn is a random sample from F(x|θ) and W =W (X1, . . . ,Xn) is an estimator
of τ(θ). There are two forms of boostrap:

• Parametric Bootstrap:

1. Estimate θ by θ̂ .

2. Compute E∗[W ] = E[W |θ = θ̂ ] and Var∗(W ) = Var(W |θ = θ̂).

• Nonparametric Bootstrap:

1. Estimate F(x|θ) by the empirical distribution Fn.

2. Compute E∗[W ] = E[W |F = Fn] and Var∗(W ) = Var(W |F = Fn).

Boostrap theory says that, under suitable conditions, E∗[W ]≈E[W ] and Var∗(W )≈Var(W )
for large n.

Often bootsrtap approximations are more accurate than ones based on the delta method.

How do we compute E∗[W ] and Var∗(W )? In some cases we can do this analytically:

Example

Suppose X1, . . . ,Xn are i.i.d N(µ,σ 2) and W = S2. We can use µ̂ = X and σ̂2 = S2 in a
parametric bootstrap. Then

E∗[S2] = σ2
∣∣
σ2=S2 = S2

Var∗[S2] =
2σ4

n−1

∣∣∣∣
σ2=S2

=
2S4

n−1
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So the analytic version of the parametric boostrap involves computing Var(W |θ) as a
function of θ and plugging in an estimate θ̂ to obtain the parametric bootstrap variance
Var∗(W |θ̂).

Usually bootstrap variances are computed using computer simulation: Consider the same
setting as in the previous example. Given the estimates µ̂ and σ̂2 we draw a sample
X∗

1 , . . . ,X∗
n from a N(µ̂ , σ̂2) distribution and compute W ∗

1 = W (X∗
1 , . . . ,X∗

n ). Repeat this
B times to obtain W ∗

1 , . . . ,W ∗
B . Then approximate E∗[W ] and Var∗(W ) by

E∗
B[W ] = W

∗

Var∗B(W ) =
1

B−1

B

∑
i=1

(W ∗
i −W

∗
)2

The law of large numbers implies that E∗
B[W ]

P→ E∗[W ] and Var∗B(W )
P→Var∗(W ) as B→∞.

The nonparametric bootstrap uses the same idea, except each sample is drawn from the
empirical distribution Fn:

• Draw X∗
1 , . . . ,X∗

n from Fn

• Compute W ∗
1 = W (X∗

1 , . . . ,X∗
n ).

• Repeat B times to get W ∗
1 , . . . ,W ∗

B .

Drawing a random sample from Fn means sampling the observed values of the data with
replacement.

Example

Times between failures of air conditioning units, in hours, are

> ac
[1] 3 5 7 18 43 85 91 98 100 130 230 487

The sample standard deviation is

> sd(ac)
[1] 136.2321

Using the boot package we can obtain bootstrap estimates of the bias and standard devia-
tion:
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> boot(ac, function(d, i) sd(d[i]), 1000)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = ac, statistic = function(d, i) sd(d[i]), R = 1000)

Bootstrap Statistics :
original bias std. error

t1* 136.2321 -14.96460 48.22422

Some notes:

• Bootstrapping can be applied to any estimator.

• Bootstrapping requires computing the estimator many times.

• Regression problems can be bootstrapped several ways (cases, residuals, . . . )

The nonparametric bootstrap is a shift in philosophy:

• use a model to suggest an estimator

• do not use the model to assess how well the estimator works.

The boostrap uses asymptotics in two ways:

• The data sample size n has to be large for Var∗(W ) to be close to Var(W ).

• The bootstrap sample size B has to be large for Var∗B(W ) to be close to Var∗(W ).

Homework

Problem: Let X1, . . . ,Xn be i.i.d. Poisson(λ ) and let W = e−X . Find the parametric

bootstrap variance Var∗(W ) and show that Var∗(W )/Var(W )
P→ 1 as n→ ∞.

Due Friday, April 18, 2003.
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Wednesday, April 16, 2003

Estimating Equations

Many estimators Wn are de£ned by an estimating equation

n

∑
i=1

h(Xi,Wn) = 0

for some well-behaved function h.

Example

In maximum likelihood estimation

h(x, t) =
∂

∂θ
log f (x|θ)

∣∣∣∣
θ=t

What does Wn estimate? Suppose t∗ satis£es

E[h(X , t∗)] = 0

Generally we will then have Wn
P→ t∗.

Expanding the estimating equation around t∗ gives

0 = ∑h(Xi, t
∗)+∑ ∂

∂ t
f (Xi, t

∗)(Wn− t∗)+ . . .

and so

√
n(Wn− t∗)≈−

1√
n ∑h(Xi, t

∗)

1
n ∑ ∂

∂ t h(Xi, t
∗)

D→ N

(
0,

E[h(X , t∗)2]

(E[ ∂
∂ t h(X , t∗)])2

)

We can estimate the asymptotic variance by

V̂ar(
√

n(Wn− t∗)) =
1
n ∑h(Xi,Wn)

2

(1
n ∑ ∂

∂ f h(Xi,Wn))2

This is sometimes called the sandwich estimator. To see why, we need to look at the
multidimensional version.
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If θ is m× 1 then we need m equations, so h(x, t) is m× 1 and ∂
∂ t h(X , t∗) is m×m. The

covariance matrix of h(X , t∗) is

Ch = E[h(X , t∗)h(X , t∗)T ]

and √
n(Wn− t∗)

D→ N(0,AhChAT
h )

with

Ah = E[
∂
∂ t

h(X , t∗)]−1

The corresponding estimated asymptotic covariance matrix is ÂhĈhÂT
h with Âh and Ĉh the

empirical analogs of Ah and Ch. So Ĉh is sandwiched between Âh and ÂT
h .

