
Additive Models

Basics

• One approach to flexible modeling with multiple predictors is to use ad-
ditive models:

Y = β0 + f1(x1)+ · · ·+ fp(xp)+ ε

where the f j are assumed smooth.

• Variations include

– some linear and some smooth terms

Y = β0 +β1x1 + f2(x2)+ ε

– some bivariate smooth terms

Y = f1(x1)+ f23(x2,x3)+ ε

• A joint model using basis functions would be of the form

Y = X0β +X1δ1 + · · ·+Xpδp + ε

with penalized objective function

‖Y −X0β −
p

∑
i=1

Xiδi‖2 +
p

∑
i=1

λiδ
T
i Diδ1

• The model can be fit using the mixed model formulation with p indepen-
dent variance components.

• An alternative is the backfitting algorithm.
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Backfitting Algorithm

• For a model

f (x) = β0 +
p

∑
j=1

f j(x j)

with data yi,xi j and smoothers S j

– initialize β̂0 = y
– repeat

f̂ j← S j

[
{yi− β̂0−∑

k 6= j
f̂k(xik)}n

1

]

f̂ j← f̂ j−
1
n

n

∑
i=1

f̂ j(xi j)

until the changes in the f̂ j are below some threshold.

• A more complex linear term is handled analogously.

• For penalized linear smoothers with fixed smoothing parameters this can
be viewed as solving the equations for the minimizer by a block Gauss-
Seidel algorithm.

• Different smoothers can be used on each variable.

• Smoothing parameters can be adjusted during each pass or jointly.

– bruto (Hastie and Tibshirani, 1990) uses a variable selection/smoothing
parameter selection pass based on approximate GCV.

– gam from package mgcv uses GCV.

• Backfitting may allow larger models to be fit.

• Backfitting can be viewed as one of several ways of fitting penalized/mixed
models.

Some examples are available in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/
examples/additive.Rmd
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Example: Ozone Levels

• Data set relates ozone levels to pressure gradient, temperature, and height
of inversion.

• A gam fit is produced by

library(mgcv)
library(SemiPar)
data(calif.air.poll) # data are from SemiPar
fit <- gam(ozone.level ˜ s(daggett.pressure.gradient)

+ s(inversion.base.height)
+ s(inversion.base.temp),

data = calif.air.poll)

• The default plot method produces
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Mixed Additive Models

• Mixed additive models can be written as

Y = X0β +ZU +X1δ1 + · · ·+Xpδp + ε

where U is a “traditional” random effects term with

U ∼ N(0,Σ(θ))

for some parameter θ and the terms X1δ1 + · · ·+Xpδp represent smooth
additive terms.

• In principle these can be fit with ordinary penalized least squares or
mixed models software.
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Example: Sitka Pines Experiment

• An experiment on sitka pines measured size over time for 79 trees grown
in an ozone-rich environment and a control environment. Measurements
were taken at 13 time points.

data(sitka) # from SemiPar
library(lattice)
sitka$ozone.char <- ifelse(sitka$ozone, "ozone", "control")
xyplot(log.size ˜ days|ozone.char, groups = id.num, type = "b",

data = sitka)
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• The plot suggests a model with

– a smooth term for time

– a mean shift for ozone

– a random intercept for trees

– perhaps also a random slope for trees

5



Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• The random intercept model can be fit with spm using

attach(sitka)
fit <- spm(log.size ˜ ozone + f(days),

random= ˜ 1, group = id.num)

and by gamm with

trees <- as.factor(id.num)
fit <- gamm(log.size ˜ ozone + s(days),

random = list(trees = ˜ 1))

• spm cannot fit a more complex random effects structure at this point.
Using gamm we can fit random slope and intercept with

fit <- gamm(log.size ˜ ozone + s(days),
random = list(trees = ˜ 1 + days))

• Residuals don’t show any further obvious pattern.
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• Autocorrelated errors over time might be worth considering.
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Generalized Additive Models

• Standard generalized linear models include

yi ∼ Bernoulli
(

exp{(Xβ )i}
1+ exp{(Xβ )i}

)
and

yi ∼ Poisson(exp{(Xβ )i})

• Maximum likelihood estimates can be computed by iteratively reweighted
least squares (IRWLS)

• Penalized maximum likelihood estimates maximize

Loglik(y,X0β +Xiδ )−
1
2

λδ
T Dδ

• This has a mixed model/Bayesian interpretation.

• GLMM (genelarized linear mixed model) software can be used.

• The IRWLS algorithm can be merged with backfitting.

7



Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Trade Union Membership

• Data relating union membership and various characteristics are available.

• A Bernoulli generalized additive model relates the probability of union
membership to the available predictor variables.

• One possible model is fit by

data(trade.union) # from SemiPar
fit <- gam(union.member ˜ s(wage) + s(years.educ) + s(age)

+ female + race + south,
family=binomial,
subset=wage < 40, # remove high leverage point
data=trade.union)

• The estimated smooth terms are
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• Some summary information on the smooth terms:

Approximate significance of smooth terms:
edf Est.rank Chi.sq p-value

s(wage) 2.818 9.000 27.26 0.00127 **
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s(years.educ) 2.951 9.000 11.43 0.24710
s(age) 1.000 1.000 2.30 0.12940
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Alternative Penalties

• Bases for function spaces are infinite dimensional

• Some form of penalty or regularization is needed.

• Penalties often have a useful Bayesian interpretation.

• Most common penalties on coefficients δ

– quadratic, ∑δ 2
i or, more generally, δ T Dδ

– absolute value, L1, LASSO: ