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Week 1

Wednesday, January 22, 2003

Review Course Outline
Review First Semester Final Exam

Statistical Inference

The basic framework:

Unknown X Data

o Saeof
nature

Objectives: use data X € 2" to learn about aspects of 6 € O, e.g.

e Based on X, what is best guess for 6?

e How accurate is our best guess?

Need a link between 6 and X.
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Frequentist Approach

e Assume f(x|0) is known
e Develop procedures that work well on average in similar experiments.

Drawback: Don’t relate directly to your experiments.
Bayesian Approach

e Assume f(x|0) and f(6) known.
e Compute f(0]x)

Drawbacks:

e Need f(0)
e Need to compute features of f(x|8).

Resampling Approach

e Assume little, or limit use of assumptions to suggesting estimators
e Use resampling to assess variability

This is often very computationally intensive.
The basic X, 8, f(x|6) framework is quite general:

e Standard parametric model:
X =(Xg,..., %) €R"
BeR
f(x|0) =i.i.d N(8,1)
e Nonparametric model:

X = (X5, %n) eR"
0 = a distribution on R
f(x|0)=i.i.d. 6

Some approaches do not use f(x|6) (randomization theory).
Often we are really interested in one or two aspects of 6:
f(x|8) = f(x|u, o)

e might want to learn about u

e might not be interested in 0.

Parameters not of direct interest are called nuisance parameters.
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Friday, January 24, 2003

Suf£ciency

A £rst step in using f(x|0) is to see what features of the data are important, what are
superauous (formally at least).

De£nition

A statistic T (X) is sufEcient for 0 if the conditional distribution of X given T (X) does not
depend on 6.

Example

Let X;,..., X, bei.i.d. Bernoulli(p) and set

Thenforx =0,1andt=0,...,n
fX7T(X>t) = pzxi(l_ p)nizxil{zxi:t}
t —t
=P (=P Ly y

fr(t) = (?) p(l—p"t

So
fy 1(%t) _ 1{ZXi:t}
fr (t) ()

In words: X|T =t is uniform on the () vectors (x,,...,X,) withx; =0,1and y x, =t.

x|t) =

fX\T(

This distribution does not depend on p, so T is suf£cient.

Suppose this experiments is performed. You get to see all of x,,..., X, but I only get to see
T(x) =t. Are you better off?

Answer: | can get data y with the same distribution as x and the same value of t by choosing
y uniformly from its possible values given T(y) =t. So my data is equivalent to yours.

This assumes that the model is right.
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SufEciency Principle

A procedure based on assuming a particular form f(x|8) should only depend on x through
a sufEcient statistic T (x). Two observations x and y with T (x) = T (y) where T is suffcient
should result in the same actions.

Unfortunately we cannot use our de£nition of sufEciency with our conditional probability
tools for continuous data, since X, T (X) are not jointly continuous.

Instead, we will work with characterizations of sufEciency that are valid.

Halmos-Savage Factorization Theorem

If f(x|0) is the joint PMF or PDF of X, then T (X) is sufEcient for 0 if and only if there
exist functions g(t|0) and h(x) such that for all xand all 6

f(x18) = g(T(x)|8)h(x)

Proof

This proof is only for the discrete case.
Suppose T is sufEcient. Then
f(x10) = P(X =x) = P(X =X, T(X) = T(x)) = fy . (X[T(x)) r (T(x)|6)
N —

h(x) 9(T(x)|6)
So a factorization exists.
For the converse, suppose
f(x16) = g(T(x)|6)h(x)
for some g,h. Let A, = {y: T(y) =t}. Then
frt)= > f(yl0) =g(t[6) > h(y)
ye ye
So
oy = [0 _ SOOIy
v fr (t) g(t[6) 3yea N(Y)
h(x)l{T(x):t} h(X)1p (X)
YY) Syea hy)
which does not depend on 6. O

We can use the factorization theorem to verify that a statistic is sufEcient.

4
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Examples

1. Xq,..., Xnarei.i.d. Bernoulli(8), T(X) = 3 X. Then

n
f(x0) = rl 0% (1— 9)1_)(i — QT(X)(]_ _ Q)n—T(xlx\];/
" o(T(X)[6) h(x)

2. Xy,..., % ii.d. N(6,1), T(X) = X. Then

f(Xle) = (27:;“/2 exp {_E Z(Xi _ 9)2}
_ (27:)“/2 exp {—% Z(Xi —)—()2_ g()—(_ 9)2}
N (2m)n/2 exp{_% Z(Xi —X)z}exp{_g()—(_ )%

So X is suffcient.

To use the factorization theorem to £nd a sufEcient statistic, we need to

1. Split f(x|6) into part that depends on 8 and part that doesn’t
2. Work out how the part that depends on 6 depends on X.

Example

Xis-o o, Xnii.d N(p,02), 0 = (4,02). Then

1 1
f(x“lﬁz):WGXP{—EZ(N—HV}
I RPN N L INLLI
_(znaz)n/zeXp{ 2022()(1 X) 202()( “)}
1 n-1 n _
= WGXp{—WSZ‘ﬁ“—“)Z}
=g(,X0) x1
So (S, X) is sufcient.

Tierney

Note: if T is suffcient and T (X) = H(R(X)), then Riis also suffcient (look at the factor-

ization theorem).

So (3 X, X2) is also sufcient.
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Example

Suppose X,..., X, are i.i.d. from an exponential family

k
f(x]8) =h(x)c(0)exp { lej (0)t; (x)}
=
Then
n k n
F(Xp, 0] 0) = (ﬂh(xi)) o(8)"exp {j;w,w)i;t,-(m}
n k
= (I‘lh(xi)) c(0)"exp { _lej(G)Tj (X)}
i= =
with T; (x) = S 14(%). So (Ty,..., Ty) is sufEcient for 6.
Example
., Xn 1.i.d. Poisson(A).
f(xA) = i\:e A= %e‘)‘e""’g)‘

So T, =3 X is suffcient.

Example

Suppose X;,..., Xy arei.i.d. U[0,8]. Then

f(Xg,...,%n|0) = on |_l106

= (fzee) 5 Aot

= (ﬂlow ) (—e0.8) X))

9(X)6)

B =

So Xy = max{X,,...,Xn} is suffcient for 6.
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Example

Suppose X;,..., Xy arei.i.d. U[6,,6,]. Then

1 n
f(Xl’ e ,Xn’@) - W igl[91762] (Xi)
1

6,— o, L0 ) o) )

So (x(l),x(n)) is suffcient.

Homework

Problem 6.3
Problem 6.6

Due Friday, January 31, 2003.



Week 2

Monday, January 27, 2003

Minimal Suffciency
Defnition

A sufEcient statistic T is minimal suffcient if for any other sufEcient statistic T/, T is a
function of T', i.e. T = R(T’) for some function R.

Lehman-Scheffé Theorem

Let f(x|0) be a PMF or PDF of X and let 2" = {x: f(x|8) > 0 for some 6}. Suppose T (X)
has the property that for every x,y € 2" there exists a nonzero, £nite number k = k(X,y)
such that

f(x/6) = k(x,y)f(y6)
for all @ if and only if T(x) = T(y). Then T is minimal suf£cient.

To use this result, you need to show that

(i) If T(x) =T(y) then k(x,y) exists.
(i) IfK(x,y) exists, then T(x) = T(y).

If {x: f(x|@) > 0} does not depend on 6, then we need to show that for all x,y € 2~

£(x|6)
f(y|6)

is constant in @ if and only if T(x) = T(y). That is, we need to show

(i) If T(x) =T(y) then IE;}?; is constant.
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(i) If Ig"gg is constant, then T(x) = T (y).

If T is sufEcient, then T(x) = T(y) =t implies
f(x18) _ g(t|e)h(x) _ h(x)

f(yle) g(t|@)h(y) h(y)
which is constant in 6. So
(i) is sufEciency

(i) is minimality

Examples
1. Xy, Xq0.0.d. N(6,1)

{(x6) _exp{-33(x-0)}
f¥16) ~ exp{~33(%, -~ 0)2)

If 3 x = Yy then this is constant in 6.

If Y x # Sy, then this is not constant in 6.
So T(X) = ¥ X is minimal suffcient for 8.

2. Xi,.., %o iid. N(p,02), 0 = (u,02).

f(x16) _ exp{—5523(% — )*}
f(Y10)  exp{—5gz 3 (vi — 1)?}

:exp{% (ZYiz_inz) +% (>% —Zyi)}

If $x =Sy and 3 x2 = S y?, then this is constant in 6.
If $x # Sy, or 3 x% = S y?, then this is not constant in 6.
So T(X) = (3 X, X2) is minimal suf£cient for 6.
Sois (X, S?).

3. Xg,...,%n 1.1.d.U[0,8], ® = (0,0).

1
f(x/8) = ﬁl[oye] (X(n))

forxe 27 =[0,0)".
If X =Yy XY € 2, then f(x|0) = f(y|O) forall 6 € @,

9

= exp{Q(ZXi — Zyi)}k(x,Y)

Tierney
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If X(n) + y(n), SaY Xy <Y(n): then for 6 (x(n) : y(n)) we have f(x|0) >0and f(y|8) =
0. No £nite, nonzero k can make these equal.

SoT(X) = Xn) is minimal sufEcient.
4. Xi,..., % 0i.d.U[B,0+1], Z=R", ©=R.
F(X6) = [T%0.0+1 %) = Lo.0) (1) (041 X(ry)

Ifx; =Y and X =Y, then £(x|8) = f(y|6) for all6.

If X1 ;A Y1) O X(n ;é Yin) , then for some 6 one of f(x|6) and f(y|6) is positive and
the other zero so no nonzero, £nite multiplier k can make them equal.

SoT(X) = (X(l),X(n)) is minimal sufcient for 6.
5. X;,..., % llid.
k
f(x0) = h(x)c(e)exp{ z w; ()t (x)}
=1

Let T;(x) = 3iLt;(%). Then

f(Xg,...,%|6) 1 h(x;) K | P
f(yp,...ynl6)  [1h(y; )exp{j;wj(e)(Tj(x) Tj(y))}

If T;(x) = T;(y) for j = 1,...,k, then this is constant in 6.
Suppose the W have the property that

is constant in 6 is and only if a; = --- = a; = 0. This is true if the set

{(W(6),...,w()): 6 € O}

contains an open set. Then the ratio is constant in 6 only if T; (x) =T, (y) for all j.
So under this condition on the w;, (T;(X), ..., T, (X)) in minimal suf£cient for 6.

Homework

Problem 6.9
Problem 6.10

Due Friday, January 31, 2003.

10



Statistics 22S:194, Spring 2003 Tierney
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Ancillary Statistics
De£nition

A statistic is ancillary if its distribution does not depend on 6.

Example

Xis-- -, X0 1..d. U0, 8]. S(X) = X(l)/X(n) is ancillary.

Example

Suppose 8 € © =R is a location parameter, f(x|8) = f(x; — 0,...,X,— 0), and Sis loca-
tion invariant, i.e.
S(Xq,---, %) = S(X; +C,...,X+C)

for all c. Then Sis ancillary for 6. To see this, let
Z~ f(Xg,.. 0, %n)

Then
Z+0=(Z,+6,....Z,+0) ~ X

and
S(X) =S(Z+6) =S(2)

So the distribution of Sdoes not depend on 6. Special cases:

Similar results hold for location-scale families. For a location-scale family,
X, —X XX
RS

Ancillary statistics are often used for model criticism.

is ancillary.

11
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Completeness
Let f(t|0) be afamily of PDF’s or PMF’s for a statistic T (X). The family is called complete
if E[|9(T)|] < e and

Eglo(T)] =0

for all 8 implies P,(g(T) =0) =1 for all 8. If the family of PDF’s or PMF’s of T is
complete, then T is called complete.

Example

Suppose T ~ Binomial(n, p), 0 < p < 1. Suppose

Elo(T)] = 3 o0 ) #(1-pt =0

290(0) (+%5) =
ti@l(t) (?) X =0

for all x > 0. A polynomial is zero on an open interval if and only if all its coefEcients are
zero. Sog(t) =0fort=0,...,n.

forall pe (0,1). Then

forall pe (0,1), or

Example

Suppose X,,..., X arei.i.d. U[0,0], T(X) =X, ., and so

(n)

ntn—1
(1) = gnt 0<t<_9
0 otherwise

Suppose

0 n n-1
forall 8 > 0. Then o

/ t"1g(t)dt =0
0

for all @ > 0. If g is continuous, this implied that t"~1g(t) = 0 for all t > 0 and hence
g(t) =0 for all t > 0. If g is not continuous but measurable, it implies that g(t) = 0 for
“almost all”t > 0. So Pe(g(X(n)) =0)=1forall 6 >0.

12
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Example

Suppose X,..., X, are i.i.d. from an exponential family

f(x|0) =h(x)c(8)exp { Z

Suppose the set
{(wy(9),...,w,(6)): 08 €O}

contains an open set in R¥. Then (Ty,...,T,) with

is complete.

Basu’s Theorem

If T(X) is complete and sufEcient and S(X) is ancillary, then T (X) and S(X) are indepen-
dent.

Proof

Let Sbe ancillary and T complete and suffcient. For any set A let
g(t) = P(S(X) e AIT(X) =t) = P(S(X) € A)

Since T is suffcient, P(S(X) € A|T(X) =t) does not depend on 8. Since Sis ancillary,
P(S(X) € A) does not depend on 6. So g(t) does not depend on 6. But

Eol9(T)| =E[P(SEAT) —P(Sc A)|
=E[P(Se AT)|—P(Se A)
=P(SeA)—P(SecA)=0
for all 6. Since T is complete, g(T) = 0 almost surely, and so P(Se€ A|T) = P(S€ A)
almost surely. This holds for all A, so ST are independent. O
Examples

1. Suppose X;,..., X, are i.i.d. U[0.8], © = (0,0). Then U; = X, /6 ~U[0,1]. So
X(l)/X(n) = U(l)/U(n) is ancillary. Since X(n) is complete and sufEcient, X(l)/X(

and X(n) are independent.

n)

13
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2. Suppose Xy, ..., Xyarei.i.d. N(8,1) with©@ =R. ThenZ; =X — 6 ~ N(0,1) and

$= T -XP= 5 (327
is ancillary. X is minimal suffcient and complete. So X and S? are independent.
3. Suppose Xg,...,Xnarei.i.d. N(u,02). LetZ = (X, — u)/o ~ N(0,1) and
C=X-X)/S=(4-2)/%

Then (C,,...,Cy) is ancillary. X, S is suffcient and complete. So (Cii---,Chn) is
independent of (X,S?).

Homewor k

Problem 6.14
Problem 6.20

Due Friday, January 31, 2003.

14
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Likelihood
De£nition
Let f(x|0) be the joint PMF or PDF of X. Then given X = x is observed, the likelihood

function is the function of 6,
L(6]x) = f(x|6)

Informally, if L(6,|x) > L(6,|x) then there is more support in the data for 8, than for 6,.

Likelihood Principle

If X,y are such that L(8|x) = c(x,y)L(6|y) for all 8 and for some c(x,y) # 0, then x and y
should lead to the same inferences about 6.

Stronger version: Two experiments that lead to the same likelihood function should lead to
the same inferences about 6.

It can be argued that L(8|x) is essentially a minimal suffcient statistic, or that T(x) is
minimal suffcient if and only if it is a one-to-one function of the likelihood function.

The likelihood principle follows from the sufEciency principle and the conditionality prin-
ciple.