MLE’s Using an Incorrect Model

Suppose X1, . . . ,Xn are i.i.d. from g. We use a model g(x) = f (x|θ) to obtain an estimator
Wn. This “MLE” will be consistent for the value θ ∗ that solves

Eg

[
∂

∂θ
log f (X |θ ∗)

]
= 0

or

θ ∗ = argmax
θ

Eg[log f (X |θ)]

= argmax
θ

Eg

[
log

f (X |θ)

g(X)

]

= argmin
θ

∫
log

g(x)
f (x|θ)

g(x)dx

= argmin
θ

KL(g(·), f (·|θ))

KL(g, f ) is the Kullback-Liebler divergence from g to f . KL(g, f ) ≥ 0 for all g, f with
equality only if g = f almost everywhere.

If g(x) = f (x|θ0) for some θ0, then θ ∗ = θ0 if the parameter is identi£able. Otherwise, θ ∗

corresponds to the model in the family { f (x|θ) : θ ∈Θ} that is closest to g(x) in Kullback-
Liebler divergence.

The limiting distribution of Wn is

√
n(Wn−θ ∗)

D→ N

(
0,

Eg[(
∂

∂θ log f (X |θ ∗))2]

(Eg[
∂ 2

∂θ 2 log f (X |θ ∗)])

)
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and the asymptotic variance can be estimated by

V̂ar(
√

n(Wn−θ ∗)) =
1
n ∑( ∂

∂θ log f (Xi|Wn))
2

[1
n ∑( ∂ 2

∂θ 2 log f (Xi|Wn))]2

In the spirit of the nonparametric bootstrap some prefer to use the sandwich estimator to
estimate the variance of a maximum likelihood estimator.

In some settings the speci£cation of a mean structure may be easier to justify than the rest
of a model. MLE’s may then be consistent for the parameters of the mean structure even
if the rest of the model is wrong; the sandwich estimator of the variance will then also be
consistent.

Homework

1. Let X1, . . . ,Xn be a random sample that may come from a Poisson distribution with

mean λ . Find the sandwich estimator of the asymptotic variance of the MLE λ̂ = X .

2. Let g(x) = e−x for x > 0 be an exponential density with mean one and let f (x|θ) be
a N(θ ,1) density. Find the value θ ∗ corresponding to the density of the form f (x|θ)
that is closest to g in Kullback-Liebler divergence.

Due Friday, April 18, 2003.
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Friday, April 18, 2003

Robust Estimators

Many estimators are derived based on an assumed model. If the model is not correct, these
estimators may not work very well at all.

Ideally we would like something along these lines:

• optimal or near optimal performance if the model is correct

• small deviations from the model should reduce the performance only a little.

• slightly larger deviations should not cause disasters

Breakdown

One way to think about “no disasters” is breakdown:

Breakdown is the largest fraction of data that can be moved to in£nity before
the estimator is pulled to in£nity.

For the mean X the breakdown is 0.

For the median the breakdown is 50%.

For the α-trimmed mean
1

n(1−2α)

{(1−α)n}
∑

k={αn}
X

(k)

the breakdown is α .

M-Estimators

Many estimators are de£ned as mimimizers of a criterion,

θ̂M = argmin
a

∑ρ(Xi−a)

For location models Xi∼ f (x−θ) taking ρ(x) =− log f (x) makes θ̂M the MLE. Estimators
of this form are therefore called M-estimators.

Huber proposed this class and a particular member,

ρ(x) =

{
1
2x2 if |x| ≤ k

k|x|− 1
2k2 if |x|> k
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Generally the M-estimator θ̂M also solves

∑ψ(Xi− θ̂M) = 0

with ψ = ρ ′. For the Huber M-estimator

ψ(x) =





−k if x <−k

x if |x| ≤ k

k if x > k

k is a tuning constant; it is sometimes chosen based on a robust measure of scale, such as
the IQR.

Suppose θ0 satis£es E[ψ(X−θ0)] = 0. Then θ̂M is generally consistent for θ0 and

√
n(θ̂M−θ0)

D→ N

(
0,

E[ψ(Xi−θ0)
2]

(E[ψ ′(Xi−θ0)])
2

)

One advantage of the M-estimator formulation is that it can be extended to regression
settings.

In¤uence Functions

The in¤uence function (or in¤uence curve) is a useful tool for thinking about the robustness
of estimators. To de£ne the in¤uence function, think of an estimator as a functional T (Fn)
of the empirical distribution Fn. The corresponding population characteristic is T (F).

The in¤uence function is based on thinking about small “contaminations” in which a point
mass of probability δ is added at a point x. That is, X ∼ Fδ means

X ∼
{

F with probability 1−δ
x with probability δ

The in¤uence function measures the rate of change of T as the amount of contamination δ
changes:

IF(T,x) = lim
δ↓0

1
δ

(T (Fδ )−T (F))

The in¤uence function is essentially a directional derivative.

For the sample mean
T (Fδ ) = (1−δ )µ +δx

and
1
δ

(T (Fδ )−µ) = x−µ
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so the in¤uence function of the sample mean is

IF(X ,x) = x−µ

The in¤uence function of an M-estimator is

IF(θ̂M,x) =
ψ(x−θ0)

E[ψ ′(X−θ0)]

This is bounded for Huber’s M-estimator. Bounded in¤uence is a characteristic of robust
methods.

For the α-th sample quantile the in¤uence function is

IF(X
({αn}),x) =

{ α
f (F−1(α))

if x > F−1(α)
α−1

f (F−1(α))
if x < F−1(α)

A useful general result:
√

n(T (Fn)−T (F))
D→ N(0,E[IF(T,X)2])

There is a relation between the in¤uence function and the breakdown value of an estimator;
the homework problem explores this.

Computing In¤uence Functions

A variety of techniques are available for computing in¤uence functions. If T is de£ned by
an equation, then implicit differentiation is often a useful approach.

Example

Suppose T = F−1(α) is the α-th population quantile, and suppose F has density f with
f (T ) > 0. Then T satis£es

F(T ) = α
Now

Fδ (Tδ ) = (1−δ )F(Tδ )+δ1
[x,∞)

(Tδ ) = g(δ ,Tδ )

with
g(u,v) = (1−u)F(v)+u1

[x,∞)
(v)

The partial derivatives of g are, for v 6= x,

∂
∂u

g(u,v) = 1
[x,∞)

(v)−F(v)

∂
∂v

g(u,v) = (1−u) f (v)
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Differentiating the de£ning equation for T with respect to δ and evaluating at δ = 0 pro-
duces

0 =

(
∂

∂u
g(δ ,Tδ )+

∂
∂v

g(δ ,Tδ )
d

dδ
Tδ

)∣∣∣∣
δ=0

=

(
1

[x,∞)
(Tδ )−F(Tδ )+(1−δ ) f (Tδ )

d
dδ

Tδ

)∣∣∣∣
δ=0

= 1
[x,∞)

(T )−α + f (T )IF(T,x)

and therefore

IF(T,x) =
α−1

[x,∞)
(T )

f (T )

Homework

Problem 10.30 (b)

Due Friday, April 25, 2003.
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Week 13

Monday, April 21, 2003

Large Sample Hypothesis Tests

Informal Methods

Suppose we want to test

H0 :θ = θ0

H1 :θ 6= θ0 or one-sided if θ is real-valued

Suppose Wn is an estimator of θ and Wn is
√

n-consistent and asymptotically normal, i.e.
under H0

Wn ∼ AN(θ0,
1
n

σ2
W )

Then we can use as a test statistic
Wn−θ0

σW /
√

n

which is approximately N(0,1) if θ = θ0.

If σW = σW (θ) depends continuously on θ , then

Wn−θ0

σW (θ0)/
√

n
∼ AN(0,1)

and
Wn−θ0

σW (W )/
√

n
∼ AN(0,1)

if θ = θ0, so either can be used as the basis for a test.

In some cases we can £nd a variance stabilizing transformation g such that

√
n(g(Wn)−g(θ0))∼ AN(0,1)
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if θ = θ0.

If σW = σW (ψ) depends continuously on another parameter ψ , and if Vn is a consistent
estimator of ψ , then

Wn−θ0

σW (Vn)/
√

n
∼ AN(0,1)

if θ = θ0.

Example

Suppose X1, . . . ,Xn are i.i.d. Poisson(λ ) and we wish to test the hypotheses

H0 :λ = λ0

H1 :λ 6= λ0

Then Wn = Xn ∼ AN(λ ,λ/n). The variance stabilizing transformation is g(x) = 2
√

x, so
2
√

Xn ∼ AN(
√

λ ,1). Thus a test can be based on any one of the statistics

Zn,1 =
√

n(Xn−λ0)/
√

λ0

Zn,2 =
√

n(Xn−λ0)/
√

Xn

Zn,3 =
√

n
(

2
√

Xn−2
√

λ0

)

in each case rejecting if |Zn,k| is larger than zα/2.

If θ is m-dimensional and Wn ∼ AN(θ ,ΣW ) with ΣW nonsingular, then, viewing θ and Wn

as m×1 column vectors,

Yn = n(Wn−θ0)
T Σ−1

W (Wn−θ0)
D→ χ2

m

if θ = θ0. An approximate level α test is therefore obtained by rejecting H0 if Yn > χ2
m,α .

To see why the limiting distribution is approximately χ 2
m suppose Y ∼ N(0,Σ) with Σ non-

singular, and let A be such that Σ = AAT . Such matricies A exist and are nonsingular. Let
Z = A−1Y . Then

Y T Σ−1Y = Y T (AAT )−1Y = Y T A−T A−1Y = (A−1Y )T (A−1Y ) = ZT Z =
m

∑
i=1

Z2
i

and
Z ∼ N(0,A−1ΣA−T ) = N(0,A−1AAT A−T ) = N(0, I)

So Z1, . . . ,Zm are i.i.d. standard normal and ∑Zi ∼ χ2
m.
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Likelihood Ratio Tests for Large Samples

For many problems where optimal tests can be found, LR tests turn out to be optimal.

Suppose we cannot £nd optimal tests. The LRT may still be a good test to use.

But we may not be able to £nd the distribution of Λ, or a function of Λ, under H0.

Fortunately, a general result can often be applied.

Suppose

Θ is m-dimensional

Θ0 is k < m-dimensional

Under suitable regularity conditions, −2logΛ is approximately a χ 2
m−k random variable if

H0 is true.

To see where this comes from, look at Θ0 = {θ0}, k = 0. Then let

Vn(θ0) =

(
∂

∂θ
log f (X |θ0i

)

)

i=1,...,m

viewed as a column vector. The function Vn(θ) is called the score function, and if θ = θ0
then

Vn(θ0)∼ AN(0, In(θ0))

Based on a two term Taylor expansion around θ0 the maximized log likelihood is approxi-
mately

logL(θ̂)≈ logL(θ0)+
1
2

Vn(θ0)
T In(θ0)

−1Vn(θ0)

and therefore

Λ =
L(θ0)

L(θ̂)
≈ exp

{
−1

2
Vn(θ0)

T In(θ0)
−1Vn(θ0)

}

So if θ = θ0, then

−2logΛ≈Vn(θ0)
T In(θ0)

−1Vn(θ0)
D→ χ2

m

The regularity conditions require both restricted and unrestricted MLE problems to be nice:

differentiability

no boundaries—θ0 must be interior to Θ0 and Θ.

This rules out one-sided situations like

H0 : θ = θ0
H1 : θ > θ0
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Often we have Θ0 described by constraints,

Θ0 = {θ : g(θ) = 0}

for some g : Rm→ Rp. Then usually dim(Θ0) = m− p and so −2logΛ is approximately
χ2

p.

Example

(N0,N1,N2) are multinomial (n, p0, p1, p2).

H0 : pi =

(
2
i

)
pi(1− p)2−i,0≤ p≤ 1

i.e. H0 is that the pi correspond to a Binomial(2,p) distribution for some p. This might be
the case if a particular genetic model is true.

Θ is 2-dimensional (since p0 + p1 + p2 = 1).

Θ0 is 1-dimensional.

Λ =
(1− p̂)2N0(2 p̂(1− p̂))N1 p̂2N2

p̂N0
0

p̂N1
1

p̂N2
2

with

p̂ =
N1 +2N2

2n

p̂i =
Ni

n

Then

−2logΛ = 2N0 log
p̂0

(1− p̂)2 +2N1 log
p̂1

2 p̂(1− p̂)
+2N2 log

p̂2

p̂2

= G2 statistic

which is related to the χ2 statistic.

Homework

Problem: Consider the setting of Problem 10.31. Derive an expression for −2logΛ, where
Λ is the likelihood ratio test statistic, and £nd the approximate distribution of this quantity
under the null hypothesis.

Due Friday, April 25, 2003.
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Wednesday, April 23, 2003

Other Likelihood-Based Methods

We saw earlier that under some conditions

θ̂ ∼ AN(θ , In(θ)−1)

From this it follows that

θ̂ −θ0√
In(θ0)

−1
∼ AN(0,1)

θ̂ −θ0√
În(θ̂)−1

∼ AN(0,1)

if θ = θ0 and θ is a scalar, or

(θ̂ −θ0)
T In(θ0)(θ̂ −θ0)

D→ χ2
m

(θ̂ −θ0)
T În(θ̂)(θ̂ −θ0)

D→ χ2
m

if θ = θ0 and θ is m-dimensional.

Tests based on these statistics, in particular the second form (for our text), are called Wald
tests.

A test can also be based on the score function

Vn(θ0) =

(
∂

∂θ
log f (X |θ0i

)

)

i=1,...,m

If θ = θ0 then
Vn(θ0)∼ AN(0, In(θ0))

and so

Vn(θ0)√
In(θ0)

∼ AN(0,1)

Vn(θ0)√
În(θ̂)

∼ AN(0,1)

for scalar θ and

Vn(θ0)
T In(θ0)

−1Vn(θ0)
D→ χ2

m

Vn(θ0)
T În(θ̂)−1Vn(θ0)

D→ χ2
m
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for m-dimentional θ .

Tests based on these statistics, in particular the £rst form, are called score tests. One ad-
vantage of the £rst form in particular is that it does not require computation of the MLE.

Example

Suppose X1, . . . ,Xn are i.i.d. Bernoulli(p) and we want to test the hypotheses

H0 :p = p0

H1 :p 6= p0

The score function is

Vn =
∂

∂ p

(
∑Xi log p+

(
n−∑Xi

)
log(1− p)

)
=

∑Xi

p
− 1−∑Xi

1− p

= n

(
p̂
p
− 1− p̂

1− p

)
= n

p̂− p
p(1− p)

and the expected and observed information are

In(p) =
n

p(1− p)

În(p) =
n

p̂(1− p̂)

The score test statistic is

Vn(p0)√
In(p0)

= n
p̂− p0

p0(1− p0)

/√
n

p0(1− p0)
=
√

n
p̂− p0√

p0(1− p0)

The Wald test statistic is
p̂− p0√

În(p̂)
=
√

n
p̂− p0

p̂(1− p̂)

If In(p0) is used in the Wald statistic then the Wald and score statistica are identical.

