class: center, middle, title-slide .title[ # Dates and Times ] .author[ ### Luke Tierney ] .institute[ ### University of Iowa ] .date[ ### 2025-03-10 ] --- layout: true <link rel="stylesheet" href="stat4580.css" type="text/css" /> <style type="text/css"> .remark-code { font-size: 85%; } </style> ## Background --- Data are often associated with a point in time, a particular -- * year; -- * month; -- * day; -- * hour, minute, second, ... -- Some issues with points in time: -- * Leap years and leap seconds. -- * Daylight saving time. -- * Local time or [_Coordinated Universal Time (UTC)_](https://www.timeanddate.com/time/aboututc.html). -- * For historical data: changes in calendars. --- R has data types to represent -- * a particular date (`Date`); -- * a particular second (`POSIXct`, date-time). -- R stores dates as days since January 1, 1970, and date-times as the the number of seconds since midnight on that day in [_Coordinated Universal Time_ (UTC)](https://www.timeanddate.com/time/aboututc.html). -- Date objects are less complicated than data-time objects, so if you only need dates you should stick with date objects. -- Base R provides many facilities for dealing with dates and date-times. -- The `lubridate` package provides a useful interface. ``` r library(lubridate) ``` -- The [_Dates and Times_ chapter](https://r4ds.hadley.nz/datetimes.html) of [_R for Data Science_](https://r4ds.hadley.nz/) provides more details. --- layout: true ## Creating Dates and Times --- ### Today and Now .pull-left.code-80[ The `lubridate` function `today()` returns today's date as a `Date` object: ``` r today() ## [1] "2025-03-10" ``` {{content}} ] -- ``` r class(today()) ## [1] "Date" ``` {{content}} -- The `lubridate` function `now()` returns the current date-time as a `POSIXct` object: ``` r now() ## [1] "2025-03-10 13:11:45 CDT" ``` {{content}} -- ``` r class(now()) ## [1] "POSIXct" "POSIXt" ``` -- .pull-right.code-80[ The printed representation follows the international standard for the representation of dates and times ([ISO8601](https://en.wikipedia.org/wiki/ISO_8601)). {{content}} ] -- Date and date-time objects can be used with addition and subtraction: {{content}} -- ``` r now() + 3600 ## one hour from now ## [1] "2025-03-10 14:11:45 CDT" ``` {{content}} -- ``` r today() - 7 ## one week ago ## [1] "2025-03-03" ``` --- ### Parsing Dates and Times From Strings .pull-left.code-80[ Some common date formats: ``` r d1 <- "2025-04-15" d2 <- "April 15, 2025" d3 <- "15 April 2025" d4 <- "15 April 25" ``` ] -- .pull-right.code-80[ These can be decoded by the functions `ymd()`, `mdy()`, and `dmy()`: {{content}} ] -- ``` r ymd(d1) ## [1] "2025-04-15" ``` {{content}} -- ``` r mdy(d2) ## [1] "2025-04-15" ``` {{content}} -- ``` r dmy(d3) ## [1] "2025-04-15" ``` {{content}} -- ``` r dmy(d4) ## [1] "2025-04-15" ``` --- .pull-left.code-80[ By default, these functions use the current _locale_ settings for interpreting month names or abbreviations. {{content}} ] -- ``` r Sys.getlocale("LC_TIME") ## [1] "en_US.UTF-8" ``` {{content}} -- If you need to parse a French date you might use ``` r dmy("15 Avril, 2025", locale = "fr_FR.UTF-8") ## [1] "2025-04-15" ``` -- .pull-right.code-80[ Date-times can be decoded with functions like `mdy_hm`: ``` r mdy_hm("April 15, 2025, 6:15 PM") ## [1] "2025-04-15 18:15:00 UTC" ``` {{content}} ] -- or ``` r mdy_hms("April 15, 2025, 6:15:08 PM") ## [1] "2025-04-15 18:15:08 UTC" ``` {{content}} -- By default these assume the time is specified in the UTC time zone. --- .pull-left.code-80[ ### Creating Dates and Times from Components Dates can be created from year, month, and