Conditionality Principle

Consider two situations:

1. Experiment E, is performed.

2. A fair coin is mipped to choose between E; and E,, and E; is chosen and performed.

The two should lead to the same conclusions.

Examples

1. Suppose X ~ Negative Binomial(r, p),

f(xlp) = (;: 1) p'(1-p)"

15
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forx=rr+1,.... Supposer =4,x=7. Then
L(plr,¥) O p*(1—p)°
Common approach: Estimate p as

A_r_4
p_x_7

and look at the sampling distribution of p.

2. Suppose X ~ Binomial(n, p)

n _
f(xip) = (X) P(L-p"*
forx=0,...,n. Suppose x=4,n=7. Then

L(pln,x) O p*(1—p)*
Common approach: Estimate p as
X 4

and look at the sampling distribution of p.

The estimates, likelihood functions are the same. Sampling distributions of the estimators
and interval estimates based on these sampling distributions are not. (They are close for
large r,n.)

Some feel the conditionality principle implies that all inference should be done condition-
ally on any ancillary statistic (the random choice of experiment is ancillary).

There are ways of de£ning maximal ancillary statistics.
Many feel the conditionality and sufEciency principles are compelling.
Together they imply the likelihood principle.

Many standard frequentist methods violate the likelihood principle (often not by much, but
the difference can be substantial in sequential experiments).

A fully Bayesian approach automatically satis£es the likelihood principle.

How excited should you get about these observations?

References

HELLAND, INGE S. (1995), “Simple counterexamples against the conditionality princi-
ple,” The American Satistician 49(4), 351-356.

16
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Week 3

Monday, February 3, 2003

Point Estimation

A standard “Erst stab” at £tting a model to data is to ask: What value of 6 is the “best
guess” for the “true” value of 8 based on the data.

We will look at

1. Methods for £nding estimators.

2. Methods for deciding how good an estimator is.

For now, a point estimator of 6 is any statistic T (X) you decide you want to use to produce
a guess for the value of 6.

Calling a statistc a point estimator says nothing about its quality or appropriateness.

Method of M oments

The oldest method of £nding point estimators is the method of moments.

Suppose Xi,..., X are i.i.d. f(x|8;,...,6,) and that we have k functions M, ..., M, such
that

Hw, = E[M;(X)] = qu(e_‘]_u"'aek)
are known. Let

m; :%i;Mj(xi)

By the Law of Large Numbers, m; = Uy for large n.
]

18
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Method of Moments: Set

rr‘( - uMk(el, ey ek)

and solve for 6,, ..., 6, to get 0. ,...,ék.
Usually we try to use _

M; (x) = x!
This choice leads to the traditional method of moments.

But sometimes other choices are used.

Examples

1. Suppose X, ..., Xparei.i.d. N(u,c?). Then
1
RN =H
1
= Z X2 = %+ g2
produces
p=X
~ 1 < n—1
2_ X2 _
G2 = -3 (%X = —
This is reasonable; g2 may be a bit different from what one might expect.

2. Suppose X,,...,Xyarei.i.d. U[0,8]. Then

X =

N @

yields 6 = 2X.
Problem: Can have X(n) > 2X—in this case we know 8 is too small.
A Dbetter estimator would insure that this kind of inconsistency does not occur.

The method of moments is often easy to use.

The choice of M, ..., M, is arbitrary; the best choice is not obvious.
The estimators produced are often not ideal.

The basic idea is not easy to extend to non-i.i.d data.

The method of moments is often useful as a £rst step.

19
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Homewor k

Problem 7.6
Problem 7.11

Due Friday,February 7, 2003.

20
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Wednesday, February 5, 2003

Maximum Likelihood

De£nition

Let L(8|x) = f(x|6) be the likelihood function for an observed X = x. For each x, let 8(x)
be the value that maximizes L(6|x) as a function of 8 with x held £xed. Then 6(x) is a
maximum likelihood estimator of 6.

Notes:

6o by construction.

If L(6'|x) = f(x|6') =0, then 6 £ 0.

) may not exist.

6 may not be unique.

) may exist and be unique but be hard to £nd.

Often we can £nd the MLE by

e differentiating and £nding roots

e checking for a global maximum

It is almost always easier to maximize
logL(6|x)

instead of L(0|x) (and equivalent). As a convention, log0 = —co.

Examples

1. Suppose X,,...,Xparei.i.d. N(8,1) Then

L6 = e { 5 3 05— 07
logL(8|x) = const — % S (5 —6)°

15109L(61X) = ¥ (X~ 6) = Y x ~n6=n(x6)

21
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The unique root is 6 =x.

The likelihood is continuously differentiable, and 8 — o implies logL(6|x) —
—co. Therefore a global maximum exists, every global maximum is an interior local
maximum and thus a root of the derivative. Since there is only one such root, 8 = X
is the unique global maximizer.

Alternative: )

——logL=-n<0

dgz
for all 8, so logL is strictly concave and a zero of the derivative is a unique global
maximum.

2. Suppose Xy, ..., %y are i.i.d. N(u,02) =N(6,,6,).

__ 1 1 S8
L(6|x) = (2rr62)“/2eXp{ 26, Z(xi 0,) }
logL(0]x) :const—glog 92—i (x—6 )

o 1
o6, 5,28

o n 1 2
56, 26, 262 26

Likelihood equations:

:eizz

0__2 2622XI 0)°
Solution:

6, =X

6=y (x—%?=">

To see that this is a global maximum:

o for each 6,, 8; = X maximizes L(6,, 6,|x) over 6,.
e for 8, =X, L(X, 6,|x) is strictly concave.

Global second derivative conditions are harder.

22



Statistics 22S:194, Spring 2003 Tierney

More MLE Examples

Examples
1. Xq,...,Xqi.i.d. Bernoulli(p).

L(px) = p2§(1—p)" 2%
logL(p[x) =} x;logp+(n— x)log(1—p)

Differentiate, set to zero for p € (0,1):

0=2% _N"2% or
p 1-p

0=(1-p) ) x—pM—3 %) or

O:in—np S0
1

This is an interior local maximum if 0 < ¥ x, < nand a global maximum.
If S x =0, then L(p|x) is decreasing, so p= 0.

If S x = n, then L(p|x) is increasing, so p = 1.

If ©=(0,1), then P does not exist in these boundary cases.

If © = [0, 1], then p exists for all samples, and in all cases p = %in-

2. Xy,...,% 1.i.d. U0, ].

1
L(G‘X) - %1[079} (X(n))

This is maximized at 8 = x(n), so the MLE is 8 = X(n).

This is a better estimator than the MM estimator, but we know it has to be a bit too
small.

Suppose we use U (0, 8) instead. Then the MLE, strictly speaking, does not exist:

23
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MLE Invariance

Suppose we are interested in a function 7(8) and 8 is the MLE of 6. Is 7(8) the MLE of
1(0)?

If T is one-to-one, then the answer is yes: We can write
L*(tx) = L(T~*(t)[x)

and if 6 maximizes L, then T = r(@) maximizes L*.

If T is not one-to-one, then it is not clear what “the MLE of 1(68)” really means—MLE’s
are defned assuming 6 uniquely identifes f(x|8). If T is not one-to-one, then we may have
several 8’s, with possibly different values of L(0|x), that have the same value of 7(6).

Solution: Defne L*(t|x), the induced (or pro£le) likelihood, as
L*(t|x) = sup{L(O|x) : T(0) =t}
Now let t be the value that maximizes L*. Then
L*(t]x) = Slﬂp{L(9|x) :1(0) =t}
= Sl;p L(6|x)
=L(8]x)
and

L(]x) = sup{L(B|x) : 7(6) = 7(B)}
=L*(1(8)|x)

-~

So 1(0) is an MLE of 7(8) based on this de£nition.
The property that

—

1(0) = 1(6)

is called the invariance property of the MLE.

Homewor k

Problem 7.13
Problem 7.14

Due Friday, February 7, 2003.

24
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Bayes Estimators

The Bayesian approach uses a prior distribution and a likelihood to compute a posterior
distribution and bases all inferences on the posterior distribution.

We can also use a posterior distribution to produce point estimators.
The posterior mean is a common choice.

The median is another possibility.

Example

Let X;,..., Xy be i.i.d. Bernoulli(p). Suppose we use a prior that is Beta(a,3). Then the
posterior is

f(plx) = W O f(xp)f(p)
OpS(L—p"25p 1 —pPt
— pa+ZXi—1(1_ p)ﬁ+n—zxi—1
~Beta(a+ Y x,B+n—3 x)

So
a+yx a a+p 1 n

a+B+n_a+Ba+B+n+ﬁz&a+B+n
For a,B ~0, E[p|x] ~ 3 5 X

Fora,B >0,0<E[p|X] < 1.

Elplx =

Conjugate Families

Let.# = {f(x|0) : 8 € O} be a class of PMF’s or PDF’s. A collection N of prior distribu-
tions on © is conjugate for .7 if the posterior distribution is in M for any prior distribution
inMandany xe 2.

The family M = {f(p) = Beta(a, B) : a, 3 > 0} is conjugate for
Z ={ni.i.d. Bernoulli(p)}
= {ni.i.d. Geometric(p)}
= {Binomial(n, p)}
= {Negative Binomial(n, p)}
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Examples
1. Xq,...,Xqi.i.d. Poisson(A), A ~ Gamma(a, B)
fAAX)Of(X|A)F(A)
DAine—nA)\a—le/\/B
— A0+I%—1g-A(N+1/B)
~ Gamma(a + $ %, (n+1/B) ")

So
_a+yx 1 _np
BN = n+1/B _aB1+nB +X1+n[>’

The family M = {f(A) = Gamma(a, ) : a,B > 0} is conjugate for

Z = Poisson i.i.d.
= Poisson Process
= Exponential i.i.d., mean 1/A

2. Xi,..., %ni.i.d. N(8,02), a2 known, 6 ~ N(u, 72).
£(6]%) O £(x(0)(0)
1 21 2
To0{ 552 3 050~ 513(6- )
n », 1 _, 6 0

This is of the form

with
a 1 u
b~ o2 2 Nt
1 n 1
b 02 12
So f(8|x) ~ N(a,b), with
1 sx 2 2 2
X%t/ T 2 ag?/n
© n/o2+1/t2  124+02/n r2+02/n“
_ 120%/n
- 12+02%/n
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Homewor k

Problem 7.22
Problem 7.23

Due Friday, February 14, 2003.
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Week 4

Monday, February 10, 2003

Methods of Evaluating Estimators
Mean Squared Error

A useful measure of the quality of an estimator W of a quantity 7(0) is the mean square
error (MSE):
MSE(W, 8) = E,[(W —1(8))?]

Notes:

MSE(W, 6) measures the average error.
Other “loss functions” are possible but are less convenient.

MSE(W, 0) is a function of 6.

We can decompose MSE(W, 0) into

MSE(W, 8) = E4[(W — 7(8))?] = Vary (W) + (Eg W] — 1(8))?
= Var (W) + Bias(W, 9)?

Bias
The bias of W is

Bias(W, 8) = E4[W] —1(8)
W is called unbiased if Bias(W, 8) = 0 for all 6.

So there are two components to the MSE: bias and variance. Sometimes we can trade off
one against the other.
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Example

Let X,...,Xnbei.i.d. N(u,0).

X and S? are unbiased for u and 0. So

_ _ 02
MSE(X, u,0?) = Var(X) = -
4
MSE(S, i, 02) = Var(S) = %

The MLE is i = X,02 = "1 The MSE of 2 is

n—1\2 204 1
MSE(62. u, %)= | —— ) — + ~g*
( 7”7 ) ( n ) n_l_'_nz

4

gt o}
But
2n—1 - 2
n2 n—1
forn>1,so0

MSE(62) < MSE(S)

Often a variance-bias tradeoff is useful.

Finding Optimal Estimators?

Ideally, we would like to £nd an estimator W* such that
MSE(W*,8) < MSE(W, 6)

for all @ and all other estimators W.

Unfortunately, this is usually impossible. Take
W=7
Then

MSE(W, 8) = Var(W) + (E[W] — 7(6))?
—0+(7—-1(8))% = (7—1(6))?

which is zero if 7(0) =7.

This is not a “reasonable” estimator.
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“Reasonable” estimators will have Var,(W) > 0 for most if not all 6.

We need to restrict ourselves to “reasonable” estimators to develop a nice theory. “Reason-
able” means the estimator must make some effort to “track” the target. This needs to be
given a precise de£nition to be useful.

A few possibilities:
Unbiasedness—require E[W| = 1(0) for all 6.
Invariance—shifting 1(60) by a shifts W by a.

Consistency—W i 7(0) forall 6.

The cleanest theory is available for unbiased estimation.

Requiring (exact) unbiasedness can be very restrictive. It can (though it usually doesn’t)
lead to really stupid estimators. An example where this is the case:

Example

Suppose X ~ Poisson(8) and
1(0) =%

Suppose W is unbiased for 7(6). Then

forall 8 > 0, or

0 — 6
e’ =Y wk—
P
But
,9 hd ( 1)k ek
e’ = 1) —
2 Vg

and power series are unique on their radius of convergence. So we must have w(k) = (—1)X.
Thus the only unbiased estimator of 7(8) = e 2% is

W= -1 !fx!sodd
+1 if Xiseven

This is a pretty silly estimator.
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Homewor k

Problem 7.33

Due Friday, February 14, 2003.
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Wednesday, February 12, 2003

De£nition

An estimator W* is a best unbiased estimator of 7(0) if it satisfes E,[W*| = 1(0) for all
6, and for any other estimator W with E,[W] = 7(8) for all 6 we have

Var o (W*) < Vary (W)
for all 8. W* is also called a uniformly minimum variance unbiased estimator (UMVUE).

Finding UMVUE’s by trial and error is hard. We will look at two approaches:

1. Find a lower bound on the best possible variance (Cramék-Rao lower bound). If an
estimator W* achieves this lower bound, then it must be UMVUE. (We can charac-
terize when this is possible.)

2. Show that there is a restricted class ¢ of estimators such that for any unbiased W
there isa W’ € ¢ that is at least as good.

Show that under some conditions % has only one element.
Then if W € ¢’ is that element, W must be the UMVUE (Lehmann-Scheffé approach)

Cramer-Rao Lower Bound

Let Xy,..., X, have joint PDF f(x|0) for 6 € ©, an open subset of IR, and let W be any
estimator such that E,[W] is differentiable with respect to 6 over ©. Suppose that f(x|6)

satistes
de/ /h F(x|0)dx, - ¥ = / /h £(x|8)dx, -y

for any h(x) with E,4[|h(X)|] < o for all 6. Then
(g5EeW))

= [(% Iogf(x|9)>1

2
Var,(X) >

Variations:

For discrete data, replace [ by ¥.