Some notes:

• For discrete data, approximations can sometimes be improved by using continuity
corrections.

• For simple null hypotheses, exact p-values can sometimes be computed by simula-
tion.
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Homework

Problem 10.38

Due Friday, April 25, 2003.
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Friday, April 25, 2003

Approximate Con£dence Sets

Suppose the usual regularity conditions hold. If Θ is k-dimensional, then the LRT for

H0 : θ = θ0
H1 : θ 6= θ0

rejects if

−2log
f (x|θ0)

f (x|θ̂)
> χ2

k,α

(approximately). Inverting this produces

C(X) =

{
θ : log

f (x|θ)

f (x|θ̂)
≥−1

2
χ2

k,α

}

Likelihood contours are con£dence sets.

Similarly, (θ̂ −θ0)
T Î(θ̂)(θ̂ −θ0) is approximately χ2

k,α (Wald test). Inverting, or using as
a pivot, gives

C(X) = {θ : (θ̂ −θ)T Î(θ̂)(θ̂ −θ)≤ χ2
k,α}

= ellipse (ellipsoid)

Score tests can also be inverted.

Î(θ̂) can be replaced by I(θ). This makes things more complicated but is sometimes usable.

If W ∼ AN(θ ,σ 2
W /n), σ 2

W known, then

W −θ
σW /
√

n
∼ AN(0,1)

is an approximate pivotal, and

W ± σ2
W√
n

zα/2

is an approximate 1−α level CI.

If σW = σW (θ) is continuous, then

W −θ
σW (θ̂)/

√
n
∼ AN(0,1)

W −θ
σW (θ)/

√
n
∼ AN(0,1)
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are both approximate pivotals.

The second is harder to use but may be more accurate.

Wilks argues that if

Q(X ,θ) =
∂

∂θ logL(θ |X)√
−Eθ

[
∂ 2

∂θ 2 logL(θ |X)
]

then Q(X ,θ) ∼ AN(0,1) and an interval obtained by inversion is asymptotically shortest
among a certain class of intervals.

It is not always possible to do the inversion.

It may be possible in a different parameterization (try a variance stabilizing transformation).

Of course, shortest in one parameterization is not necessarily shortest in another unless they
are linearly related.

Example

For the binomial distribution, p̂∼ AN(p, p(1− p)/n).

First approach (Wald interval):

p̂± zα/2

√
p̂(1− p̂)

n

Second approach (Score interval):

√
n

p̂− p√
p(1− p)

∈ 0± zα/2

So

(p̂− p)2 =
1
n

p(1− p)zα/2

p̂2−2pp̂+ p2 =
1
n

z2
α/2(p− p2)

p̂2− (2 p̂+
1
n

z2
α/2)p+(1+

1
n

z2
α/2)p2 = 0

p1,2 =
2 p̂+ 1

nz2
α/2±

√
(2 p̂+ 1

nz2
α/2

)2−4 p̂2(1+ 1
nz2

α/2
)

2(1+ 1
nz2

α/2
)

Variation: use continuity correction.
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Inverting the LRT gives

C =

{
p :−2log

(
py(1− p)n−y

p̂y(1− p̂)n−y

)
≤ χ2

1,α

}

where y = ∑xi is the number of successes.

Other options:

• invert exact binomial test

• Agresti and Coull: Add 2 successes and 2 failures to compute p̂ = (y + 2)/(n + 4),
then use Wald interval with ñ = n + 4. (Recommended only for α = 0.05; for other
α adding (zα/2)

2/2 successes and failures is recommended.)

L. D. Brown, T. T. Cai, and A DasGupta (2001), “Interval estimation for a binomial param-
eter (with discussion),” Statistical Science, 16, 101–144.

Homework

Problem 10.41

Due Friday, May 2, 2003.
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Week 14

Monday, April 28, 2003

Linear and Other Models

In many problems we want to model how a response Y is related to some explanatory
variables x. Some forms of models used:

linear model:

Y = β0 +β1x1 + · · ·+βm + ε
Y = β0 +β1x+ ε
Y = β0 +β1x+β2x2 + · · ·+βmxm + ε

nonlinear model:
Y = β1 +β2 exp{β3x}+ ε

generalized linear model:

Y ∼ Poisson(λ = exp{β0 +β1x1 + · · ·+βm})
Y ∼ Bernoulli(p = g(β0 +β1x1 + · · ·+βm))

with

g(x) = exp{x}/(1+ exp{x}) Logit link

g(x) = Φ(x) Probit link

additive model:
Y = s1(x1)+ . . .sm(xm)+ ε

where the si are “smooth” functions.
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Various combinations are possible.

Simplest case: linear model.

Suppose we have n observations that can be written as

Yi = β1xi,1 + · · ·+βpxi,p + εi

for i = 1, . . . ,n. To include a constant term take xi≡ 1. The xi j are viewed as £xed constants.