day by `make_date()`: {{content}} ] -- ``` r make_date(2025, 4, 15) ## [1] "2025-04-15" ``` {{content}} -- Creating a `date` variable from the `year`, `month`, and `day` variables in the New York City `flights` table: ``` r library(nycflights13) fl <- mutate(flights, date = make_date(year, month, day)) ``` {{content}} -- `ggplot` and other graphics systems know how to make useful axis labels for dates: -- .pull-right[ .hide-code[ ``` r ggplot(count(fl, date)) + geom_line(aes(x = date, y = n)) ``` <img src="datetime_files/figure-html/unnamed-chunk-19-1.png" style="display: block; margin: auto;" /> ] {{content}} ] -- Weekday/weekend differenes are clearly visible. --- .pull-left.code-80[ Date-times can be created from year, month, day, hour, minute, and second using `make_datetime()`: {{content}} ] -- ``` r make_datetime(2025, 4, 15, 18, 15) ## [1] "2025-04-15 18:15:00 UTC" ``` {{content}} -- An attempt to recreate the `time_hour` variable in the flights table: ``` r fl <- mutate(fl, th = make_datetime(year, month, day, hour)) ``` {{content}} -- This does not quite re-create the `time_hour` variable: ``` r identical(fl$th, fl$time_hour) ## [1] FALSE ``` -- .pull-right.code-80[ ``` r fl$th[1] ## [1] "2013-01-01 05:00:00 UTC" fl$time_hour[1] ## [1] "2013-01-01 05:00:00 EST" ``` {{content}} ] -- By default, `make_datetime()` assumes the time points it is given are in UTC. {{content}} -- The `time_hour` variable is using local (eastern US) time. {{content}} -- We will look at time zones more [later](#time-zones). --- layout: true ## Date and Time Components --- Components of dates and date-times can be extracted with: * `year()`, `month()`, `day()`, `hour()`, `minute()`, `second()` * `yday()` -- day of the year * `mday()` -- day of the month, same as `day` * `wday()` -- day of the week -- By default, `wday()` returns an integer: .code-80[ ``` r wday(today()) ## [1] 2 ``` ] -- But it can also return a label: .code-80[ ``` r wday(today(), label = TRUE) ## [1] Mon ## Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat ``` ] .code-80[ ``` r wday(today(), label = TRUE, abbr = FALSE) ## [1] Monday ## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday ``` ] --- Weekday names and abbreviations are obviously locale-specific, and you can specify an alternative to the default current locale: -- ``` r wday(today(), label = TRUE, abbr = FALSE, locale = "de_DE.UTF-8") ## [1] Montag ## 7 Levels: Sonntag < Montag < Dienstag < Mittwoch < Donnerstag < ... < Samstag ``` -- ``` r wday(today(), label = TRUE, locale = "de_DE.UTF-8") ## [1] Mo ## Levels: So < Mo < Di < Mi < Do < Fr < Sa ``` -- Even the integer value can be tricky: -- * In the US, Canada, Japan the first day of the week is Sunday. -- * In Germany, France, and the ISO8601 standard the first day of the week is Monday. -- `wday()` can be asked to use a different first day, and a global default can be set. --- .pull-left.code-80[ Using `wday()` and the `date` variable we can look at the distribution of the number of flights by day of the week: {{content}} ] -- ``` r ggplot(fl, aes(x = wday(date, label = TRUE))) + geom_bar(fill = "deepskyblue3") ``` -- .pull-right[ <img src="datetime_files/figure-html/flights-wday-1.png" style="display: block; margin: auto;" /> {{content}} ] -- There were substantially fewer flights on Saturdays but only slightly fewer flights on Sundays. --- layout: false ## Rounding .pull-left[ `floor_date()`, `round_date()`, and `ceiling_date()` can be used to round to a particular unit; the most useful are `week` and `quarter`. {{content}} ] -- Flights by week: <img src="datetime_files/figure-html/unnamed-chunk-29-1.png" style="display: block; margin: auto;" /> -- .pull-right[ The first and last weeks were incomplete: ``` r as.character(wday(ymd("2013-01-01"), label = TRUE, abbr = FALSE)) ## [1] "Tuesday" ``` ``` r as.character(wday(ymd("2013-12-31"), label = TRUE, abbr = FALSE)) ## [1] "Tuesday" ``` ] --- layout: true ## Time Spans --- Subtracting dates or date-times produces `difftime` objects: -- ``` r now() - as_datetime(today()) ## Time difference of 18.19669 hours ``` -- ``` r today() - ymd("2025-01-01") ## Time difference of 68 days ``` -- Working with different units can be awkward; `lubridate` provides _durations_, which always work in seconds: -- ``` r as.duration(now() - as_datetime(today())) ## [1] "65508.1037778854s (~18.2 hours)" ``` -- ``` r as.duration(today() - ymd("2025-01-01")) ## [1] "5875200s (~9.71 weeks)" ``` --- Durations can be created with `dyears()`, `ddays()`, `dweeks()`, etc.: -- ``` r dyears(1) ## [1] "31557600s (~1 years)" ``` -- ``` r ddays(1) ## [1] "86400s (~1 days)" ``` -- Durations can be added to a date or date-time object and can be multiplied by a number: -- .pull-left[ ``` r today() ## [1] "2025-03-10" ``` {{content}} ] -- ``` r today() + ddays(2) ## [1] "2025-03-12" ``` {{content}} -- ``` r today() + 2 * ddays(1) ## [1] "2025-03-12" ``` -- .pull-right[ ``` r (n1 <- now()) ## [1] "2025-03-10 13:11:48 CDT" ``` {{content}} ] -- ``` r n1 + dminutes(3) ## [1] "2025-03-10 13:14:48 CDT" ``` --- Duations represent an exact number of seconds, which can lead to surprises when DST is involved. -- In 2025 the switch to DST happened in the US on March 9: -- ``` r ymd_hm("2025-03-08 23:02", tz = "America/Chicago") + ddays(1) ## [1] "2025-03-10 00:02:00 CDT" ``` -- _Periods_ are an alternative that may work more intuitively. -- Periods are constructed with `years()`, `months()`, `days()`, etc: -- ``` r ymd_hm("2025-03-08 23:02", tz = "America/Chicago") + days(1) ## [1] "2025-03-09 23:02:00 CDT" ``` --- layout: true ## Time Zones --- name: time-zones Date-time objects specify a point in time relative to second zero, minute zero, hour zero, on January 1, 1970 in [Coordinated Universal Time (UTC)](https://www.timeanddate.com/time/aboututc.html). -- Date-time objects can have a time zone associated with them that affects how they are printed. -- `now()` returns a date-time object with the time zone set as the local time zone of the computer. ``` r now() ## [1] "2025-03-10 13:11:48 CDT" ``` -- Time zones are complex, they can change on a regular basis (DST) or as a result of politics. -- When a date-time object is created from components, by default it is given the UTC time zone. --- To create a point in time based on local time information, such as 10 AM on April 15, 2025, in Iowa City, a time zone for interpreting the local time needs to be specified. -- The short notations like CDT are not adequate for this: Both the US and Australia have EST, which are quite different. -- R uses the [_Internet Assigned Numbers Authority_ (IANA)](https://www.iana.org/time-zones) naming convention and data base. -- The local time zone is: ``` r Sys.timezone() ## [1] "America/Chicago" ``` -- The time point 10:00:00 AM on April 15, 2025 in Iowa City can be specified as ``` r (tm <- make_datetime(2025, 4, 15, 10, tz = "America/Chicago")) ## [1] "2025-04-15 10:00:00 CDT" ``` --- Time zones of date-time objects can be changed in two ways: -- * `with_tz` keeps the instant in time and changes the time zone used for display. -- * `force_tz` changes the instant in time; use this if the time zone is incorrectly specified but the clock time is correct. -- The available time zone specifications are contained in `OlsonNames`: .scroll-box-10[ ``` r OlsonNames() ## [1] "Africa/Abidjan" "Africa/Accra" ## [3] "Africa/Addis_Ababa" "Africa/Algiers" ## [5] "Africa/Asmara" "Africa/Asmera" ## [7] "Africa/Bamako" "Africa/Bangui" ## [9] "Africa/Banjul" "Africa/Bissau" ## [11] "Africa/Blantyre" "Africa/Brazzaville" ## [13] "Africa/Bujumbura" "Africa/Cairo" ## [15] "Africa/Casablanca" "Africa/Ceuta" ## [17] "Africa/Conakry" "Africa/Dakar" ## [19] "Africa/Dar_es_Salaam" "Africa/Djibouti" ## [21] "Africa/Douala" "Africa/El_Aaiun" ## [23] "Africa/Freetown" "Africa/Gaborone" ## [25] "Africa/Harare" "Africa/Johannesburg" ## [27] "Africa/Juba" "Africa/Kampala" ## [29] "Africa/Khartoum" "Africa/Kigali" ## [31] "Africa/Kinshasa" "Africa/Lagos" ## [33] "Africa/Libreville" "Africa/Lome" ## [35] "Africa/Luanda" "Africa/Lubumbashi" ## [37] "Africa/Lusaka" "Africa/Malabo" ## [39] "Africa/Maputo" "Africa/Maseru" ## [41] "Africa/Mbabane" "Africa/Mogadishu" ## [43] "Africa/Monrovia" "Africa/Nairobi" ## [45] "Africa/Ndjamena" "Africa/Niamey" ## [47] "Africa/Nouakchott" "Africa/Ouagadougou" ## [49] "Africa/Porto-Novo" "Africa/Sao_Tome" ## [51] "Africa/Timbuktu" "Africa/Tripoli" ## [53] "Africa/Tunis" "Africa/Windhoek" ## [55] "America/Adak" "America/Anchorage" ## [57] "America/Anguilla" "America/Antigua" ## [59] "America/Araguaina" "America/Argentina/Buenos_Aires" ## [61] "America/Argentina/Catamarca" "America/Argentina/ComodRivadavia" ## [63] "America/Argentina/Cordoba" "America/Argentina/Jujuy" ## [65] "America/Argentina/La_Rioja" "America/Argentina/Mendoza" ## [67] "America/Argentina/Rio_Gallegos" "America/Argentina/Salta" ## [69] "America/Argentina/San_Juan" "America/Argentina/San_Luis" ## [71] "America/Argentina/Tucuman" "America/Argentina/Ushuaia" ## [73] "America/Aruba" "America/Asuncion" ## [75] "America/Atikokan" "America/Atka" ## [77] "America/Bahia" "America/Bahia_Banderas" ## [79] "America/Barbados" "America/Belem" ## [81] "America/Belize" "America/Blanc-Sablon" ## [83] "America/Boa_Vista" "America/Bogota" ## [85] "America/Boise" "America/Buenos_Aires" ## [87] "America/Cambridge_Bay" "America/Campo_Grande" ## [89] "America/Cancun" "America/Caracas" ## [91] "America/Catamarca" "America/Cayenne" ## [93] "America/Cayman" "America/Chicago" ## [95] "America/Chihuahua" "America/Ciudad_Juarez" ## [97] "America/Coral_Harbour" "America/Cordoba" ## [99] "America/Costa_Rica" "America/Creston" ## [101] "America/Cuiaba" "America/Curacao" ## [103] "America/Danmarkshavn" "America/Dawson" ## [105] "America/Dawson_Creek" "America/Denver" ## [107] "America/Detroit" "America/Dominica" ## [109] "America/Edmonton" "America/Eirunepe" ## [111] "America/El_Salvador" "America/Ensenada" ## [113] "America/Fort_Nelson" "America/Fort_Wayne" ## [115] "America/Fortaleza" "America/Glace_Bay" ## [117] "America/Godthab" "America/Goose_Bay" ## [119] "America/Grand_Turk" "America/Grenada" ## [121] "America/Guadeloupe" "America/Guatemala" ## [123] "America/Guayaquil" "America/Guyana" ## [125] "America/Halifax" "America/Havana" ## [127] "America/Hermosillo" "America/Indiana/Indianapolis" ## [129] "America/Indiana/Knox" "America/Indiana/Marengo" ## [131] "America/Indiana/Petersburg" "America/Indiana/Tell_City" ## [133] "America/Indiana/Vevay" "America/Indiana/Vincennes" ## [135] "America/Indiana/Winamac" "America/Indianapolis" ## [137] "America/Inuvik" "America/Iqaluit" ## [139] "America/Jamaica" "America/Jujuy" ## [141] "America/Juneau" "America/Kentucky/Louisville" ## [143] "America/Kentucky/Monticello" "America/Knox_IN" ## [145] "America/Kralendijk" "America/La_Paz" ## [147] "America/Lima" "America/Los_Angeles" ## [149