For © an open subset of R™and W real-valued,

-1
Vary (X) > OE,W] | Eg 4 log f(X|6) == 4 log f(X|6) OE, W'
—— 06, 26, |
Xm D) mx

mxm
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Cramer-Rao Lower Bound
Proof

The proof uses the Cauchy-Schwartz inequality in the form

Cov(X,Y)?
Var(X) > Nar(y)

with X =W and Y = 2 log f(X|8). First,

2.£(X|0
ARIECIE 9[—5? wL

(X]6)
75 f(x(6)
_ 00
_/ AEICLY
0
_/%f(x|6)dx
0 0
=30 f(x|6)dx_%1_0
Similarly,
cov (W, Z1og f(x/6)) = [W(x X|9 x|6)d
ov (W, 5 10g £(X[6) ) = [W(x) f(6)ax
_/W f(x6)d
dG/W f(x|0)dx
aeEQ[W]
and

Var, <%Iogf(x|6)) — [(559 log f(X|9))2]

So from the Cauchy-Schwartz inequality,
2
d
(%Ee [W]>

E [((f—elog f(x]@))z}

Var, (W) >
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The quantity in the denominator is called the Fisher information for 6,

Ih(0)=E [(ade Iogf(X\G))zl PRSI

:( { o Iogf(X\G) 4 Iogf(X\G)D 6 eR™
06, i
If X;,..., Xy arei.i.d. from f, then
Iogf(xl,...,xn|9):Zf(xi|6)

and therefore
In(6) =nl,(6)

Equality in the CRLB

Equality in the CRLB occurs if and only if there is equality in the Cauchy-Schwartz in-
equality. This happens if and only if

0
38 log f(x|6) =a(8) +b(8)W(X)
for some a(0),b(0). This implies
log f(x|60) =C(x) +B(0)W(x)+A(0)
F(x|8) = exp{C(x)} exp{A(0) } exp{B(8)W (%) }
So f is an exponential family with suffcient statistic W(X).

Conversely, if

f(x/6) = c(8)h(x) exp{t(x)w(6)}

then 5 ¢ (6)
%Io gf(x|0) = WH(X)V\/(G)
’ Et(x)) = -9
~ c(e)w(8)
d(0)

and t(X) is a UMVUE for — oW )

An unbiased estimator is called efEcient if it achieves the CRLB for all 6.

34



Statistics 22S:194, Spring 2003

Computing the Fisher Information

Suppose
02
o (x|9)dx—062/f (X|8)dx =0
for all 8. Then
92 FH7_frf
Ee{ o Iogf(X|9)] /7f2 fx
%
:—/f”dx+/(T) fdx
—1(6)
or

02
1(6) = — (E [aede Iogf(X\Q)])
ij

Differentiability assumptions hold for all exponential families.

Examples
1 Xg,.. o, X iid. N(B,2).
1 2
log f(x|6) = const — 5 Z(xi —0)

5109 1(x10) = 3 ( ~ 6) = n(x-0)

00
1(8) = E[(n(X — 0))?] = n?Var(X) =
2

—Wlogf(xje):n

So for W that are unbiased for 8, Var(W) > 1/n. So X is UMVUE.

2. X{,..., Xy l.i.d. Poisson(6).
log f(x|6) = const+ nxlog 8 — n6

%Iogf(x|9) _ g—n_ go—(—e)
() - TE(R—07 = 01
—;—;logf(xw):g—’;‘
1(8) = >EX] =5

So if W is unbiased for 8, then Var(W) > 6/n. So X is UMVUE of 6.
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3. Xy,..., % i.i.d. U0, 6]

%/Oeh(x)%dx;«é/oeh(x) (—é) dx

for all h(x). So the CRLB does not apply.
4. Suppose we want an unbiased estimator of 82 for Poisson data. The lower bound is

Var(W) > 2628 _ 4¢3
n n

Is this attainable? No!

Homewor k

Problem 7.38
Problem 7.39

Due Friday, February 14, 2003.
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Finding Best Unbiased Estimators
Rao-Blackwell Theorem

Let W be an unbiased estimator of 7(6) and let T be a suffcient statistic for 6. Let (T ) =
E[W|T]. Then ¢(T) is an unbiased estimator of 7(8) and

Varg (@(T)) < Varg(W)

for all 6.

Proof

Since T is suffcient, E[W/|T] does not depend on 6. So ¢(T) is a statistic. Furthermore,
Eql(T)] = Eg[EIW|T]] = Eg[W] = 7(6)
So @(T) is unbiased for 7(8). Finally,

Var (W) = Var, (E(W|T]) + E4[Var(W|T)]
> Var, (E[W|T])
= Varg(o(T))

Example

Suppose X,,..., X, are i.i.d. Geometric(p). Want a good estimator of p.

wo b ifx=1
0 ifX #1

An unbiased estimator of pis
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T =3 X is suffcient.
EW|T =t]=P(W=1|T =t)
_ PW = 1>25Xi =t-1)
P(X1% =1)
Cp(i3) et p)tn
C (Dpa-pe

(v
(w1
_ (t=2)Y(n-1)!
- (t=1)Y(n-2)!
~n-1
Tt-1
So n_1
YN =5x—1

is unbiased for p and better than W.
It is in fact the UMV UE.

Lehmann-Scheffé Theorem
Let T be a complete, suffcient statistic for 8, and let ¢(T ) have expectation 7(6) for all 6.

Then ¢(T) is the only function of T with expectation 7(6) for all 8, and it is the UMVUE
of 7(0).

Proof

for all 6.
If W is unbiased for 7(6), then ¢/(T) = E[W|T] is at least as good. But ¢/'(T) is unbiased,
so ¢’ = @, and thus ¢(T) is at least as good as any unbiased estimator W. O
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Examples

1. Suppose X,,..., X, arei.i.d. U[0,0]. Then W = ﬁnlx(n) is unbiased for 6. Since it
is a function of a complete, sufEcient statistic, it is the UMVUE.

2. Suppose X;,..., %, are i.i.d. Poisson(8) and 1(8) = 82. Then

W=X*-Z =X(X-1/n)

S| X

is unbiased for 7(6). Since X is complete and suffcient, W is the UMVUE. Note
that W < 0 is possible.

3. Suppose X;, ..., X, are i.i.d. Bernoulli(p) and 7(p) = p(1 — p). An unbiased estima-
tor is given by

W=X;(1-X,)
T =3 X is complete and suffcient, so
@(T) =EW| X]

is the UMVUE. Now

EW[Y X =t =PX; =1X,=0]} X =t)
P(X, =1,X,=0,50% =t —1)

P(Z1%=1)
{0 t=0
=94 pL-p(EHpta-prtt L
(Ve (p t=1,...,n
{0 t=0
(¥) Y
{o =0
- t(n—t
ngrr:—l)) t=1....n
_ t(n-t)
n(n—1)
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Homewor k

Problem 7.44
Problem 7.48

Due Friday, February 21, 2003.
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Week 5

Monday, February 17, 2003

L oss Function Optimality

A general framework: the usual three,

] parameter space
Z sample space
f(x0) model
and
o4 action space
L(8,a) loss function
o(X) decision rules

Loss function:
L(8,a) = loss when action a is taken and state of nature is 6
Decition rule &(x) : (X) — .-

0(X) = action to take if x is observed

Examples

1. Point estimation with squared error loss:

O=R
g =0=R
L(6,a) = (6 —a)?

Decision rules are estimators.
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2. Hypothesis tests:
© = Q,UO,, with ©,, ©, disjoint
o/ = {Reject Hy, Accept H,}
1 if 8 € ©,and a= Reject H,
L(6,a) =41 if 60O, anda=AcceptH,
0 otherwise

Decision rules are test criteria.

Loss functions used for estimation usually satisfy L(8,a) > 0 and L(6,a) = 0 if and only
if0=a

A number of different loss functions can be used for estimation problems:

1. Squared error loss
L(6,a) = (6 —a)?

2. Absolute error loss
L(8,a) =160 —4

3. Asymmetric loss

L(6.a) = c(6—a) if6>a
"7 ld(a—8) otherwise

4. Bounded loss (6 )2
—a
{0 = a2

The actual loss incurred by using decitin rule & when the state of nature is 8 and X is
observed is the random variable

actual loss=L(6,5(X))

We compare decision rules in terms of the expected loss, also called the risk function:

De£nition

The risk function of a decision rule d is

R(6,0) = Eg[L(6,6(X))]

We want to £nd decision rules with low risk. But risk depends on 6. Often risk functions
Cross:
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Example

Suppose X ~ N(8,1), L(8,a) is squared error loss, 6,(X) = X, and &,(X) = 3. Then

R(6,9))
R(6,9,)

1
(6-3)°

When risk functions do cross they are not comparable. If the do not cross we can compare
them:

De£nition
A decision rule 9§, is as good as, or at least as good as, a decision rule J, is R(8,9;) <
R(8,9,) for all 6.

A decision rule 9, is better than &, if it is as good as |delta, and R(6,9,) < R(6,4,) for
some 6.

A decision rule o is admissible if no better decision rule exists.

Example

Let Xy, ..., %y be i.i.d. N(u,02). Want to estimate o2 with squared error loss. Consider
estimators of the form

3, (X) = bS?

Now

_ 2 124
=b — T (b—1)“c
2b? 2| .4
= [m + (b— 1) ] (o)
The value b = (n—1)/(n4- 1) minimizes the risk for all a2, so Sn_1)/(nen)(X) = NI is

the best estimator in this class.
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L oss Function Optimality

Many papers are written on £nding admissible estimators.
Many (not all) standard estimators are admissible.
For X ~ N(6,1) and square error loss the estimator 8(X) = X is admissible.
For X; ~ N(6;,1), X, ~N(8,,1), X;, X, independent, and loss function
L(6.2) = (6, —ay)* +(6,— &)
the decision rule 8(X) = (X, X,) is admissible.
For X,,...,Xn independent, X; ~ N(8,,1), and loss function
L(6.2) =Y (6-a)2

the decision rule 6(X) = (Xy,...,Xn) is not admissible if n > 3. Shrinkage estimators can
beat it. This is known as Stein’s paradox.

Bayes Risk and Bayes Rules

If a prior distribution 71(8) is available then the average risk, or Bayes risk, can be used to
compare decision rules:

De£nition

The Bayes risk for a decision rule o and a prior 1Tis
B(11,8) = EL[R(6,5)] = / R(6,5)d6
©

The Bayes rule " is the decision rule that minimizes the Bayes risk.
The Bayes risk can be written as
B(1,0) = E[R(6,9)] = E[E[L(8,5(X))[6]] = E[E[L(8,5(X))[X]]
Suppose we de£ne a decision rule 0* as
0*(x) = arg;nin E[L(8,a)|X =X]

Then for any decision rule
B(m,0) = E[E[L(6,6(X))|X]] > E[E[L(6,5"(X))[X]] = B(r,5")

So o* is a Bayes rule.
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Examples

1. For estimation with squared error loss the Bayes rule, often called the Bayes estima-
tor, is the posterior mean
6"(X) =E[6]X]

2. For estimation with absolute error loss the Bayes rule is the posterior median.

So if X;,..., Xy are i.i.d. Bernoulli(p) wnd the prior distribution on p is Beta(a, ), then
the Bayes rule for squared error loss is

5"(x) —Elpix| = 27"

Bayes Estimators Are Not Unbiased

Suppose W = E[6|X] is a Bayes estimator, i.e. a Bayes rule under squared error loss, and
is unbiased. Then

E[(W - 6)%] = E[E[(W - 6)?]6]
= E[E[W? —2W6 + 6?|0]]
— E[W?] — 2E[6E|W|6]] + E[67]
— E[W?] —E[67]
On the other hand,
E[(W - 6)% = E[E[(W - 6)[X]]
= E[W?] — 2E|WE[6|X]] + E[67]
= E[67] — EW?]
So we must have E[W?] = E[6?] and thus
E[(W-8)=0

So W can only be unbiased if it is perfect! (Assumes E[W?] < «.)

Homewor k

Problem 7.62
Problem 7.63
Problem 7.64

Due Friday, February 21, 2003.
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Hypothesis Testing

A hypothesis is a statement about a parameter.

In a testing problem, there are two hypotheses:

H, : the null hypothesis

H, : the alternative hypothesis

Usually these are complementary, i.e. one and only one of H, and H, is true.

Examples:
H,: 0 # 6,
Hy: 6 =6, or Hy: 6 <6,
H,: 6> 6, H,: 6> 6
Less common forms:
Hy: 6 # 6, or Hy:0£6,£0
H,:0=6, H :0e€6,£d

The null hypothesis often corresponds to a claim that a treatment has no effect.

The alternative then usually says that the treatment has some effect (6 # 6,) or an effect in
a particular direction (6 > 6;).

A hypothesis testing procedure is a rule for determining, based on data X, whether to reject
H, in favor of H, or not.

The set of X values for which H is rejected is called the critical region R, or the rejection
region, of the test.

A hypothesis test can also be expressed in term of a test function,

@

(X) = 1 if Xrejects H
|0 if X does not reject H,

A test function corresponding to a rejection region R takes on only the values 0 or 1. In
fact,

As a technical device it is useful to allow other values in [0, 1]; then

@(X) = P(reject Hy|observe X)
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i.e. you mip a coin with success probability @(X) if you observe X.
Most hypothesis tests are developed in terms of a test statistic W = W(X).

The corresponding rejection region then looks something like
R={X:W(X) >c}
for some choice of c.

Examples:
Hy:u=3
Hy:u#3
W = |X 3]
R={W > 0.5}
or

Hy:0=2
Hy:0>2

W =S/2
R={W > 15}

A nice feature about hypothesis tests is that the errors you can make are easy to think about:

Hy Hy
Reject H, Type | Error OK
Don’t Reject H, OK Type Il Error

We want test procedures that make both errors have small probability.
For the moment we will look at ways of coming up with classes of tests, or test statistics,
like
RejectH, : 1 = L
in favor ofH, : >

if X is too large, i.e.
R={X>c}

for some c.
Choosing c and n affects our error probabilities.
After looking at ways of generating such families of tests, we will look at ways of compar-

ing them.
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Example

Suppose A is the mean of a Poisson population.

Ho:A =7 R, ={X>c}
HytA >7 R,={S>c,}

Which is better? (R is.)

48
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Week 6

Monday, February 24, 2003

Methods for Constructing Tests
Likelihood Ratio Tests

The likelihood ratio test statistic for testing

Hy: 0 €0,
H,:8€0\0,

B supOOL(9|X)
a Supe L(61X)
(l'use A\, the text uses A.)
A likelihood ratio test is any test that has critical region equivalent to
{x:A\(X) <c}

for some c.

Rationale:

numerator is maximum over ©, only; denominator is unrestricted maximum.
mathematically, denominator > numerator

If denominator is much larger than the numerator, then there is strong evidence
against H, in favor of H,.

If the denominator and the numerator are close, then there is little evidence against
H, in favor of H;.
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Example

X, ..., Xni.i.d. N(6,1).

(2m) "2exp {35 (x —6)*}
(2m)~"/2exp {~3 ¥ (% —X)?}

—exp{ 5 3 05X~ 5 305 6
:exp{—g(X—Go)z}
since
Z(XI—GO)Z: > (% X)? +n(X— 6))°
So
_ 2logc
{A\(x) <c} = {]x—@oy >4/ - }
or

{[X— 6| > c}
is a likelihood ratio test.

It is usually useful to try to simplify the LRT in this way, mainly because we will need to
pick a particular c or think about different values of c.

Theorem

If T is a suffcient statistic, then the LRT only depends on the data through T. Furthermore,
the LRT based on the distribution of T is equivalent to the LRT based on the full data.