Linear model assumptions:

1. E[εi] = 0 for all i.

2. The εi are uncorrelated.

3. The εi have the same variance, σ 2.

4. The εi are jointly normally distributed.

If all of these assumptions hold then the likelihood function for the data is

L(β ,σ 2) =
1

(2πσ 2)n/2
exp

{
− 1

2σ2

n

∑
i=1

(yi−µi(β ))2

}

with

µi(β ) =
p

∑
j=1

β jxi j

So the maximum likelihood estimator of β is

β̂ = argmin
β

n

∑
i=1

(yi−µi(β ))2

= least squares estimator

and the MLE of σ 2 is

σ̂2 = argmax
σ2

1

(σ2)n/2
exp

{
− 1

2σ2

n

∑
i=1

(yi−µi(β̂ ))2

}

=
1
n

n

∑
i=1

(yi−µi(β̂ ))2

=
1
n
(sum of squared residuals)

The partial derivatives of the sum of squared deviations are

∂
∂βk

n

∑
i=1

(yi−µi(β̂ ))2 =−2
n

∑
i=1

(yi−µi(β̂ ))
∂

∂βk
µi(β )
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and so the least squares estimators satisfy

n

∑
i=1

µi(β̂ )
∂

∂βk
µi(β ) =

n

∑
i=1

yi
∂

∂βk
µi(β )

for k = 1, . . . , p. There are called the normal equations.

For the linear model
∂

∂βk
µi(β ) = xik

Using matrix notation, with

y =




y1
...

yn


 X =




x1,1 . . . x1,p
...

xn,1 . . . xn,p


 µ(β ) =




µ1(β )
...

µn(β )


 β =




β1
...

βp




we have µ(β ) = Xβ , and the normal equations can be written as

XT Xβ = XT y

So if the matrix X is of sull rank, then

β̂ = (XT X)−1XT y

Assuming only that E[ε] = 0 we get

E[β̂ ] = E[(XT X)−1XTY ] = (XT X)−1XT E[Y ]

= (XT X)−1XT Xβ = β

So the least squares estimators are unbiased.

If we also assume that Cov(ε) = σ 2I, then

Cov(β̂ ) = (XT X)−1XT (σ2I)X(XT X)−1

= σ2(XT X)−1(XT X)(XT X)−1

= σ2(XT X)−1

Homework

Problem: Let x1, . . . ,xn be constants, and suppose

Yi = β1(1− e−β2xi)+ εi

with the εi independent N(0.σ 2) ramdom variables.
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a. Find the normal equations for the least squares estimators of β1 and β2.

b. Suppose β2 is known. Find the least squares estimator for β1 as a function of the data
and β2.

Due Friday, May 2, 2003.
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Wednesday, April 30, 2003

Example

In simple linear regression there is a single predictor variable x, so

Yi = β1 +β2xi + ε

The X matrix is therefore

X =




1 x1
1 x2
...

...
1 xn




and

XT X =

[
n ∑xi

∑xi ∑x2
i

]
XT y =

[
∑yi

∑xiyi

]

The inverse of the matrix XT X is

(XT X)−1 =
1

n∑x2
i − (∑xi)

2

[
∑x2

i −∑xi
−∑xi n

]
=

1
n∑(xi− x)2

[
∑x2

i −∑xi
−∑xi n

]

The least squares estimate of the slope β2 is therefore

β̂2 =
−∑xi ∑yi +n∑xiyi

n∑(xi− x)2 =
∑(xi− x)(yi− y)

∑(xi− x)2

and the least squares estimate of the intercept β1 is

β̂1 =
∑xi ∑yi−∑xi ∑xiyi

n∑(xi− x)2 = y− β̂2x

If the εi are uncorrelated and have common variance σ 2, then the covariance matrix of the
least squares estimators is

Cov(β̂ ) = σ2(XT X)−1 = σ2




∑x2
i

n∑(xi−x)2 − x
∑(xi−x)2

− x
∑(xi−x)2

1
∑(xi−x)2




Some notes:

• The intercept and slope estimates are negatively correlated if x > 0.

• If we can choose x values within an interval [a,b] and want to obtain the most accurate
estimate of the slope, then we would want to take half the observarions at x = a and
the other half at x = b.
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Example

Suppose we have measurements of responses to k different treatments

Treatments
1 2 3 . . . k

y11 y21 y31 . . . yk1
...

...
... . . .

...
...

... y3n3
. . .

...

y1n1

...
...

y2n2
yknk

The mean responses for the treatments are β1, . . . ,βk. So

Yi j = βi + εi j

for i = 1, . . . ,k and j = 1, . . . ,ni. The εi j are usually assumed to be uncorrelated with mean

zero and common variance σ 2. This is called a one way analysis of variance model.

This model is a special case of a linear model:

Y =




Y11
...

Y1n1

Y21
...

Y2n2
...

Yk1
...

Yknk




X =




1 0 . . . 0
...

... . . .
...

1 0 . . . 0
0 1 . . . 0
...

... . . .
...

0 1 . . . 0
0 0 . . . 1
...

... . . .
...

0 0 . . . 1




The XT X matrix and XT y vector are very simple:

XT X =




n1 0 0 . . . 0
0 n2 0 . . . 0

0 0
...

...
... 0

0 0 0 . . . nk




XT y =




∑n1
j=1

y1 j

∑n2
j=1

y2 j
...