] "America/Louisville" "America/Lower_Princes" ## [151] "America/Maceio" "America/Managua" ## [153] "America/Manaus" "America/Marigot" ## [155] "America/Martinique" "America/Matamoros" ## [157] "America/Mazatlan" "America/Mendoza" ## [159] "America/Menominee" "America/Merida" ## [161] "America/Metlakatla" "America/Mexico_City" ## [163] "America/Miquelon" "America/Moncton" ## [165] "America/Monterrey" "America/Montevideo" ## [167] "America/Montreal" "America/Montserrat" ## [169] "America/Nassau" "America/New_York" ## [171] "America/Nipigon" "America/Nome" ## [173] "America/Noronha" "America/North_Dakota/Beulah" ## [175] "America/North_Dakota/Center" "America/North_Dakota/New_Salem" ## [177] "America/Nuuk" "America/Ojinaga" ## [179] "America/Panama" "America/Pangnirtung" ## [181] "America/Paramaribo" "America/Phoenix" ## [183] "America/Port_of_Spain" "America/Port-au-Prince" ## [185] "America/Porto_Acre" "America/Porto_Velho" ## [187] "America/Puerto_Rico" "America/Punta_Arenas" ## [189] "America/Rainy_River" "America/Rankin_Inlet" ## [191] "America/Recife" "America/Regina" ## [193] "America/Resolute" "America/Rio_Branco" ## [195] "America/Rosario" "America/Santa_Isabel" ## [197] "America/Santarem" "America/Santiago" ## [199] "America/Santo_Domingo" "America/Sao_Paulo" ## [201] "America/Scoresbysund" "America/Shiprock" ## [203] "America/Sitka" "America/St_Barthelemy" ## [205] "America/St_Johns" "America/St_Kitts" ## [207] "America/St_Lucia" "America/St_Thomas" ## [209] "America/St_Vincent" "America/Swift_Current" ## [211] "America/Tegucigalpa" "America/Thule" ## [213] "America/Thunder_Bay" "America/Tijuana" ## [215] "America/Toronto" "America/Tortola" ## [217] "America/Vancouver" "America/Virgin" ## [219] "America/Whitehorse" "America/Winnipeg" ## [221] "America/Yakutat" "America/Yellowknife" ## [223] "Antarctica/Casey" "Antarctica/Davis" ## [225] "Antarctica/DumontDUrville" "Antarctica/Macquarie" ## [227] "Antarctica/Mawson" "Antarctica/McMurdo" ## [229] "Antarctica/Palmer" "Antarctica/Rothera" ## [231] "Antarctica/South_Pole" "Antarctica/Syowa" ## [233] "Antarctica/Troll" "Antarctica/Vostok" ## [235] "Arctic/Longyearbyen" "Asia/Aden" ## [237] "Asia/Almaty" "Asia/Amman" ## [239] "Asia/Anadyr" "Asia/Aqtau" ## [241] "Asia/Aqtobe" "Asia/Ashgabat" ## [243] "Asia/Ashkhabad" "Asia/Atyrau" ## [245] "Asia/Baghdad" "Asia/Bahrain" ## [247] "Asia/Baku" "Asia/Bangkok" ## [249] "Asia/Barnaul" "Asia/Beirut" ## [251] "Asia/Bishkek" "Asia/Brunei" ## [253] "Asia/Calcutta" "Asia/Chita" ## [255] "Asia/Choibalsan" "Asia/Chongqing" ## [257] "Asia/Chungking" "Asia/Colombo" ## [259] "Asia/Dacca" "Asia/Damascus" ## [261] "Asia/Dhaka" "Asia/Dili" ## [263] "Asia/Dubai" "Asia/Dushanbe" ## [265] "Asia/Famagusta" "Asia/Gaza" ## [267] "Asia/Harbin" "Asia/Hebron" ## [269] "Asia/Ho_Chi_Minh" "Asia/Hong_Kong" ## [271] "Asia/Hovd" "Asia/Irkutsk" ## [273] "Asia/Istanbul" "Asia/Jakarta" ## [275] "Asia/Jayapura" "Asia/Jerusalem" ## [277] "Asia/Kabul" "Asia/Kamchatka" ## [279] "Asia/Karachi" "Asia/Kashgar" ## [281] "Asia/Kathmandu" "Asia/Katmandu" ## [283] "Asia/Khandyga" "Asia/Kolkata" ## [285] "Asia/Krasnoyarsk" "Asia/Kuala_Lumpur" ## [287] "Asia/Kuching" "Asia/Kuwait" ## [289] "Asia/Macao" "Asia/Macau" ## [291] "Asia/Magadan" "Asia/Makassar" ## [293] "Asia/Manila" "Asia/Muscat" ## [295] "Asia/Nicosia" "Asia/Novokuznetsk" ## [297] "Asia/Novosibirsk" "Asia/Omsk" ## [299] "Asia/Oral" "Asia/Phnom_Penh" ## [301] "Asia/Pontianak" "Asia/Pyongyang" ## [303] "Asia/Qatar" "Asia/Qostanay" ## [305] "Asia/Qyzylorda" "Asia/Rangoon" ## [307] "Asia/Riyadh" "Asia/Saigon" ## [309] "Asia/Sakhalin" "Asia/Samarkand" ## [311] "Asia/Seoul" "Asia/Shanghai" ## [313] "Asia/Singapore" "Asia/Srednekolymsk" ## [315] "Asia/Taipei" "Asia/Tashkent" ## [317] "Asia/Tbilisi" "Asia/Tehran" ## [319] "Asia/Tel_Aviv" "Asia/Thimbu" ## [321] "Asia/Thimphu" "Asia/Tokyo" ## [323] "Asia/Tomsk" "Asia/Ujung_Pandang" ## [325] "Asia/Ulaanbaatar" "Asia/Ulan_Bator" ## [327] "Asia/Urumqi" "Asia/Ust-Nera" ## [329] "Asia/Vientiane" "Asia/Vladivostok" ## [331] "Asia/Yakutsk" "Asia/Yangon" ## [333] "Asia/Yekaterinburg" "Asia/Yerevan" ## [335] "Atlantic/Azores" "Atlantic/Bermuda" ## [337] "Atlantic/Canary" "Atlantic/Cape_Verde" ## [339] "Atlantic/Faeroe" "Atlantic/Faroe" ## [341] "Atlantic/Jan_Mayen" "Atlantic/Madeira" ## [343] "Atlantic/Reykjavik" "Atlantic/South_Georgia" ## [345] "Atlantic/St_Helena" "Atlantic/Stanley" ## [347] "Australia/ACT" "Australia/Adelaide" ## [349] "Australia/Brisbane" "Australia/Broken_Hill" ## [351] "Australia/Canberra" "Australia/Currie" ## [353] "Australia/Darwin" "Australia/Eucla" ## [355] "Australia/Hobart" "Australia/LHI" ## [357] "Australia/Lindeman" "Australia/Lord_Howe" ## [359] "Australia/Melbourne" "Australia/North" ## [361] "Australia/NSW" "Australia/Perth" ## [363] "Australia/Queensland" "Australia/South" ## [365] "Australia/Sydney" "Australia/Tasmania" ## [367] "Australia/Victoria" "Australia/West" ## [369] "Australia/Yancowinna" "Brazil/Acre" ## [371] "Brazil/DeNoronha" "Brazil/East" ## [373] "Brazil/West" "Canada/Atlantic" ## [375] "Canada/Central" "Canada/Eastern" ## [377] "Canada/Mountain" "Canada/Newfoundland" ## [379] "Canada/Pacific" "Canada/Saskatchewan" ## [381] "Canada/Yukon" "CET" ## [383] "Chile/Continental" "Chile/EasterIsland" ## [385] "CST6CDT" "Cuba" ## [387] "EET" "Egypt" ## [389] "Eire" "EST" ## [391] "EST5EDT" "Etc/GMT" ## [393] "Etc/GMT-0" "Etc/GMT-1" ## [395] "Etc/GMT-10" "Etc/GMT-11" ## [397] "Etc/GMT-12" "Etc/GMT-13" ## [399] "Etc/GMT-14" "Etc/GMT-2" ## [401] "Etc/GMT-3" "Etc/GMT-4" ## [403] "Etc/GMT-5" "Etc/GMT-6" ## [405] "Etc/GMT-7" "Etc/GMT-8" ## [407] "Etc/GMT-9" "Etc/GMT+0" ## [409] "Etc/GMT+1" "Etc/GMT+10" ## [411] "Etc/GMT+11" "Etc/GMT+12" ## [413] "Etc/GMT+2" "Etc/GMT+3" ## [415] "Etc/GMT+4" "Etc/GMT+5" ## [417] "Etc/GMT+6" "Etc/GMT+7" ## [419] "Etc/GMT+8" "Etc/GMT+9" ## [421] "Etc/GMT0" "Etc/Greenwich" ## [423] "Etc/UCT" "Etc/Universal" ## [425] "Etc/UTC" "Etc/Zulu" ## [427] "Europe/Amsterdam" "Europe/Andorra" ## [429] "Europe/Astrakhan" "Europe/Athens" ## [431] "Europe/Belfast" "Europe/Belgrade" ## [433] "Europe/Berlin" "Europe/Bratislava" ## [435] "Europe/Brussels" "Europe/Bucharest" ## [437] "Europe/Budapest" "Europe/Busingen" ## [439] "Europe/Chisinau" "Europe/Copenhagen" ## [441] "Europe/Dublin" "Europe/Gibraltar" ## [443] "Europe/Guernsey" "Europe/Helsinki" ## [445] "Europe/Isle_of_Man" "Europe/Istanbul" ## [447] "Europe/Jersey" "Europe/Kaliningrad" ## [449] "Europe/Kiev" "Europe/Kirov" ## [451] "Europe/Kyiv" "Europe/Lisbon" ## [453] "Europe/Ljubljana" "Europe/London" ## [455] "Europe/Luxembourg" "Europe/Madrid" ## [457] "Europe/Malta" "Europe/Mariehamn" ## [459] "Europe/Minsk" "Europe/Monaco" ## [461] "Europe/Moscow" "Europe/Nicosia" ## [463] "Europe/Oslo" "Europe/Paris" ## [465] "Europe/Podgorica" "Europe/Prague" ## [467] "Europe/Riga" "Europe/Rome" ## [469] "Europe/Samara" "Europe/San_Marino" ## [471] "Europe/Sarajevo" "Europe/Saratov" ## [473] "Europe/Simferopol" "Europe/Skopje" ## [475] "Europe/Sofia" "Europe/Stockholm" ## [477] "Europe/Tallinn" "Europe/Tirane" ## [479] "Europe/Tiraspol" "Europe/Ulyanovsk" ## [481] "Europe/Uzhgorod" "Europe/Vaduz" ## [483] "Europe/Vatican" "Europe/Vienna" ## [485] "Europe/Vilnius" "Europe/Volgograd" ## [487] "Europe/