Proof

Let f(x|6) be the PDF or PMF of X, q(t|8) the PMF or PDF of T. Then from results
related to the factorization theorem, there exist g, h; and h, such that

F(x/6) = 9(T (x)[6)hy (x)
q(t|8) = g(t[)h,(t)
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So
~ supg, f(x|0) B Supe, 9(T(x)|6)
~supg f(x|0)  supg9(T(x)|0)
) supg (T (x)|6)  supg 9(T(x)|6)
AT = supea(T(x)[6)  supgg(T(x)6)
U]
Bayes Tests

In the Bayesian framework we have

likelihood

prior

from which we compute a posterior distribution.
In particular, if our hypotheses are

Hy: 0 €0,
H,:0¢0,

then we can compute P(8 € ©,|X).
A formal test can be constructed as
R={X:P(8 € ©5|X =x) < c}
Possible values of ¢ might be
c=1/2

c=0.05
Example

Suppose X,,...,%n|0 arei.i.d. N(8,0?) and 8 ~ N(u, 12), with u, 2, T2 known.
Then

o xn (T )

nt2+02 'nt?+0?
Suppose we use ¢ = 0.05, ©y = (—, 6;]. Then

By — nr27<2+022u
R — X: ntre+o < —
oT/Vn12+ g2 “005
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where z, is such that P(Z > z5) = a if Z ~ N(0,1).

So ) )
NT“X+ o0 ot
R=<{X: ——— > 0+ ————
If T is very large, then
R~ {x:X> 6,+ 07, ,5/v/N}

This is the standard frequentist test.

It is much harder to obtain standard two-sided tests as approximate Bayesian tests.

Union-Intersection and Intersection-Union Tests

Sometimes we can write
Hy:0€ ()0,
yer
for some index set I, £nite or infnite.

If we have tests with critical regions R, for

Hy: 8 €0,
H,:6£0,

for each y, then we can form a critical region for the intersection H, as

R=[JR,

yer
Two examples:
Ho 1 6(y) = 65(y)vy o ({6(y) = 6(y)}
y
Similarly, if H, can be written as
Ho:6€Jo,
yel

and we have critical regions Ry, for each subproblem, then we can form a critical region for
the union null hypothesis as
R= ﬂ Ry

yer
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Example
Often a material is only acceptable if several parameters are within specifed limits, say

6, > 6, and 6, > 6,,. Often this will be set up as the alternative hypothesis, with H,
correspondlng to failure to meet the standard, i.e.

Hyo: 6, <6,50r6,<6,,

Homewor k

Problem 8.5
Problem 8.6

Due Friday, February 28, 2003.
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Wednesday, February 26, 2003

First Midterm Exam

The exam will cover the material covered in readings, in class and in assignments from
Chapters 6 and 7.

The exam is closed book.

The exam will include some information on distributions along the lines of the Table of
Common Distributions in the text.
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Friday, February 28, 2003

Evaluating Test Procedures

Hy Hy
Reject H, Type | Error OK
Don’t Reject H, OK Type Il Error
For 6 € ©,
P(Type | Error|8) = P(X € R|0)
For 6 ¢ ©,

P(Type Il Error|8) = P(X £ R|0)

Switching between R RC is a bit awkward, so we arbitrarily choose one of them to work
with: The power function of a test with rejection region Ris

B(8) =P(X R[6)
In terms of test functions ¢,
B(8) = E[o(X)]6]
Some use 1 — 3(0) instead. This is called the operating characteristic (OC) function.

Example

Suppose X,,...,Xparei.i.d. N(6,1),

Hy: 0 <6,
H,:6> 6,
and
R={x:x> 6,+c/y/n}
Then

B(6) =P(X > 6y+c//n|6)
=P(Z>c++/n(6,—-0))
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Ideally, we want

if 6 <6,
if 6> 6,

I
= O

™ ™
22
I

Increasing nimproves 3 for a £xed cand 6 # 6,

Changing c shifts the whole curve to the right or left

o this improves one error at the expense of the other

e you can’t argue in general that one c is better than another.

To compare different tests, it is useful to £x one of the error probabilities.

Casella and Berger defne:

1. size of a test:

sup B(6)
ZISON

2. atestisalevel o test, 0 < a <1, if its size is at most a.

Ideally, we would like to £x the size at a and £x 3(68,) for some interesting 6, as 6.

We can usually only do this if we control n.

This is a major consideration in designing experiments.
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Without control of n, we usually make H, be the hypothesis whose incorrect rejection
probability we most want to control.

A research hypothesis we want to “prove” is usually set up as H;. That way,
H, : the research hypothesis is false

has the bene£t of the doubt.

Homework

Problem 8.14
Problem 8.17

Due Friday, March 7, 2003.
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Week 7

Monday, March 3, 2003

M ost Power ful Tests

Consider testing
Hy: 6 €Q,
H,:8c0\0,

De£nition

A test in a class & of possible tests is uniformly most powerful of class % if its power
function B(0) satisEes

B(6)=p'(6)

forall 6 € ©\ ©, and all B’ that are power functions for tests in %

Usually the class % involves a constraint on the size of the tests.

Neyman-Pearson Lemma

Consider testing

The data X have PMF or PDF f(x|8,),i = 0,1. De£ne a rejection region so that
XeR if £(x|8;) > kf(x|6,)
X¢ZR if f(x/6;) <kf(x|6y)

for some k > 0 (what happens at equality is unspecifed). Let
a=P(XcR|6 =6,
Then

58



Statistics 22S:194, Spring 2003 Tierney

(@) Any test of this form is UMP level a

(b) If there exists a test of this form with k > 0 then every UMP level o test is a size a
test, and and every UMP level o test is of this form (except for a set of probability
zero under 6 = 6, and 6 = 6,).

Example
X5, Xni.i.d. N(6,1). Consider 6, =0and 8; = 1. Then

f(x6,) exp{-33%+¥%—n/2}
)~ en{-530]

= exp{nx—n/2}

So
R={x:X>c} = {x: f(x|6,) > V2f(x/6,)}

This test is UMP size a = P(z> y/nc)

This is true for any 6, > 0.

Proof

Look at the continuous case—discrete case is analogous. If
a =P(X eR|6,)

then the test has size a and hence is a level a test.

Let ¢ be a test function of the specifed form and let ¢’ be any other level a test. Then
(@(x) — @' (x))(f(x|6;) —Kf(x/6)) > 0
for all x. So
0= [ (900~ @/(¥)(1(x16,) KT (x165))dx
= B(Ql) - [3/(91) - k(B(eo) - Bl(eo))
To prove (a), note that since ¢’ is level a, we have
B'(6y) < a = B(6,)

Since k > 0, this implies
B(6,) > B'(6y)

So @ is at least as powerful as ¢/, and hence ¢ is UMP level a.
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Tierney

To prove (b), suppose ¢ is UMP level a. Since @ is also UMP level a, we must have

Since k > 0, this implies

So ¢ is size a. Furthermore,

[ (@0 /()(F(46,) — KT (x/8))cx = 0

implies that @(x) = ¢/(x) for almost all x where f(x|6,) # kf(x|6,).

Homework

Problem 8.15
Problem 8.25

Due Friday, March 7, 2003.
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Wednesday, March 5, 2003

More Most Powerful Tests
Corollary

Suppose T is sufEcient for 6 with f(x|8) = g(T (x)|0)h(x). Let R be defned in terms of a
subset Sof the range of T(x) as

R={x:T(x) e S}
where

a=P(TecS6,)
teS ifg(t|6,) > kg(t|6,)
tgS if g(t|6,) < ka(t|6,)

for some k > 0. Then this test is UMP level o

Proof

This test is a Neyman-Pearson test. O

Corollary

Consider testing H, : 6 € ©, against H, : 8 € ©\ ©,. Suppose a test based on a suffcient
statistic T satisEes

(i) the testis a level a test
(ii) for some 6, € ©, we have P(T € §6;) = a.
(iii) for this 6, and each 8’ € ©\ Q, there exists a k' > 0 such that
t € Sifg(t|6’) > Kg(t|6,)
t¢ Sifg(t|e’) <Kg(t|6)

Then this test is UMP level a for H against H;.
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Proof

Let @* be any other level a test.
Fix 8’ € ©\ Q.

Tierney

Then ¢* is a level a test of Hy: 6 = 6, against H; : 6 = 6’. By the Neyman-Pearson

lemma,
B(6') > B*(8')
Since 8’ was arbitrary, this shows that 3(8) > 3*(6) forall 6 € ©\ ©,

Example

Let X,..., Xy bei.i.d. N(6,1).
Hy: 6 < 6,againstH; : 6 > 6,.
R={X>c}

Seta =P(X >c|6 = 6,).

For 6 < 6,,
P(X>clf) <a
so this is a size a test. Now
g(t|@) = const x exp {—g(t - 9)2}
Look at .
g(t[6")
9(t[6p)
for 8’ > 6,. This is strictly increasing int, so

_ exp{g[eg— 6 +2t(6'— )] |

t>c & g(t|8") > K'g(t|6,)

with n
K = exp {Ewg — 024 2c(6' — eo))}

Homewor k

Problem 8.28
Problem 8.33

Due Friday, March 7, 2003.
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Friday, March 7, 2003

Monotone Likelihood Ratio

Suppose T is a univariate suffcient statistic for 6, a real-valued parameter. Then { f(x|6) :
6 € ©} has monotone likelihood ratio (MLR) if for every 6, < 6,

f(x16,) _ 9(T(x)[6,)

f(x16)  a(T(x)[6y)
is a non-decreasing function of T (x) over the set
T ={t:g(t|6;) > 0org(t|6,)}

(If you get non-increasing, just use —T (X).)

Karlin-Rubin Theorem

Consider testing H : 8 < 8, against H, : 8 > 6,. Suppose T is suffcient and f(x|8) has
MLR. Then for any c a test with R= {T > c} is UMP level a for a = P(T > c|8 = §,).

Proof

(i) The power function is increasing (H.W.)

(if) The test has power a by construction.

(iii)
/
te.7 9(t|6;)
where
J ={t:t>candg(t|6;) >0o0rg(t|6,) >0}
U
Examples

1 X,..., % 1..d.N(8,1), T =X.

g(t]6,)
g(t|6,)

= exp{nX(6, — 6,)} x const
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2. Xq,..., % i.i.d. Poisson(B), T =X

3. X, Xnilind. g(t]|8) = exp{w(B)t}c(0)

g(t]6,)
g(t|6,)

has MLR if w is non-decreasing.

= exp{t(w(6,) —w(8;))} x const

Unbiased Tests

It is not always possible to £nd UMP tests.

Example

Xy, ..., % 1.i.d. N(6,1), Hy: 0 = 6, Hy : 8 # 6,

For a given a and a given 6, > 6,,

Ry = {X> 6y+2zqa/v/n}

is UMP level a for H; : 6 = 6,. Furthermore, any test with the same size and power must
be essentially the same.

But for 6, < 6, the same argument shows that the UMP test has to be
R, = {X < 6y—2za/v/N}
These cannot both hold, so there is no UMP test.

Neither R, nor R, are very good for H, : 8 # 6, since each has low power on its “blind”
side.

To reduce the class of tests we consider to “reasonable” ones, we can require that our test
be “unbiased’.”

A test with power function [3 is unbiased if
Su [3 0) < inf B ¢)
Qego ( ) 0c0\0, ( )

We need some additional tools to deal with this restriction.
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Generalized Neyman-Pearson Lemma

Letc,,...,Cmbe constants, f,(x),..., f.,..1(x) real-valued functions, and ¢ a class of func-

tions ¢(x) with 0 < ¢(x) < 1 for all x and

[ 009600 =

fori=1,....m If ¢* € ¥ satisEes
9% -1 1 fnal> 3 61,09
9'(x) =0 1 fma < 3 61,09

for some K, ..., km, then ¢* maximizes [ @(x)f,,, ,(x)dx over €.

Proof

Since0<@<1lforallxandall ¢ € ¥,

(0" (%) 900) (T, (%) — i& () >0

forall xand all ¢ € ¥. So

Example

Xis-- -, Xnii.d. N(8,1). Want to test
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For any test ¢ the power function (3 is continuously differentiable.
For any test to be unbiased it is necessary (but not suffcient) that 3'(6,) = 0.

We can use the generalized Neyman-Pearson lemma to £nd a most powerful test of

H, :0=16;
such that 3(6,) = a and B'(6,) = 0: Take
f3(x) = f(x16,)
- J .
f5(X) = 70 f(X|6,) c,=0
fL (%) = f(X[6,) ¢,=a

The most powerful test with these restrictions rejects if
f3(%) > Ky 1 (%) +k; (%)
for some k; and k, that satisfy the two restrictions.
Now
f3(%) > ki (%) +k; (%)
means
Nx_g)2 Nix_g)2 % Nx_g.)2
exp{ 2(x 0,) } > klexp{ 2(x 6) }+k2n(x 92)exp{ 2(x ) }

or
n
exp{—é(elz— 6§) +nx(6, - 90)} > ki +kon(X— )

The exponential term can be increasing or decreasing.
We can get R to be one-sided or two-sided.

To get B'(6,) = 0 we need two-sided, symmetric about 8,. With this choice R is also
unbiased.

To get B(8,) = a, we need
R={X:X < 6y—2, ,/VNOrX>6;+2, ,/ N}
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For each a’ < a the UMP size a test is the same shape but less powerful.
So this is a UMPU level a test.
Similar ideas work with many one-parameter exponential families.

Nuisance parameters can sometimes be handled in this way as well.

Homewor k

Problem 8.31
Problem 8.34

Due Friday, March 14, 2003.
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Week 8

Monday, March 10, 2003

P-Values

In a research setting it is usual to give not
“the test rejected H, at the 0.1 level”
but to compute and report the

p-value = smallest level where test would reject
= largest level where test would not reject

p = 0.049 and p = 0.007 both reject at the a = 0.05 level, but suggest a difference in the
strength of evidence.

Some unfortunate terminology:

p<0.05 “statistically signifcant”
p<0.01 “highly statistically signiEcant”

Older programs would mark these as * and **,
This is the reason for occasional comments about “star gazing”.

Even p-values do not tell the whole story:

e if pissmall, you need to worry if the results are of practical signi£cance.

e if pis large, you need to think about whether it could have been otherwise (was there
any power at plausible alternatives?)

Another way to look at p-values is provided by
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De£nition

A p-value p(X) is a statistic such that 0 < p(X) < 1 for all X and small values of p(X) give
evidence in favor of H;. A p-value is valid if

Po(p(X) <a) <a

forall 8 € ©yand all a € [0,1].

If p(X) is a valid p-value, then the rejection region
R={x:p(x) < a}

is a level a test.

Usually p(X) is defned in terms of a test statistic:

Theorem

Suppose W(X) is a test statistic such that large values of W(X) are exvidence for H;. Defne

P(X) = sup Py(W(X) =W(x))
6c0,

Then p(X) is a valid p-value.

Proof

Let py(X) = Py(W(X) >W(x)) and let F, be the CDF of —W(X). Then
Pe(X) = Po(=W(X) < —W(x)) = Fy(-W(x))

and
Po(Pg(X) < @) = Py(Fy(-X(X)) < @) < @

[If F, is continuous then equality holds by the probability integral transform; in general,
this inequality holds.] For 8 € ©, we have p,(X) < p(X), and therefore

Py(P(X) < a) <Py(pg(X) <a)<a

69



Statistics 22S:194, Spring 2003 Tierney

Example
Suppose X;, ..., X, are a random sample from a N(pu, 0?) distribution and we want to test

Ho 11 < Hy
Hyip >y
The LRT is the t test which rejects H, when

_ X~ Ho

WO =g

is large. For 4 < pyandany o >0

The maximum always occurs at the boundary value u = L,

A Graphical representation: We can plot the CDF’s of p(X) for different 8 values.

Often there is a boundary value 6, for which p(X) is uniformly distributed.