∑nk
j=1

yk j




=




y1+
y2+

...
yk+
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The least squares estimators are therefore

β̂ =




1
n1

Y1+
1
n2

Y2+
...

1
nk

Yk+




=




Y 1+
Y 2+

...
Y k+




If the εi j are uncorrelated and have common variance σ 2 then the least squares estimators

β̂1, . . . , β̂k are uncorrelated and

Var(β̂i) =
σ2

ni

Combinations are also possible:

Yi j = µi +βxi j + εi j

Yi j = µi +βixi j + εi j

These are sometimes called anamysis of covariance models.

Homework

Problem: Let x1, . . . ,xn be constants, and suppose

Yi = β1 +β2xi + εi

Let y∗ be a constant and let let x∗ satisfy

y∗ = β0 +β1x∗

that is, x∗ is the value of x at which the mean response is y∗.

a. Find the maximum likelihood estimator x̂∗ of x∗.

b. Use the delta method to £nd the approximate sampling distribution of x̂∗.

Due Friday, May 2, 2003.
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Friday, May 2, 2003

Optimality Properties of Least Squares Estimators

Unbiasedness

If E[ε] = 0 then the least squares estomators are unbiased:

E[β̂ ] = E[(XT X)−1XTY ] = (XT X)−1XT E[Y ] = (XT X)−1XT Xβ = β

Best Linear Unbiased Estimators (BLUE)

The least squares estimators are linear in the data. Suppose β̃ = AY where A is a p× n
matrix of constants. This is a linear estimator. Suppose β̃ is unbiased, i.e.

E[β̃ ] = AE[Y ] = AXβ = β

for all β . This means that the p× p matrix AX is the p× p identity matrix.

To compare the covariance matrices of β̃ and β̂ we need a lemma:

Lemma

Let U = BY and V = CY and let Cov(U,V ) be the matrix of covariances Cov(Ui,V j). Then
Cov(U,V ) = BCov(Y )CT .

The proof involves writing out the sums for Ui and V j, using bilinearity of the covariance,
and recognizing the matrix products in the results.

The covariance matrix of β̃ can be written as

Cov(β̃ ) = Cov((β̃ − β̂ )+ β̂ )

= Cov(β̃ − β̂ )+Cov(β̃ − β̂ , β̂ )+Cov(β̂ , β̃ − β̂ )+Cov(β̂ )

Using the lemma and assuming Cov(Y ) = σ 2I,

Cov(β̃ − β̂ , β̂ ) = Cov((AY − (XT X)−1XTY ),(XT X)−1XTY )

= Cov((A− (XT X)−1XT )Y,(XT X)−1XTY )

= σ2(A− (XT X)−1XT )X(XT X)−1

= σ2(AX− (XT X)−1XT X)(XT X)−1

= σ2(I− I)(XT X)−1

= 0
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So
Cov(β̃ ) = Cov(β̃ − β̂ )+Cov(β̂ )

The matrix Cov(β̃ − β̂ ) is a covariance matrix and therefore positive semidetinite. This
means

Var(β̃k)≥ Var(β̂k)

for k = 1, . . . , p, or more generally, that for any linear combination ∑ckβk = cT β the esti-

mator cT β̃ = cT AY is linear, unbiased, and has variance no smaller than the corresponding
least squares estimator cT β̂ :

E[cT β̃ ] = cT E[β̃ ] = cT β

Var(cT β̃ ) = cT Cov(β̃ )c

= cT Cov(β̃ − β̂ )c+ cT Cov(β̂ )c

= Var(cT β̃ − cT β̂ )+Var(cT β̂ )

≥ Var(cT β̂ )

Ef£ciency, UMVUE

Suppose the εi are i.i.d N(0,σ 2) and suppose σ 2 is known. Then

− ∂ 2

∂β j∂βk
logL(β ,σ 2) =

1
σ2

n

∑
i=1

xi jxik =
1

σ2 (XT X) jk

and therefore the £sher information for β is

In(β ) =
1

σ2 XT X

Since Cov(β ) = σ 2(XT X)−1 = In(β )−1, the least squares estimators attain the CRLB and
are ef£cient and hence they ae UMVUE’s. Since the least squares estimators do not depend
on σ 2 they are UMVUS’s for unknown σ as well.

Alternative argument: The statistics X TY and ∑Y 2 are minimal suf£cient suf£cient and β̂
is unbiased and depends on the data only through X TY .

Residuals and the Hat Matrix

The least squares residuals can be written as

Y −X β̂ = Y −X(XT X)−1XTY = (I−X(XT X)−1XT )Y = (I−H)Y

where H = X(XT X)−1XT is sometimes called the hat matrix.

The hat matrix has a number of useful properties:
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• It is symmetric.