Warsaw" "Europe/Zagreb" ## [489] "Europe/Zaporozhye" "Europe/Zurich" ## [491] "Factory" "GB" ## [493] "GB-Eire" "GMT" ## [495] "GMT-0" "GMT+0" ## [497] "GMT0" "Greenwich" ## [499] "Hongkong" "HST" ## [501] "Iceland" "Indian/Antananarivo" ## [503] "Indian/Chagos" "Indian/Christmas" ## [505] "Indian/Cocos" "Indian/Comoro" ## [507] "Indian/Kerguelen" "Indian/Mahe" ## [509] "Indian/Maldives" "Indian/Mauritius" ## [511] "Indian/Mayotte" "Indian/Reunion" ## [513] "Iran" "Israel" ## [515] "Jamaica" "Japan" ## [517] "Kwajalein" "Libya" ## [519] "MET" "Mexico/BajaNorte" ## [521] "Mexico/BajaSur" "Mexico/General" ## [523] "MST" "MST7MDT" ## [525] "Navajo" "NZ" ## [527] "NZ-CHAT" "Pacific/Apia" ## [529] "Pacific/Auckland" "Pacific/Bougainville" ## [531] "Pacific/Chatham" "Pacific/Chuuk" ## [533] "Pacific/Easter" "Pacific/Efate" ## [535] "Pacific/Enderbury" "Pacific/Fakaofo" ## [537] "Pacific/Fiji" "Pacific/Funafuti" ## [539] "Pacific/Galapagos" "Pacific/Gambier" ## [541] "Pacific/Guadalcanal" "Pacific/Guam" ## [543] "Pacific/Honolulu" "Pacific/Johnston" ## [545] "Pacific/Kanton" "Pacific/Kiritimati" ## [547] "Pacific/Kosrae" "Pacific/Kwajalein" ## [549] "Pacific/Majuro" "Pacific/Marquesas" ## [551] "Pacific/Midway" "Pacific/Nauru" ## [553] "Pacific/Niue" "Pacific/Norfolk" ## [555] "Pacific/Noumea" "Pacific/Pago_Pago" ## [557] "Pacific/Palau" "Pacific/Pitcairn" ## [559] "Pacific/Pohnpei" "Pacific/Ponape" ## [561] "Pacific/Port_Moresby" "Pacific/Rarotonga" ## [563] "Pacific/Saipan" "Pacific/Samoa" ## [565] "Pacific/Tahiti" "Pacific/Tarawa" ## [567] "Pacific/Tongatapu" "Pacific/Truk" ## [569] "Pacific/Wake" "Pacific/Wallis" ## [571] "Pacific/Yap" "Poland" ## [573] "Portugal" "PRC" ## [575] "PST8PDT" "ROC" ## [577] "ROK" "Singapore" ## [579] "Turkey" "UCT" ## [581] "Universal" "US/Alaska" ## [583] "US/Aleutian" "US/Arizona" ## [585] "US/Central" "US/East-Indiana" ## [587] "US/Eastern" "US/Hawaii" ## [589] "US/Indiana-Starke" "US/Michigan" ## [591] "US/Mountain" "US/Pacific" ## [593] "US/Samoa" "UTC" ## [595] "W-SU" "WET" ## [597] "Zulu" ## attr(,"Version") ## [1] "2024b" ``` ] --- The instant `tm` in some other time zones: -- .pull-left[ ``` r with_tz(tm, tz = "UTC") ## [1] "2025-04-15 15:00:00 UTC" ``` {{content}} ] -- ``` r with_tz(tm, tz = "America/New_York") ## [1] "2025-04-15 11:00:00 EDT" ``` {{content}} -- ``` r with_tz(tm, tz = "Asia/Shanghai") ## [1] "2025-04-15 23:00:00 CST" ``` {{content}} -- ``` r with_tz(tm, tz = "Pacific/Auckland") ## [1] "2025-04-16 03:00:00 NZST" ``` -- .pull-right[ ``` r with_tz(tm, tz = "Asia/Kolkata") ## [1] "2025-04-15 20:30:00 IST" ``` {{content}} ] -- ``` r with_tz(tm, tz = "Canada/Newfoundland") ## [1] "2025-04-15 12:30:00 NDT" ``` {{content}} -- ``` r with_tz(tm, tz = "Asia/Katmandu") ## [1] "2025-04-15 20:45:00 +0545" ``` --- Some more examples: .pull-left.small-code.scroll-box-20[ ``` r ## All offsets that are not a full hour: get_offset <- function(z) abs(minute(with_tz(tm, tz = z)) - minute(tm)) offsets <- data.frame(zone = OlsonNames()) |> mutate(offset = sapply(zone, get_offset)) |> arrange(offset) filter(offsets, offset != 0) ## zone offset ## 1 America/St_Johns 30 ## 2 Asia/Calcutta 30 ## 3 Asia/Colombo 30 ## 4 Asia/Kabul 30 ## 5 Asia/Kolkata 30 ## 6 Asia/Rangoon 30 ## 7 Asia/Tehran 30 ## 8 Asia/Yangon 30 ## 9 Australia/Adelaide 30 ## 10 Australia/Broken_Hill 30 ## 11 Australia/Darwin 30 ## 12 Australia/LHI 30 ## 13 Australia/Lord_Howe 30 ## 14 Australia/North 30 ## 15 Australia/South 30 ## 16 Australia/Yancowinna 30 ## 17 Canada/Newfoundland 30 ## 18 Indian/Cocos 30 ## 19 Iran 30 ## 20 Pacific/Marquesas 30 ## 21 Asia/Kathmandu 45 ## 22 