If the test provided by W(X) is unbiased for all choices of a, then we have
PO(pX)<a)>a

forall 6 € ©,.
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Homewor k

Problem 8.49
Problem 8.54

Due Friday, March 14, 2003.
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Wednesday, March 12, 2003

Testing as a Decision Problem

O, 2, f as usual.
o/ = {ay,a,} = {accept Hy, reject Hy }
Some loss functions:
L(6,a) = {0 ifOGQOanda:aOor9€®1anda:al
1 otherwise
= zero-one loss
c if6ecOyanda=a;
L(B,a)=4d if6cO anda=a,
0 otherwise
= generalized zero-one loss

For H, : 6 < 6, against H, : 8 > 6, we could use

0 6<0
L(6,ay) = -9
(9.20) {c(e—eo) 6> 6,
0 6> 6,
L(6,a) = 0
(9.2, {d(@o—e) o< 6,

Relation to power:

Pa(0(X) = ay) +L(6,8,)Py(0(X) =&)
(1-B5(6))+L(6,a,)B5(0)
+(L(6,8,) —L(8,a))B5(8)

For generalized zero-one loss, the posterior expected losses are

dP(6 € ©4]X) a=a,
cP(B € Qy|X) a=a;

E[L(8,8)[X] = {

So the Bayes rule chooses a, if
cP(8 € Qy|X) < dP(8 € ©,|X)

or if
. _P(BeOyX) ¢
posterior odds of ©, vs©, = P(6 € O,X) >3
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L ocally M ost Power ful Tests

If we can’t £nd a UMP test we can look for a test ¢* such that for some A and all 8 within
A of ©, B*(08) > B(6) for all other tests ¢. Such tests are called locally most powerful
(LMP).

This makes sense since we are usually most concerned about a test sort of near ©,

For H, : 6 = 6, against H, : 6 > 6,, LMP means maximize 3'(6,).
For H, : 6 = 6, against H, : 8 # 6,, LMP means maximize 3" (6,).

Generalized NP lemma helps here too.

Cautionson Testing

If p-values is small, make sure differences are of practical importance.
If p-value is not small, think about power at plausible alternatives.

Setting up H, as a research hypothesis, only rejecting if evidence is strong is a good strat-
egy.

But understanding differences can be hard.

Often we understand what 8 = 0 means but not how to think about 6 £ 0.

Sometimes we would like to use

as a pre-test for checking assumptions.

This can be very dangerous unless there is strong prior information in favor of H,.
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Homewor k

Problem 8.55
Problem 8.56

Due Friday, March 14, 2003.
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Friday, March 3, 2000

Interval and Set Estimation
Motivation

In point estimation we give a single guess for 8 or 7(0).

This is useful when we need a single number (e.g. to set an instrument).
But a point estimate is almost surely wrong.

Moreover, some estimators are better than others.

There are two approaches for for dealing with this issue:

Informal approach:

In a frequentist analysis, always report an estimate and a standard error (esti-
mated SD of sampling distribution).

In a Bayesian analysis, always report a summary of location and spread of the
posterior distribution.

Formal approach:

Use the data X to determine a set C(X) C © of values that are supported by the
data in some formally defned sense.
Possible Shapes
In one dimension, set estimators are often restricted to produce intervals,
C(X) = [L(X),U(X)]

It is sometimes useful to allow open, half-open, or half-infnite intervals.

In higher dimensions, there is no clear natural shape to require—one could ask for connect-
edness, convexity, a rectangle, etc..

The set or interval produced by a set estimator is a set-valued random variable, or a random
set.

Objectives

There are two conzicting objectives:
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We want the set to be small, to make a precise statement.

We want the set to be “right,” i.e. to contain 6.

It is fairly clear what we mean by an interval being small—we look at its length.
The length might be random, so we can take its expected value,

Eg[U (X) —L(X)]
(at least for bounded intervals this is sensible).

What about being “right?”

The frequentist approach: For each 6 we can compute

P, (interval covers 6) = Py(L< 6andU > 0)
=P, (L<O<U)
= coverage probability

This may depend on 8, so we look at the worst case:

Con£dence CoefEcient = irz__)f P,(C(X) covers 6)

Example

Xiy. o, %o i.i.d. N(6,02), a2 known.,

X estimates 6.

SE(X) = 0/y/M

Often we report “X, give or take o/,/n or two.”

Suppose we use
[L,U]=X+20//n

Then
Py(L< B8 <U)=Py,(X—20/y/n<0<X+20//n)
R NS Sy

o

:Pe(—Zg\/ﬁX;9§2>
—P(—2<Z<2)~0095

The coverage probability is &~ 0.95 for all 8, so the conf£dence coefEcient is ~ 0.95.
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Suppose n=4,Xx=3.7,0 = 1. Then
lu]=3.74+2x1/2=37+1=[2.7,4.7]

is an observed 95% CI for 6.
It is not true that P(6 € [2.7,4.7]) = 0.95.

It looks like this is what is being said, but it is not.

Homework

Problem 9.1
Problem 9.2

Due Friday, March 28, 2003.
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Week 9

Monday, March 24, 2003

Inverting Tests

Suppose Xy, ..., X%y are i.i.d N(6, 02) with a2 known.
For any 6,, a UMPU test of H, : 8 = 6, against H, : 8 # 6 is
R={x:|x— 6y > za/za/\/ﬁ}
This test has size a, so
P(X—za/za/\/ﬁ <6, < Y+za/2a/\/ﬁ|6 =6)=1-a
for any 6,. So B B
Po(X—2,,0/v/n<6<X+z,,0/V/n=1-a
and so Yiza/za/ﬁ isa 1— a-level CI for p.
Inverting a test requires a family of tests, one for each 6, € ©.

The set estimate obtained by inverting a family of tests is the set of all 8 that would not be
rejected by the corresponding tests.

Theorem

For each 6, € © let A(6,) be the acceptance region of a level o test of H,: 6 = 6,. For
each x € 2" defne C(x) as

C(x) =1{6,:xcA(6y)}
Then the random set C(X) is a confdence set with conEdence coefEcient at least 1 — a.
Conversely, let C(X) be a conf£dence set with confdence coefcient at least 1 — a. For any
6, € © defne

A(Bp) = {x: 6, € C(x)}
Then A(6,) is the acceptance region of a level a test of H, : 8 = 6, against, say, H, : 6 # 6,
for each 6, € ©.
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Proof

Suppose {A(0) : 6 € ©} are acceptance regions of level o tests. Then
1-a <Py(XeA(8)) =P,y(6 cC(X))
For the converse, if C(X) is a confdence set with conf£dence level at least 1 — a, then
a> PeO(C(X) does not cover 6,) = PGO(X ZA(6y))

so A(6,) is the acceptance region of a level o test. O
Examples
1. Suppose X,,..., Xy arei.i.d. N(u,c?) and we want an interval estimate for g2.

The likelihood ratio statistic for testing Hy : 02 = ¢ against H, : 02 # 0@ is

1\"? n6?/(20,) _
(&) e (2)

@)

cl c2

For R={A <k} use

1 1
=2 2= .2 =2 2= .2
R= {a < aOﬁleal oro“ > anXaz}

1 2 _ 1 2
f <ﬁX1—al> =f (ﬁXaz>

A(0§) = {S*: 05 Xi_q, < (N—1)S" < 0§X4, }

where a, + a, = a and

So

and therefore
C(X) ={0?: L e A(g?)}
= {0%:(n—1)$* > 0°x{_4, and (n—1)S" < 0°X4 }
=[(n—1)/x5,, (n—DS/X{ a,]

Usually we cheat and use a; = a, = a//2, which is not quite right.
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2. Suppose X;, ..., Xy are i.i.d. Poisson(A) and we want a lower con£dence limiton A.
Look at the LR test for
Hy: A=A
HitA > A
The test statistic is B
1 X <A
A= X o
(%) e X2
A >kifand only if 5 X; > ¢ for some c.
For each Aj, £nd the smallest integer c(A) such that

P (> X=c) <a
sum(Xi) | -
-
% I
Lambda

The smallest A with c(A) > ¥ X is a lower confdence limit.
Using the CLT:

\/iNAN(\/)_\,%)
c()\)zn(\ﬁﬂr%ﬁza)z

SO

Z)gzc(;\)@\/izfﬁz\imza

= 1
X———7,>VA
< 2\/ﬁza_\/_

@(f—z—%za)zz/\

Can also solve quadratic for the usual normal approximation.
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Homewor k

Problem 9.4

Due Friday, March 28, 2003.
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Wednesday, M arch 26, 2003

Pivotal Quantities

A random variable Q(X, 8) is a pivotal quantity, or a pivot, if its distribution is independent
of all unknown parameters.

Examples
1. Xg,..., Xni.i.d.N(6,1), Q= /n(X—6) ~N(0,1).
2. Xi,..., % 1.i.d. N(8,0%), Q= /n(X - 0) /S~ ;.
3. Xp,.. o, Xniid.N(p,02), Q= (n—1)S?/0?% ~ X2 ;.
Pivotal quantity method:
1. Choose a set A such that
P(Q(X,0) e A)=1—a

2. LetC(x) ={60:Q(x,0) € A}

Then C(X) isa (1 — a)-level confdence set.

Usually there is a “reasonable” choice of A based on monotonicity ideas.

Example

Suppose X, ,..., X%y are i.i.d. N(u,0?) and we want a confdence set for 2.
Let

(n—-1)%

2
o2 Xn-1

Q=
A= [Xr?—l,l—a/bxr%—l,a/z]
Then
C(x) = {o®: Xr?_171_a/2 <(n-1)F/0° < Xr?—l,a/z}
B [(n ~1)® (n-1)<

2 7 y2
anl,a/z anl.,lfa/Z
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Bayesian Intervals

Suppose
0~ f(0)
X6 ~ f(x|0)

Then
f(0|x) O f(x0)f(0)
is the PDF of the posterior distribution.

Given the posterior distribution and a level 1 — a, we can compute sets of posterior proba-
bility 1 — a.

Such sets are called credible sets.
Intervals are called credible intervals.

A credible region’s probability of containing 6 is a posterior probability, not a coverage
probability based on conceptual repetitions of the experiment.

There is a relation:

E[P(6 € C(X //1 £(6|x)dOf (x)dx

_//1 £(6,x)d6dx
_//1 f(x|6)dxf (6)d8

:/Pe 6 € C(X))(6)d6
So P(6 € C(X)|X =x) >1—a forall x implies
/PG(G eC(X)f(6)d8>1—a

But Py(8 € C(X)) < 1—a for some 6 is possible.

Example

Suppose Xy, ..., %y arei.i.d. N(8,02), 6 ~ N(u,12), and u, a2, 12 are known.
We know that

2 2 2
nt — g ot
B|X =x~ N X
| <m2+02 +”TZJFUZH’(\/nTZJraZ> )
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So a lower 1 — a level credible bound is

nt?  _ g2 o1
7 Xt TSl Z
N2+ o N2+ o VN2 1 02
i.e. ) 5
nt? _ o) oT
PlO> X —Zy—F———=|X=X|=1-qa
( ntZy o2 n2t o2t T4 iy o2 )

A two-sided 1 — a credible interval is
2 2
nte o o ot
X +z
nt2+ g2 * nt2+ g2H = %a/2] /n12 + g2
If T is very large, then 6|C = x is approximately
N(%,a2/n)

So for a vague prior, the “usual” CI’s are credible intervals with

con£dence level = posterior probability of containment

Choosing the Smallest Credible Set

How should you choose a credible interval/set for a given probability level?

Suppose f is a PDF. For a given a, we can choose C such that
/ fdx=1—a
C

area of C = / dx
C

and

is minimized. Equivalently, we want to maximize — [ dx.
Use the generalized Neyman-Pearson lemma:
f,=-1

The maximal negative area occurs if C is described by ¢ with

1 if-1>kf(x)
“’(X)_{o if —1 < kf(x)
1 iff>c
o0 iff(x)<c

for some k, which has to be be negative, or some ¢ = —1/k.

This says: choose the highest posterior density region:
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Homewor k

Problem 9.12
Problem 9.13

Due Friday, March 28, 2003.
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Friday, March 28, 2003

Evaluating Con£dence Sets
Minimizing Interval Length

One approach is to ask for minimum (expected) length given the confdence level.
For Xy, ..., %ni.i.d. N(u, 02)

[Y - bS/\/ﬁaX - aS/\/ﬁ]
with P(a<T,_; < b) = 1— a has expected length
E[length] = E[(b—a)S/\/n] = (b—a)o x const(n)

We minimize b— asubject to P(a< T, ; < b) = 1—a by choosing a,b at contour levels,

ie.a=—t b=t

n—-1,a/2’ n—-1a/2°

This criterion is useful in principle for choosing tail allocations.
It is a bit messy as a theoretical criterion.
It depends on the measurement scale.

It also does not work for one-sided intervals.

Exploiting Relations to Testing

Alternative approach: try to exploit the relation to testing.

We have an optimality theory for testing; let’s map it to con£dence sets.

In testing we have ©,, 3(0),0; = Oj.

We constrain 3 on ©,, optimize it on ©, = G

In conEdence sets, we have a family of tests with a family of 6,’s and a family of [390 ’S.

We consider

acceptance regions A(6,)
alternate hypotheses ©, (6,)

power functions 390(6)
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De£ne for 6, 6’ the probability of false coverage as
Py (8" € C(X)) 60,06
For two-sided intervals:
Pp(6" € [LX),UX)])  6#6
One-sided:

Py (6’ € [L(X),)) 0'<06
Py (8’ € (—0,U(X)] o' >0

Relation to power:
1— B, (8) = Py(false coverage of 6")

A 1— a conEdence set that minimizes the probability of false coverage among a class of
such sets is called uniformly most accurate, UMA.

A 1— o confdence set is unbiased if
Pe(e’ eCX))<l-a
when 6 € ©,(8').

Theorem

Let X ~ f(x|6). For each 8, € © let A*(6,) be the acceptance region of a UMP level o test
of Hy: 6 = 6, against H; : 6 € ©,(6,). Let C*(X) be the 1 — a con£dence set obtained by
inverting the tests. Then for any other 1 — a con£dence set C,

Py(8 € C*(X)) < Py(6' € C(X))

for all 8,6’ with 6 € ©,(6’). That is, C* is UMA level 1 —a.

Proof

Suppose 6, 6’ satisfy 6 € ©,(6’). Let A(8') be the acceptance region of the 1 — o level test
from inverting C(X). Since A*(0’) is UMP,
Py(8' € C* (X)) =Py(X € A*(6')) =1— B (6)
<1-B4(8) =Py(X € A(6))
= Py(6" € C(X))
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Suppose UMP tests are not available.

Then we can look at UMPU tests.

Unbiased tests correspond to unbiased intervals/sets.

If we have a family of UMPU tests, then they invert to UMAU con£dence sets.
Relating False Coverage to Length

Theorem

Let X be real-valued, X ~ f(x|0), with O real-valued. Let C(X) = [L(X),U (X)] be a CI for
6. If L(x),U(x) are both strictly increasing in x, then for any 8*

Eq. [U(X) —L(X)] = /9#)* P,.(L(X) < 8 <U(X))d®

Proof

5 1000 ~LO0] = [ 060~ L0 F(x18")ax
U(x)
:/ / d6dx
L~ 1 ©)
_// f(x|6*)dxd@

Examples

1. X;,..., % i.i.d. N(8,1). X—2,//nis a UMA lower confdence bound for 6.
2. Xg5.o o, XniidoN(B,1). X+ za/z/ﬁ isa UMAU con£dence interval for 6.