• It is idempotent:

H2 = X(XT X)−1XT X(XT X)−1XT = X(XT X)−1XT = H

• It leaves columns of the X matrix invariant:

HX = X(XT X)−1XT X = X

• It has rank p and trace p:

tr(H) = tr(X(XT X)−1XT ) = tr((XT X)−1XT X) = tr(Ip×p) = p

As a result, the residuals can be written as

(I−H)Y = (I−H)(Xβ + ε) = (I−H)ε

and I−H is also idempotent:

(I−H)2 = I−H−H +H2 = I−2H +H = I−H

The trace of I−H is
tr(I−H) = tr(I)− tr(H) = n− p

Unbiased Estimation of σ 2

Suppose Cov(ε) = σ 2I. Then

∑(Yi−µi(β̂ ))2 = (Y −X β̂ )T (Y −X β̂ ) = Y T (I−H)(I−H)Y = εT (I−H)ε

and

E[∑(Yi−µi(β̂ ))2] = E[εT (I−H)ε] = E[tr(εT (I−H)ε)] = E[tr((I−H)εεT )]

= tr((I−H)E[εεT ]) = σ2tr(I−H) = σ 2(n− p)

So an unbiased estimator of σ 2 is

S2 =
1

n− p
(sum of squared residuals)
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Joint Distribution of Least Squares Estimators and Residuals

Suppose Cov(ε) = σ 2I. Then residuals and least squares estimators are uncorrelated:

Cov((I−H)Y,(XT X)−1XTY ) = σ2(I−H)X(XT X)−1 = σ2(X−HX)(XT X)−1 = 0

As a result, if errors are jointly normal then residuals and least squares estimators are
independent.

The spectral theorem states that any symmetric matrix A can be written as A = UDU T

where D is diagonal and U is orthogonal, i.e. UU T = UTU = I.

For I−H = UDUT the fact that I−H is idempotent means that D2 = D. So the elements
on the diagonal of D satisfy

x2 = x

or
x2− x = x(x−1) = 0

So the diagonal elements of D must be zero or one. Since tr(I−H) = n− p and

tr(I−H) = tr(UDUT ) = tr(DUTU) = tr(D)

there are n− p ones and p zeros.

Suppose the εi are i.i.d N(0,σ 2). Let

Z =
1
σ

UT ε

Then

Cov(Z) =
1

σ2UT Cov(ε)U = UTU = I

and

1
σ2 (sum of squared residuals) =

1
σ2 εT (I−H)ε =

1
σ2 εTUDUT ε = ZT DZ = ∑diZ

2
i

This is the sum the squares of n− p independent standard normals, so

1
σ2 (sum of squared residuals)∼ χ2

n−p

Likelihood Ratio Tests

Suppose the εi are i.i.d. N(0,σ 2) and that we want to test hypotheses about the mean,

H0 : µ(β ) satis£es some restriction

H1 : H0 is false
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The likelihood ratio statistic will be of the form

Λ =

(
SSRΘ
SSRΘ0

)n/2

=

(
1

1+(SSRΘ0
−SSRΘ)/SSRΘ

)n/2

where

SSRΘ0
= sum of squared residuals for restricted model

SSRΘ = sum of squared residuals for unrestricted model

So the likelihood ratio test rejects H0 if

SSRΘ0
−SSRΘ

SSRΘ

is large.

If the model is linear and H0 is a linear hypothesis, i.e.

H0 : Cβ = b

for some k× p matrix C and k-vector b, then SSRΘ0
−SSRΘ and SSRΘ are independent. If

the rank of C is k and H0 is true, then

1
σ2 (SSRΘ0

−SSRΘ)∼ χ2
k

So, under H0,

F =
(SSRΘ0

−SSRΘ)/k

SSRΘ/(n− p)
∼ Fk,n−p

Several alternate forms of the numerator sum of squares difference are available. Let
‖y‖2 = ∑y2

i and let Ŷ and Ŷ0 be the £tted values under the unrestricted model and the
model restricted to satisfy a linear null hopothesis. Then

SSRΘ0
= ‖Y − Ŷ0‖2

SSRΘ = ‖Y − Ŷ‖2

and

SSRΘ0
−SSRΘ = ‖Y − Ŷ‖2−‖Y − Ŷ0‖2

= ‖Ŷ − Ŷ0‖2

137



Statistics 22S:194, Spring 2003 Tierney

Example

Consider a simple linear regression model

Yi = β1 +β2xi + εi

Suppose we want to test the null hypothesis H0 : β2 = 0. Then

‖Ŷ − Ŷ0‖2 = ∑(β̂1 + β̂2xi− y)2 = ∑(β̂2(xi− x))2 = β̂ 2
2 ∑(xi− x)2

The F statsitic is therefore

F =
β̂ 2

2 ∑(xi− x)2

S2 =

(
β̂2

ŜE(β̂2)

)

This is the square of the usual t statistic for testing whether the slope is zero, and the null
distribution is F1,n−2.

Example

Consider again the simple linear regression model and the linear null hypothesis

H0 : β1 +β2x = a and β2 = b

for some constants a and b. Then

‖Ŷ − Ŷ0‖2 = ∑(β̂1 + β̂2xi−a−b(xi− x)2 = ∑(β̂1 + β̂2x−a+(β̂2−b)(xi− x))2

= n(β̂1 + β̂2x−a)2 +(β̂2−b)2 ∑(xi− x)2

The F statistic is therefore

F =
n(β̂1 + β̂2x−a)2 +(β̂2−b)2 ∑(xi− x)2

2S2

and a 1−α level con£dence set for β1 +β2x and β2 is

C =
{

(a,b) : n(β̂1 + β̂2x−a)2 +(β̂2−b)2 ∑(xi− x)2 ≤ 2S2F2,n−2,α

}
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