Asia/Katmandu 45 ## 23 Australia/Eucla 45 ## 24 NZ-CHAT 45 ## 25 Pacific/Chatham 45 ``` ] .pull-right.small-code.scroll-box-20[ ``` r ## Offsets for Australia: filter(offsets, grepl("Australia", zone)) ## zone offset ## 1 Australia/ACT 0 ## 2 Australia/Brisbane 0 ## 3 Australia/Canberra 0 ## 4 Australia/Currie 0 ## 5 Australia/Hobart 0 ## 6 Australia/Lindeman 0 ## 7 Australia/Melbourne 0 ## 8 Australia/NSW 0 ## 9 Australia/Perth 0 ## 10 Australia/Queensland 0 ## 11 Australia/Sydney 0 ## 12 Australia/Tasmania 0 ## 13 Australia/Victoria 0 ## 14 Australia/West 0 ## 15 Australia/Adelaide 30 ## 16 Australia/Broken_Hill 30 ## 17 Australia/Darwin 30 ## 18 Australia/LHI 30 ## 19 Australia/Lord_Howe 30 ## 20 Australia/North 30 ## 21 Australia/South 30 ## 22 Australia/Yancowinna 30 ## 23 Australia/Eucla 45 ``` ] --- If we create the `th` variable for the flights data as ``` r fl <- mutate(flights, th = make_datetime(year, month, day, hour, tz = "America/New_York")) ``` -- then the result matches the `date_time` variable: ``` r identical(fl$th, fl$time_hour) ## [1] TRUE ``` --- The `time_hour` variable in the `weather` table reflects actual points in time and, together with `origin`, can serve as a primary key: ``` r filter(count(weather, origin, time_hour), n > 1) ## # A tibble: 0 × 3 ## # ℹ 3 variables: origin <chr>, time_hour <dttm>, n <int> ``` -- The `month`, `day`, `hour` variables are confused by the time change. -- .pull-left.code-80[ In November there is a repeat: ``` r count(weather, origin, month, day, hour) |> filter(n > 1) ## # A tibble: 3 × 5 ## origin month day hour n ## <chr> <int> <int> <int> <int> ## 1 EWR 11 3 1 2 ## 2 JFK 11 3 1 2 ## 3 LGA 11 3 1 2 ``` ] -- .pull-right.code-80[ and there is a missing hour in March: ``` r select(weather, origin, month, day, hour) |> filter(origin == "EWR", month == 3, day == 10, hour <= 3) ## # A tibble: 3 × 4 ## origin month day hour ## <chr> <int> <int> <int> ## 1 EWR 3 10 0 ## 2 EWR 3 10 1 ## 3 EWR 3 10 3 ``` ] --- layout: false ## Things to Look Out For For dates: -- * Language used for months and weekdays, and their abbreviations. -- * Ambiguous numerical conventions like 4/11/2025: is this April 11 or November 4? -- * Day 2 of the week: is this Monday or Tuesday? -- * For historical data, what calendar is being used? (The _October Revolution_ happened on November 6/7, 1917 by the current Gregorian calendar; October 24/25 by the Julian calendar Russia was still using.) -- For date-times -- * All of the above. -- * Daylight saving time. -- * Time zones. <!-- Locale stuff may fail on some systems (on Ubuntu may need to use locale-gen --> <!-- library(lubridate) flights <- mutate(flights, th = make_datetime(year, month, day, hour, tz = "America/New_York")) weather <- mutate(weather, th = make_datetime(year, month, day, hour, tz = "UTC")) fl0 <- select(filter(flights, origin == "LGA"), dep_time, time_hour, th) w0 <- select(filter(weather, origin == "LGA")[-(1 : 9),], time_hour, th, temp) fl1 <- left_join(fl0, select(w0, -th), "time_hour") fl2 <- left_join(fl0, select(w0, -time_hour), "th") --> --- layout: false ## Reading Chapter [_Dates and Times_](https://r4ds.hadley.nz/datetimes.html) in [_R for Data Science_](https://r4ds.hadley.nz/). --- layout: true ## Exercises --- 1) Using the NYC flights data, how many flights were there on Saturdays from Newark (EWR) to Cicago O'Hare (ORD) in 2013? * a. 413 * b. 522 * c. 601 * d. 733 --- 2) What day of the week will July 4, 2030, fall on? * a. Monday * b. Wednesday * d. Thursday * c. Saturday
//adapted from Emi Tanaka's gist at //https://gist.github.com/emitanaka/eaa258bb8471c041797ff377704c8505