3. Xg,.., %0 i.i.d. N(6,02). Yitn_m/ZS/\/ﬁ isa UMAU con£dence interval for 6.
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Homewor k

Problem 9.12
Problem 9.13

Due Friday, March 28, 2003.
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Week 10

Monday, March 31, 2003

Consistency

Often an estimator W is described by a rule that can be applied to any sample size.

We can capture the idea that W is “reasonable” by looking at a sequence W, as h — o and
requiring that W “do the right thing” if nis large.

De£nition

A sequence W, of estimators of 7(0) is (weakly) consistent if W, A 7(6) as n — oo for all
6. W, is strongly consistent if W, as 7(0).

From our study of convergence in probability, we know that if
MSE(Wh, 8) = Eg[(Wh — 7(6))%] =0
then W, is consistent for 7(0).

Since MSE = Var + Bias?, if
Var(W,) — 0

and
Bias(Wp) — 0

then W, is consistent.

Examples

1. X is consistent for u.
2. S is consistent for o2.

3. Sis consistent for o.
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4. X2 is consistent for u2.

Theorem

Under suitable regularity conditions the MLE 6 is consistent for 6.

To get a feel for why this is so, suppose X, ..., X, are i.i.d. from f(x|6,), i.e. 6, is the
“true” parameter value. Look at

9(6) =Eq {Iog (:((;”Ei)))}

By Jensen’s inequality,

with equality if and only if
Py, ((X|0) = F(X|6p)) =1
i.e. if and only if 6 = 6, for an identifable 6.

So g(8) has a strict global maximum at 6, with g(6,) = 0.

Now look at the average log likelihood:

1 1 1 f(X%[0)
~(logLn(8]X) —logL(65/X)) = ~£n(6]X) = — % log f(éyeo)

Then .
Eq, | n1n(61)| —9(6)

and by the strong law of large numbers,
“n(61X) 22 g(6) < 0

for all 6 # 6, and
%en(em 220
for 6 = 6,.
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So for all large n, all 6 other than 6, are eventually ruled out in pairwise comparisons.
This proves consistency if © is a £nite set.
It can be made to work if © is compact and g, ¢, are continuous.

Dropping compactness is hard.

Homewor k

Problem 10.1

Due Friday, April 4, 2003.
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Wednesday, April 2, 2003

Second Midterm Exam

The exam will cover the material covered in readings, in class and in assignments from
Chapters 8 and 9.

The exam is closed book.

The exam will include some information on distributions along the lines of the Table of
Common Distributions in the text.
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Friday, April 4, 2003

Approximate Normality

Suppose nis large enough so that 6 is close to 6, Then for 6 near 6,

1 1 10 1 02
ﬁgn(9|x)%ﬁfn(eo|x) _%gn( 6oX) (6 — 6) + nagz " n(65|X) (6 — 9)

Maximize this quadratic to get the approximate MLE:

. Lo0,1X
200 (601X)
Now
1@” X) dzlf 6,23 —1.(9
" (O| 209209 (x|| )_) 1( O)

by the strong law of Iarge numbers. Furthermore,

LX) =TT o log f(X[6) = Y,

with

ElY] =

Var(Y,)

(o)

So by the central limit theorem,

By Slutsky’s theorem,

ﬁ(@— o) ~ _%Eln(eop()
° ACS!

9 1,(6) _

or R
6 ~ AN(6q,1n(8)) )

This holds in mdimensions as well.
So under suitable regularity conditions (similar to the ones needed for the CRLB) the MLE
is asymptotically normal.
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If 6 is the MLE and we want to estimate 7(8), then

. / 2
7(8) ~ AN (r(eo), Tln(<6600)) )

These results also hold, under some conditions, in some non-i.i.d. situations.

The expected information I»(6,) can be approximated by the observed information

R 2

. 9 .
In(6) = 362 logL(6X)

Examples
1. Xi,...,Xqi.i.d. Poisson(A)
A =X

7] 7]
d—)\logL()\]X) = 5_)\<zxi|°9)‘ —nA) :n(?—l)

and

2. X{,..., Xy 1.i.d. Gamma(a, 1).
logL(ar|X) = const—nlogl(a) + (a —1) 3 logX;
Closed form of the MLE is not available. The method of moments estimator
a=X
is a good initial guess; we can £nd a numerically by solving

Ma) 1
“Fa) Jrﬁzlogxi =0

We can approximate the distribution of @ as N(a,In(a)™1), and In(a) is approxi-
mately
- [0 (12
r@ \r(a
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3. X{,..., Xq i.i.d. Geometric(p).

f(x|p) = p"(1—p)25 "
logL(p|X) = nlogp+ ( X —n)log(1-p)

%, 1 X-1

310 =0 (5 1)
92 1 X-1
109t =0+ s )

Sop=1/Xand
n n/p—n n
| — —
P = p = o)
~,. N n/p—n n
T; ) 0 — = P
P = e T P
Homewor k
Problem 10.3

Problem 10.9 (but only for e*; do not do Ae™*)

Due Friday, April 11, 2003.
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Week 11

Monday, April 7, 2003

Asymptotic Ef£ciency

De£nition

A sequence of estimators W, is asymptotically efEcient for 7(0) if /n(W, — 17(6)) EA
N(0,v(6)) with

[T'(6))?
E, [(%Iog f(X|e))2]

v(0) =

Thus the MLE is asymptotically efEcient.

Is this de£nition reasonable?

Theorem

Suppose a sequence of estimators W, satis€es is /n(W, — 17(0)) 2 N(0,v(0)) with v(8)
continuous. Then, under suitable regularity conditions,

[T'(6)?

v(0) >
= [(% log f(X|6))2]

The following example shows that the continuity requirement on v(8), or something like
it, is needed:
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Example

Let X;,...,Xnbei.i.d. N(6,1) and let

X if[X] >4
" laX if[X| < nb/4

Then /n(W,—0) Z, N(0,v(8)) with v(8) =1 for 8 #0and v(6) =a®for 6 =0. Ifa< 1
(e.g. a=0) then this estimator is superefEcient.

Is this example entirely artifcial?

Suppose the sequence of estimators W, of 8 satisfes /n(\W, — 0) 2 N(0,v(6)) for some

v(0). We can constuct a new sequence V,, by taking a single Newton step from W, towards
the MLE:

=
This new sequence is asymptotically efEcient (under suitable regularity conditions):
Vi~ 6) = VAW - 6) — VAgECH
= Vi, - 6) — Vagh) e S©)
=i (o ey ) V0 (1 i )
\QHEZ% N(0,1(6)71)

with

2
1(6) =Ey [(069 log f(X|9)) ]

since £/(6)/n > —1(8) and ¢/(Wh) /n > —1(8).

Non-Normal Limiting Distributions

Some MLE’s have non-normal limiting distributions:

Example
Suppose X, ..., Xn arei.i.d. U[0, 8]. Then the MLE is O = X(n). Now for x < nf
_ 0 _ _i n x/6
P(n(6—0)>x) = <1 n9> — e
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So the limiting distribution of n(6 — 8) is exponential with mean one.

Variance-Stabilizing Transforms

For constructing CI’s, it is useful to have normal approximations with variances that do not
depend on the paameter.

Supose Wi ~ AN(8, a2/ (8) /n). Then for a smooth function g

g(Wh) ~ AN(g(6),9'(6)*i% (6))

Suppose ¢'(6)203(0) = 1, say. Then

1
g(8) =
o (0)
and thus 1
o(6) - |
o (0)
Examples

1. If Xg,..., X arei.i.d. Poisson(A), then Wy = X ~ AN(A,A /n). So iz(A) = A, and

g(/\):/id/\ —2V2

VA
S0 2vX ~ AN(2V/A,1/n).
2. If Xn ~ Binomial(n, p), then Wh = X»/n~ AN(p, p(1 - p)/n). So 6&(p) = p(1—p),
and

1
Y R
a(p) /m P
2
:/ v p=Vy
= 2sin"L(y)
= 2sin"1(/p)

So 2sin~*(y/Xa/n) ~ AN(2sin~1(,/p), 1/n).
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Homewor k

Problem: Find the approximate joint distribution of the maximum likelihood estimators in
problem 7.14 of the text.

Due Friday, April 11, 2003.
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Wednesday, April 9, 2003

Approximating Posterior Distributions

The posterior distribution of 8 is given by
f(6|x) O f(x0)f(0)
Let B be the MLE and set T = NOQCE 5). Then the density of T|X is

f(x10+t/vN)f(6+t/vn)
f(x10)f(6)

Note that 8 and T are random variables; the conditioning makes x and hence 6 constants.

f(tjx) O

Now take logs and expand around 6:

~

t o . t? 9° f(8+t//n)
log f (t]|x) ~ 0+7%Iogf(x]9) o dezlogf(x|9)+logT

t2 92 f(8+t/\/N)
_0+0+%062 Iogf(x\9)+logT

If this were exact, we would have

T|X ~ N(0,n/11(8)) or
61X ~N(8,1n(8) )

Under suitable regularity conditions, the postarior distribution of 0 is approximately

NOS

~ o~

N(8,
for 1-dimensional and m-dimentional 6.

Some notes:

1. This is a legitimate distributional statement, since 8 and IAn(§) are £xed conditional
on X.

2. The prior has been neglected here. It could be included by using the posterior mode
and second derivative at the postarior mode instead of the MLE.
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3. The observed information
2

062

is the right thing to use—it is not being used to approximate the expected information
In(6p).

4. Results are based on the law of large numbers, not the CLT.

1n(8) = logL(8]X)

Examples
1. Xq,-.., Xni.i.d. Bernoulli(p). The prior distribution of p is assumed smooth.

logL(plx) = > xlogp+ (n—% X)log(1 - p)
(phg = 23 T 2%

0
—logL
0g 1-p

ap
p=>‘<

0? X N—YX
—2|09|—(P|X) - _zpz - (1_Zp;(12

ap

So R n

Ih(P) = = —
and p|X is approximately N(p, p(1— p)/n).
Supose n= 100, ¥ x, = 46. What is P(p < 0.5/X)?

D(p|X) ~ 1/0.46 x 0.54/100 ~ 0.05
_ _/p-046 0.04
P(p<0.5\X)_P< 005 < 0.5

~P(Z<0.8)=0.79

Similarly,
P(0.36 < p< 0.56|X) ~ 0.95
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2. X{,..., %0 i.i.d N(u,02), prior on (i, 0?) is smooth.

2 n 2 1
logL(u,o ]x):_—loga —ﬁZ(xl_

%IogLuaﬂx 2Zx—
J logL(u,02|x) = oz Y (%
oo 22 202 204

ou2
92 ) n
OO~ 0 T

2
n
logLL (1, 0%x) = ——

2
1
g2 CILH 0T = =577 ) (5 —H)

and thus

Homewor k

Problem: In the setting of problem 7.14 of the text, suppose n = 100, Y W = 71, and
y Z; = 7802. Also assume a smooth, vague prior distribution. Find the posterior
probability that A > 100.

Due Friday, April 11, 2003.
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Friday, April 11, 2003

Limiting Distribution of Order Statistics

Suppose Yy has a Beta(an, Bn) distribution, ap — o, By — o, and py = an/(an+ Bn) —
pe (0,1). Then

vV 0+ Bn(Yn— pPn) = N(0, p(1—p))
This can be shown using the central limit theorem for Gamma variables and the bivariate
delta method.

Suppose F is continuous with positive density at the p-th population quantile F ~(p). Let
X{s-- -, Xn be arandom sample from F and U, = F (X;). Then U, ~U[0, 1], Xy = F_l(U(k)),
and Uy ~ Beta(k,n—k+1). So for p € (0,1)

B 1 p(1—p)
VX gy —F (0D & V=g Yoy —P) >N (0’ W>

by the delta method.

Example

Suppose X, ..., Xparei.i.d. N(pu, 0?) and let X, be the sample median. Then

SR — ) LN (o, ﬁ) ~N (o,goz>

Asymptotic Relative Ef£ciency

We can compare two asymptotically normal estimators using their asymptotic reative ef-
ciency:

De£nition

Suppose v/N(Wh—1(8)) 2 N(0, 62) and \/f(Va—1(8)) 2 N(0, 62). Then the asymptotic
relative efEciency of V, to W, is

ARE(Vn,Wn) -

<q|\) ‘ gl\-\
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Example

Suppose Xy, ..., %y are i.i.d. N(u, g?). Then the asymptotic relative efEciency of the sam-
ple median to the sample mean is
o2

ARE(Xq,Xn) = 77— = — = 0.6366

~EEN

T
50

So using the mean we need only 64% as many observatons to achieve the same accuracy
as the median.

Example

Suppose Xg,..., X, are i.i.d. Gamma(a,1). The method of moments estimator of a is
X ~ AN(a,a/n). The maximum likelihood estimator must be calculated numerically, or
we can use a one step Newton approximation starting from the MM estimator. The negative
second derivative of the single observation log likelihood is

2 d?
~5g2 (~10gT (@) — (a —1)logx—X) = - logT ()

da?
So the asumptotic relative efEciency of the MM estimator to the MLE is
2 -1

o - d
ARE(Xp, apn) = {GW logl(a)

a | 05 1 2 5 10 100
ARE(Xp,Gn) | 04053 06079 0.7753 0.9037 0.9509 0.9950

The function ¢, (a) = dd722 logl (o) is known as the trigamma function.

Homewor k

Problem: Let X;,..., Xy be a random sample from a Pareto(1, 3) distribution with density
f(x|B) = B/xP+1 for x> 1. Find the asymptotic relative efEciency of the method of
moments estimator of 3 to the MLE of 3.

Due Friday, April 18, 2003.
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Week 12

Monday, April 14, 2003

The Bootstrap

Suppose X,,..., Xy is arandom sample from F (x|8) and W =W(X,, ..., Xq) is an estimator
of 7(6). There are two forms of boostrap:

e Parametric Bootstrap:

1. Estimate 6 by 6.

2. Compute E*[W] = E|W|6 = 6] and Var*(W) = Var(W|6 = 8).
e Nonparametric Bootstrap:

1. Estimate F(x|6) by the empirical distribution F.

2. Compute E*[W] = E|W|F = F,] and Var*(W) = Var(W|F = F,).

Boostrap theory says that, under suitable conditions, E*[W| ~ E[W] and Var* (W) ~ Var(W)
for large n.

Often bootsrtap approximations are more accurate than ones based on the delta method.

How do we compute E*[W] and Var*(W)? In some cases we can do this analytically:

Example

Suppose Xy, ..., %n are i.i.d N(¢,02) and W = . We can use i = X and 62 = S in a
parametric bootstrap. Then
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So the analytic version of the parametric boostrap involves computing Var(W|0) as a

function of 6 and plugging in an estimate 6 to obtain the parametric bootstrap variance
Var*(W|0).

Usually bootstrap variances are computed using computer simulation: Consider the same
setting as in the previous example. Given the estimates i and 62 we draw a sample
X{, ..., X from a N(fi,62) distribution and compute W, = W(X;,...,X}). Repeat this
B times to obtain Wy", ..., Wg. Then approximate E*[W] and Var*(W) by

*

EgW] =W

1 8 __
Varg(W) = ﬁ_;(w —

The law of large numbers implies that EZ[W] PEr (W] and Varg(W) P, Var* (W) as B— co.

The nonparametric bootstrap uses the same idea, except each sample is drawn from the
empirical distribution Fy:

e Draw X{,..., X5 from F,
e Compute W) =W(X{,...,Xy).

o Repeat B times to get W}, ... ,\Wg.

Drawing a random sample from F, means sampling the observed values of the data with
replacement.

Example
Times between failures of air conditioning units, in hours, are

> ac
[ 1] 3 5 7 18 43 85 91 98 100 130 230 487

The sample standard deviation is

> sd(ac)
[ 1] 136.2321

Using the boot package we can obtain bootstrap estimates of the bias and standard devia-
tion:
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> boot (ac, function(d, i) sd(d[i]), 21000)

ORDI NARY NONPARAMETRI C BOOTSTRAP

Cal | :
boot (data = ac, statistic = function(d, i) sd(d[i]), R = 1000)

Bootstrap Statistics :
ori gi nal bi as std. error
t1* 136.2321 -14.96460 48. 22422

Some notes:

e Bootstrapping can be applied to any estimator.
e Bootstrapping requires computing the estimator many times.

e Regression problems can be bootstrapped several ways (cases, residuals, .. .)
The nonparametric bootstrap is a shift in philosophy:

e use a model to suggest an estimator

e do not use the model to assess how well the estimator works.
The boostrap uses asymptotics in two ways:

e The data sample size n has to be large for Var*(W) to be close to Var(W).

e The bootstrap sample size B has to be large for Varg(W) to be close to Var*(W).

Homework

Problem: Let X,,..., X, bei.i.d. Poisson(A) and let W = e X. Find the parametric
bootstrap variance Var*(W) and show that Var* (W) /Var(W) Plasn—w.

Due Friday, April 18, 2003.
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Estimating Equations

Many estimators W, are deEned by an estimating equation

n

Zh()g,wn> ~0

1=
for some well-behaved function h.
Example
In maximum likelihood estimation

h(x,t) = ;—6 log f(x|0) ,
=t

What does W, estimate? Suppose t* satisEes
E[h(X,t")] =0

Generally we will then have W, —» t*.

Expanding the estimating equation around t* gives

0= zh(xi,t*)+Z%f(xi,t*)(wn—t*)+...

and so

We can estimate the asymptotic variance by
=3 h(X, Wh)?

This is sometimes called the sandwich estimator. To see why, we need to look at the
multidimensional version.

Var(yn(Wh — t7)) =
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If 8 is mx 1 then we need m equations, so h(x,t) is mx 1 and %h(x,t*) ismxm. The
covariance matrix of h(X,t*) is

C, = E[h(X,t")h(X,t*)T]

and
VWL —t*) 2 N(0, AC,AL)

with P
Ay = E[SthO6, )]

The corresponding estimated asymptotic covariance matrix is A.C, Al with A, and C, the
empirical analogs of A, and C,. So C, is sandwiched between A, and Al .

MLE’sUsing an Incorrect M odel

Suppose X, ..., X, are i.i.d. from g. We use a model g(x) = f(x|@) to obtain an estimator
Wh. This “MLE” will be consistent for the value 6* that solves

Eg {% log f(X|6*)} =0

or
0" = argmax Eg[log f (X|0)]
]
(X\G)]
(X)
_argmln/logf 2)> (x)dx
= argmin KL(g(), £(:16))

= argmax = {Iog

KL(g, f) is the Kullback-Liebler divergence from g to f. KL(g, f) > 0 for all g, f with
equality only if g = f almost everywhere.

If g(x) = f(x|6,) for some 6, then 6* = 6, if the parameter is identifable. Otherwise, 6*
corresponds to the model in the family { f(x|0) : 6 € ©} that is closest to g(x) in Kullback-
Liebler divergence.

The limiting distribution of W, is

SR8 2 N( Bol(5 logf<><|e*>>21>

(Eql 252 0g f(X[67)])
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and the asymptotic variance can be estimated by

L5 (F5log (X [Wh))?

Val Wh—67)) = 2
ar(vin( ) (L3 (25 log (% Wh))]2

In the spirit of the nonparametric bootstrap some prefer to use the sandwich estimator to
estimate the variance of a maximum likelihood estimator.

In some settings the speci£cation of a mean structure may be easier to justify than the rest
of a model. MLE’s may then be consistent for the parameters of the mean structure even
if the rest of the model is wrong; the sandwich estimator of the variance will then also be
consistent.

Homework

1. Let Xj,..., X, be a random sample that may come from a Poisson distribution with
mean A. Find the sandwich estimator of the asymptotic variance of the MLE A = X.

2. Let g(x) = e for x > 0 be an exponential density with mean one and let f(x|0) be
aN(6,1) density. Find the value 6* corresponding to the density of the form f(x|6)
that is closest to g in Kullback-Liebler divergence.

Due Friday, April 18, 2003.
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Robust Estimators

Many estimators are derived based on an assumed model. If the model is not correct, these
estimators may not work very well at all.

Ideally we would like something along these lines:

e optimal or near optimal performance if the model is correct
o small deviations from the model should reduce the performance only a little.

o slightly larger deviations should not cause disasters

Breakdown
One way to think about “no disasters” is breakdown:

Breakdown is the largest fraction of data that can be moved to inf£nity before
the estimator is pulled to in£nity.

For the mean X the breakdown is 0.

For the median the breakdown is 50%.

For the a-trimmed mean
1 {(1-a)n}

_ X
n(l1-2a) k_%m} (k)
the breakdown is a.

M-Estimators

Many estimators are de£ned as mimimizers of a criterion,

~

6y =argminy p(X —a)

For location models X; ~ f(x— @) taking p(x) = — log f (x) makes @M the MLE. Estimators
of this form are therefore called M-estimators.
Huber proposed this class and a particular member,

32 if x| <k
p(x) = 1o -
KIx| — 5k if x| >k
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Generally the M-estimator @M also solves

> WX - By) =0
with ¢ = p’. For the Huber M-estimator

—k ifx<—k
Y(x) = { x if x| <k
k if x>k

k is a tuning constant; it is sometimes chosen based on a robust measure of scale, such as
the IQR.

Suppose 6, satisEes E[()(X — 6,)] = 0. Then @M is generally consistent for 6, and

oo (o EX— 87
V(G ~6) N<°’ <E[w'<>9—60>1>2>

One advantage of the M-estimator formulation is that it can be extended to regression
settings.

Incuence Functions

The inauence function (or inauence curve) is a useful tool for thinking about the robustness
of estimators. To de£ne the inauence function, think of an estimator as a functional T (F)
of the empirical distribution F,. The corresponding population characteristic is T (F).

The inauence function is based on thinking about small “contaminations” in which a point
mass of probability J is added at a point x. That is, X ~ F5 means

X F  with probability 1 — o
X with probability &

The inauence function measures the rate of change of T as the amount of contamination o
changes:

IF(T,x) = Icsi?c])%(T(F5> —T(F))

The inauence function is essentially a directional derivative.

For the sample mean
T(Fs5) = (1—0)u+ dx

and
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so the inauence function of the sample mean is
IF(X,X) =x— U

The inauence function of an M-estimator is

~ Y(X—6y)
IF(6,X) = ————F—
(X = Bl X — gy
This is bounded for Huber’s M-estimator. Bounded inauence is a characteristic of robust
methods.

For the a-th sample quantile the inauence function is
; -1
{ﬁ if x>F(a)

(
0‘7*1(10{)) ifx<F~1(a)

IF(X;gyyoX) =

({an})’
f(F-

A useful general result:
VAT (F) = T(F)) 2 N(O,E[IF(T,X)?))

There is a relation between the inauence function and the breakdown value of an estimator;
the homework problem explores this.

Computing Inauence Functions

A variety of techniques are available for computing inauence functions. If T is de£ned by
an equation, then implicit differentiation is often a useful approach.

Example

Suppose T = F~1(a) is the a-th population quantile, and suppose F has density f with
f(T) > 0. Then T satisEes
F(T)=a

Now
F5(Ts) = (1—0)F (Ty) + 51[)(700) (T5) =9(3,Ty)
with
g(u,v) = (L=WF(v) +ul, , (V)
The partial derivatives of g are, for v # x,

2 guv) = 1y (1)~ F(V

2 guv) = (- Wy
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Differentiating the de£ning equation for T with respect to & and evaluating at & = 0 pro-
duces

0 0 d
0= ((55808.Ty)+ 5,98, 45T

0=0
- (1[&00) (T,) —F(Ty) + (1—3)f (Té)%Ta)
Loy (T) = @+ F(T)IF(T,X)

6=0

and therefore
a— 1[x7oo) (T)

IF(T,x) = f(T)

Homewor k

Problem 10.30 (b)

Due Friday, April 25, 2003.
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Monday, April 21, 2003

L arge Sample Hypothesis Tests
Informal Methods

Suppose we want to test

H,:6 # 6,  orone-sided if 6 is real-valued
Suppose W, is an estimator of 6 and W, is y/n-consistent and asymptotically normal, i.e.
under H,
1
Wih ~ AN(6p, i)

Then we can use as a test statistic

Wn - 90

O/ VN
which is approximately N(0,1) if 8 = 6,

If o, = ay,(6) depends continuously on 6, then

W, — 6,
a @/~ ANOD

and W 8
_n "
GuW)/yn " ANOD

if 6 = 6,, so either can be used as the basis for a test.

In some cases we can £nd a variance stabilizing transformation g such that
VN(g(Wh) —9(6p)) ~ AN(0, 1)
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if 6 = 6,

If o, = g () depends continuously on another parameter ¢, and if Vy, is a consistent
estimator of , then

W — 6,
Gy V)~ ANOD)

if 6 = 6,

Example

Suppose X;,..., X, are i.i.d. Poisson(A) and we wish to test the hypotheses
Hy A # Ay

Then W, = X, ~ AN(A, A /n). The variance stabilizing transformation is g(x) = 2/X, so
21/Xn ~ AN(V/A,1). Thus a test can be based on any one of the statistics

Zn,1 = \/ﬁ(xn - )‘o)/\/)To
Zy2= VN(Xn— Ao)/\/77n
o= (223

in each case rejecting if |Z, | is larger than Zq 2

If 8 is m-dimensional and Wh ~ AN(8, Z,,,) with Z,,, nonsingular, then, viewing 6 and W,
as mx 1 column vectors,

Yo = N(Wh — 8,) TSt (Wh — 6,) 2 X3

if 6 = 6,. An approximate level a test is therefore obtained by rejecting H, if Y, > xr%,a.

To see why the limiting distribution is approximately x2 suppose Y ~ N(0,%) with  non-
singular, and let A be such that = = AAT. Such matricies A exist and are nonsingular. Let
Z=A"Y. Then

m
YT ly=¥TaA")ly=YTA TA ly= (AT (A ly)=2Tz= Zz?
i=
and

Z~N(0,A 1A T) =N(0,A"1AATA"T) = N(0,1)

S0Z,,...,Zmarei.i.d. standard normal and 5 Z, ~ x2.
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Likelihood Ratio Tests for Large Samples

For many problems where optimal tests can be found, LR tests turn out to be optimal.
Suppose we cannot £nd optimal tests. The LRT may still be a good test to use.

But we may not be able to £nd the distribution of A, or a function of A, under H,.
Fortunately, a general result can often be applied.

Suppose

© is m-dimensional

Q, is k < m-dimensional

Under suitable regularity conditions, —2log A is approximately a Xr%]—k random variable if
H,, is true.
0

To see where this comes from, look at ©, = {6}, k= 0. Then let

i=1..m

i) = (7500 (X165 )

viewed as a column vector. The function V,,(8) is called the score function, and if 8 = §,
then

Vn(eo) ~ AN(0, |n(90))
Based on a two term Taylor expansion around 6, the maximized log likelihood is approxi-
mately

logL(8) ~ logL(8,) + %vn(eo)ﬂn(eo)lvn(eo)

and therefore

N\= L(GO) ~ exp {_%Vn(QO)TIn(GO)_lvn(GO)}

So if 6 = 6, then

—210gA ~ Vi (6,)T1n(8p) " Va(6,) 2 X2

The regularity conditions require both restricted and unrestricted MLE problems to be nice:

differentiability

no boundaries—6, must be interior to ©, and ©.

This rules out one-sided situations like
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Often we have © described by constraints,

9y = {6:9(6) = 0}

for some g: R™ — RP. Then usually dim(©,) = m— p and so —2logA is approximately
2
Xp:

Example
(Ng,N;,N,) are multinomial (n, py, Py, Ps)-
2\ - y
Ho:pi= (i)p'(l— p)>0<p<1

I.e. Hy is that the p; correspond to a Binomial(2,p) distribution for some p. This might be
the case if a particular genetic model is true.
© is 2-dimensional (since p,+ p; + P, = 1).

Q, is 1-dimensional.

(1-P)*No(2p(1 - )™ P

A=
with
b= N; +2N,
2n
~ N
P = n
Then
Po [ [
—2logN\ = 2N,log————5 + 2N, log ————— + 2N, log —%
0¥ (1-p2 Tt 2p(l-p) T2 TP
— G2 statistic

which is related to the x? statistic.

Homewor k

Problem: Consider the setting of Problem 10.31. Derive an expression for —2log /A, where
A is the likelihood ratio test statistic, and £nd the approximate distribution of this quantity
under the null hypothesis.

Due Friday, April 25, 2003.
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Wednesday, April 23, 2003

Other Likelihood-Based Methods

We saw earlier that under some conditions
6~ AN(6,1,(8)™Y)

From this it follows that

if & = 6, and 8 is a scalar, or

(8 6,)"1n(8,)(8 — 8)) 2 X2
(8- 6y)TTn(6)(8—6y) % X2

if 6 = 6, and 6 is m-dimensional.

Tests based on these statistics, in particular the second form (for our text), are called Wald
tests.

A test can also be based on the score function

Vi) = (55100 (XIeg) )

i=1,....m
If 6 = 6, then
Vh(8y) ~ AN(0,1n(6,))
and so
V(6
n(8) ~ AN(0,1)
In(6p)
V”A(eoj ~ AN(0,1)
In(6)

for scalar 6 and
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for m-dimentional 6.

Tests based on these statistics, in particular the £rst form, are called score tests. One ad-
vantage of the £rst form in particular is that it does not require computation of the MLE.

Example
Suppose X, ..., X, are i.i.d. Bernoulli(p) and we want to test the hypotheses

Hy:p= Py
H,:p# py
The score function is
2K 1-3%
p 1-p

- aip(zxilog p+(n—3 X)log(1-p)) =

p 1—ﬁ> p—p
=Nn|-———]=n
(p 1-p pP(1—p)

and the expected and observed information are

n
() = p(ln— P)
P B

The score test statistic is

Wn(Py) _  P— Py /
In(Po) pol Po) pol Po) \/pol po

The Wald test statistic is

If In(py) is used in the Wald statistic then the Wald and score statistica are identical.

Some notes:

e For discrete data, approximations can sometimes be improved by using continuity
corrections.

e For simple null hypotheses, exact p-values can sometimes be computed by simula-
tion.
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Homewor k

Problem 10.38

Due Friday, April 25, 2003.
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Approximate Con£dence Sets

Suppose the usual regularity conditions hold. If © is k-dimensional, then the LRT for

H,: 6 # 6,

rejects if
f(x16p)

2> X
f(x6)

.a

—2log > X

(approximately). Inverting this produces

C(X) = {9 log :Ei:g) > —%xﬁa}

D
~—

Likelihood contours are confdence sets.

o~ A

Similarly, (5— GO)T (6)(5— 8,) is approximately Xﬁa (Wald test). Inverting, or using as
a pivot, gives
C(X)=1{6:(8-6)T1(6)(6—6) < xia)
= ellipse (ellipsoid)

Score tests can also be inverted.

1(8) can be replaced by I (0). This makes things more complicated but is sometimes usable.
If W~ AN(8, 03 /n), 62 known, then

W-6
~ AN(0,1
oy~ ANOD
is an approximate pivotal, and
2
Ow
W+ %Za/z
is an approximate 1 — a level CI.
If o, = ay(0) is continuous, then
w-6 _ AN(0,1)
Gy (8)/v/7
W -6
~ AN(0,1
a(@)/vm AN
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are both approximate pivotals.

The second is harder to use but may be more accurate.
Wilks argues that if

2 logL(6|X)

\/—Ee [dg—;zlog L(6|X)]

then Q(X, 08) ~ AN(0,1) and an interval obtained by inversion is asymptotically shortest
among a certain class of intervals.

Q(X,8) =

It is not always possible to do the inversion.
It may be possible in a different parameterization (try a variance stabilizing transformation).

Of course, shortest in one parameterization is not necessarily shortest in another unless they
are linearly related.

Example

For the binomial distribution, p ~ AN(p, p(1 — p)/n).
First approach (Wald interval):

Second approach (Score interval):

So

Variation: use continuity correction.
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Inverting the LRT gives

Y(1— p)"-Y
C= {p: —2log (—gygl— ,E\;n_y> SXia}

where y = 3 X is the number of successes.

Other options:

e invert exact binomial test

e Agresti and Coull: Add 2 successes and 2 failures to compute p= (y+2)/(n+4),
then use Wald interval with fi = n+4 4. (Recommended only for a = 0.05; for other
a adding (20/2)2/2 successes and failures is recommended.)

L. D. Brown, T. T. Cai, and A DasGupta (2001), “Interval estimation for a binomial param-
eter (with discussion),” Satistical Science, 16, 101-144.

Homework

Problem 10.41

Due Friday, May 2, 2003.
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Week 14

Monday, April 28, 2003

Linear and Other Models

In many problems we want to model how a response Y is related to some explanatory
variables x. Some forms of models used:

linear model:

Y:B0+lel+"‘+pm+£
Y = By+ BX+ B+ 4 XM+ €

nonlinear model:
Y =B+ Byexp{Bsx} + &

generalized linear model:

Y ~ Poisson(A = exp{By+ ByX; + -+ Bm})
Y ~ Bernoulli(p=g(By+ B% + -+ Bm))

with

g(x) = exp{x}/(1+exp{x}) Logit link
g(x) = P(x) Probit link

additive model:
Y =5,(X)+...Sm(Xm) + €

where the s; are “smooth” functions.
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Various combinations are possible.
Simplest case: linear model.
Suppose we have n observations that can be written as
Yi =Bt BpX pt &
fori=1,...,n. Toinclude aconstant term take X; = 1. The x;; are viewed as £xed constants.

Linear model assumptions:

1. E[g] =0foralli.
2. The g are uncorrelated.
3. The ¢ have the same variance, 02,

4. The g are jointly normally distributed.

If all of these assumptions hold then the likelihood function for the data is

L(B.0%) = s o0 {—%;m - ui</3>>2}

with

So the maximum likelihood estimator of S is

R n

_ H T 2
B arggnmi;(y. 1(B))

= least squares estimator
and the MLE of 02 is
67 = argmax————exp4 ——— ; (v — 1 (B))2

o2
= ﬁ(sum of squared residuals)
The partial derivatives of the sum of squared deviations are
a n n

il (B2 — ._.Ai,
75, 2.0 BB = =2 4= 1(B)) 5 1(B)
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5 1(B) 57 1(B) = 5 v 37 (B)

fork=1,...,p. There are called the normal equations.

For the linear model

0
d—Bkui(B)_Xik
Using matrix notation, with
Y1 X1 o0 Xpp H(B)
y=|: X = : HB)=|
Yn Xpg -+ Xnp Un(B)

we have u(f3) = X3, and the normal equations can be written as
XTXB =XTy
So if the matrix X is of sull rank, then
B =(X"X)"XTy
Assuming only that E[e] = 0 we get
E[B] = E[(X"X)"IXTY] = (XTX)"IXTE[Y]
= (X"™X)"IX"™XB =
So the least squares estimators are unbiased.

If we also assume that Cov(g) = oI, then

Cov(B) = (XTX) "X (a2)X(XTX) "t
g2(XTX)"L(XTX)(XxTx)™1
()

2(XTX)

Homewor k

Problem: Let X,,...,Xn be constants, and suppose
Y, =B, (1-e P +5
with the & independent N(0.02) ramdom variables,

128

Py

o

Tierney



Statistics 22S:194, Spring 2003 Tierney

a. Find the normal equations for the least squares estimators of 3, and £3,.

b. Suppose B, is known. Find the least squares estimator for 3, as a function of the data
and 3,.

Due Friday, May 2, 2003.
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Wednesday, April 30, 2003

Example

In simple linear regression there is a single predictor variable X, so

Yi =B +Bx+¢

The X matrix is therefore

1 x
 — 1 x
1 X.n
and
XTX = n in} XTy = [ 2Yi ]
[Z& 3% Y= s xy,
The inverse of the matrix XT X is
(XTX) 1= 1 {Xxiz —in}: 1 [Xxiz _Xxi]
nyx—(y%)?[-3% n ny(x—%?2|-3¥% n

The least squares estimate of the slope 3, is therefore

B, = —Y%2%i NNy Y6 =X (Y —Y)

ny (% —X)? > (% —X)?
and the least squares estimate of the intercept 3, is

B — 2X2Yi— XX 2 XY,
=

s %z 0 PF

If the & are uncorrelated and have common variance g, then the covariance matrix of the
least squares estimators is

~ 3 X° <
Cov(B) = O'2()(TX)_1 = 0% |:”Z(X|XX)2 Z(x,x)2]

Some notes:

e The intercept and slope estimates are negatively correlated if X > 0.

o |f we can choose x values within an interval [a, b] and want to obtain the most accurate
estimate of the slope, then we would want to take half the observarions at x = a and
the other half at x = b.
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Example

Suppose we have measurements of responses to k different treatments

Treatments
1 2 3 ... k
Yiu Yo Yz o Y
y3n3
Yin,
y2n2 yknk

The mean responses for the treatments are 3;, ..., 3. So
Yij =B +&;

fori=1,...,kand j=1,...,n;. The &j are usually assumed to be uncorrelated with mean
zero and common variance 0. This is called a one way analysis of variance model.

This model is a special case of a linear model:

[ Y1 | i} i
: 10 ... 0
Yin, SRR
Y,, 10 ..0
. 01 . 0
Y = . X = .
Y . .
ik 01 ..0
: 00 . 1
Yha -
- 0 0 1
_Yknk_
The XTX matrix and X Ty vector are very simple:
m, 0 0 ... 0] n oy
0On 0 .. 0 %g’;lzll Y1+
XTX=10 0 : XTy— [S1=72 ) _ |2
P 0 0 |
0 0 0 ... n 2iEa%i] D
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The least squares estimators are therefore

1
n_Y1+

! Yy,
B || | Yer
1 ' J—
n_kYk+ Yier

If the &; are uncorrelated and have common variance a2 then the least squares estimators
B;,---, B, are uncorrelated and

Combinations are also possible:

Yij = K+ X+ &;
Yii = K+ BX;+&;

These are sometimes called anamysis of covariance models.

Homewor k

Problem: Let x,, ..., X, be constants, and suppose
Yi =B+ ByX &
Let y* be a constant and let let x* satisfy
y = By + .31X*

that is, X* is the value of x at which the mean response is y*.

a. Find the maximum likelihood estimator X* of x*.

b. Use the delta method to £nd the approximate sampling distribution of X*.

Due Friday, May 2, 2003.
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Optimality Properties of Least Squares Estimators
Unbiasedness

If E[€] = 0 then the least squares estomators are unbiased:

E[B] = E[(X™X)"XTY] = (XTX)"IXTE[Y] = (X"X) " IX"XB = B

Best Linear Unbiased Estimators (BLUE)

The least squares estimators are linear in the data. Suppose E = AY where Aisa pxn
matrix of constants. This is a linear estimator. Suppose  is unbiased, i.e.

E[B] = AE[Y] = AXB = f
for all 8. This means that the p x p matrix AX is the p x p identity matrix.

To compare the covariance matrices of 3 and 3 we need a lemma:

Lemma

LetU =BY andV =CY and let Cov(U,V) be the matrix of covariances Cov(U;,V;). Then
Cov(U,V) = BCov(Y)CT.

The proof involves writing out the sums for U; and V;, using bilinearity of the covariance,
and recognizing the matrix products in the results.

The covariance matrix of 3 can be written as

Cov(B) = Cov((B—B) +B)
— Cov(B — B) + Cov(B — B, B) + Cov(B, B — B) +Cov(B)

Using the lemma and assuming Cov(Y) = ¢?l,

Cov(B — B, B) = Cov((AY — (XTX)2XTY), (XTX)XTY)
_Cov(( ( X)7IXTY, (XTX)"1XTY)
o?(A— (XTX) X)X (XTX) ™
2( — (XTX)TIXTX)(XTX)
=a?(1 - H(XTX)*
=0
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So
Cov(ﬁ) = Cov(ﬁ — E) + COV(E)

The matrix Cov(ﬁ — ) is a covariance matrix and therefore positive semidetinite. This
means

Var(B,) > Var(B,)
fork=1,...,p, or more generally, that for any linear combination y ¢, 3, = c' B the esti-
mator CTE — cTAY is linear, unbiased, and has variance no smaller than the corresponding
least squares estimator ¢’ B:

E[c"B)=c'E[f] =c'p
Var(c' ) = ¢ Cov(B)c
= c"Cov(B — B)c+cTCov(B)c
= Var(c" B —c"B) + Var(c' B)
> Var(c' B)

Effciency, UMVUE

Suppose the & arei.i.d N(0, 0?) and suppose a2 is known. Then

2 10 1
_ logL 2y _ X, = —(XTX).
and therefore the £sher information for 3 is
17
In(B) = ?X X

Since Cov(B) = a?(XTX)™1 = I,(B) 1, the least squares estimators attain the CRLB and
are efEcient and hence they ae UMVUE’s. Since the least squares estimators do not depend
on o2 they are UMVUS’s for unknown o as well.

Alternative argument: The statistics XTY and zYZ are minimal sufEcient sufEcient and E
is unbiased and depends on the data only through XTY.

Residuals and the Hat M atrix
The least squares residuals can be written as

Y=XB=Y-XX"X)"IXTY = (1 = X(XTX)"IXT)Y = (1 —H)Y
where H = X(XTX)~1XT is sometimes called the hat matrix.

The hat matrix has a number of useful properties:
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It is symmetric.

It is idempotent:

H? = X(XTX)"IXTX(XTX)"IXT = X (XTX)"IXT =H

It leaves columns of the X matrix invariant:

HX = X(XTX)"IXTX = X

It has rank p and trace p:
tr(H) = tr(X(XTX)"IXT) = tr(XTX)"IXTX) =tr(l . p) = p
As a result, the residuals can be written as
(I-H)Y=(-H)XB+¢&)=(—-H)e
and | — H is also idempotent:
(I-H?=1-H-H+H?=1-2H+H=1-H
The trace of | —H is

tr(l —H) =tr(l)—tr(H)=n—p

Unbiased Estimation of g2
Suppose Cov(g) = ol. Then

S (Y= u(B)?=(Y=XB)T(Y=XB) =Y (I —=H)(I —H)Y =¢ (1 —H)e

and

E[> (Y- Ki(B))? =E[T (1 —H)e] = Eftr(eT (1 — H)g)] = E[tr((1 —H)eg")]
=tr((1 —H)E[e€"]) = d?tr(l —H) = d?(n— p)
So an unbiased estimator of g2 is

= L(sum of squared residuals)
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Joint Distribution of Least Squares Estimators and Residuals

Suppose Cov(g) = ¢?l. Then residuals and least squares estimators are uncorrelated:
Cov((I —H)Y, (XTX)"IXTY) = a?2(1 —H)X(XTX) "1 = a?(X —HX)(XTX) 1 =0
As a result, if errors are jointly normal then residuals and least squares estimators are

independent.

The spectral theorem states that any symmetric matrix A can be written as A=UDUT
where D is diagonal and U is orthogonal, i.e. UUT =UTU =1.

For | —H =UDUT the fact that | —H is idempotent means that D? = D. So the elements
on the diagonal of D satisfy
X2 =X

or
X —x=x(x—1)=0

So the diagonal elements of D must be zero or one. Since tr(l —H) =n— pand
tr(l —H) =tr(UDUT) = tr(DUTU) = tr(D)

there are n— p ones and p zeros.

Suppose the € are i.i.d N(0,02). Let

1

Z=-UT¢
(o)

Then

1
Cov(Z) = FUTCov(g)U =UTu =1

and
1 sum of squared residuals) = 1 e'(l—H)e = 1 e'UDUTe=272"DzZ = 2 d z?
02( a ) o2 ( ) o2 1

This is the sum the squares of n— p independent standard normals, so

1 .
?(sum of squared residuals) ~ Xﬁ,p

Likelihood Ratio Tests

Suppose the & arei.i.d. N(O, 0?) and that we want to test hypotheses about the mean,

Hy : u(B) satisEes some restriction
H, : Hy is false
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The likelihood ratio statistic will be of the form
/\_ (SSRe)n/z < 1 >n/2
SSR(90 1+ (SSR@O — SSRG)/SSRe

SSReo = sum of squared residuals for restricted model

where

SSRg = sum of squared residuals for unrestricted model

So the likelihood ratio test rejects H, if

SSRg —SSRq
SSRg

is large.

If the model is linear and H, is a linear hypothesis, i.e.

for some k x p matrix C and k-vector b, then SS.R(90 —SSRg and SSR, are independent. If
the rank of C is kand H, is true, then

1 2

?(SSROO —SSRg) ~ Xk

So, under H,
(SSRg, — SSRg)/k
~F

F=—Ssrgjin=p " Fnp

Several alternate forms of the numerator sum of squares difference are available. Let
Iyl =y y? and let Y and Y, be the £tted values under the unrestricted model and the
model restricted to satisfy a linear null hopothesis. Then

SSRg, = [IY —Yo/I?
SSRg = [|Y —Y||?

and
SSRg, —SSRg = [IY —Y2=IY =Y, 2
= IV = Y12
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Example

Consider a simple linear regression model
Yi =B+ By +&

Suppose we want to test the null hypothesis H, : B, = 0. Then

IV =Yl =5 (By+Box —9)2 =5 (Bo(x —X))? = BE S (% —X)?

The F statsitic is therefore
F_ BB -%? (Aﬁ_>
& SE(B,)

This is the square of the usual t statistic for testing whether the slope is zero, and the null
distributionis F; .

Example

Consider again the simple linear regression model and the linear null hypothesis
Ho: B, +B,Xx=aand B, =b
for some constants aand b. Then
IV =Yol? = 3 (B + Box —a—bix —x)? = 3 (By + Bx—a+ (B, ~ b)(x —¥))?
=n(B,+B,X—a)*+ (B, —b)? T (% —X)?
The F statistic is therefore

(B, + BR—a)2+ (B, — b)2 ¥ (% —X)?
- 2F

and a 1 — a level confdence set for 3, + B,x and (3, is

F

c={(ab):n(B+Bx—a)+ (B~ b)Y (x —X)2 < 25F,, 5, }
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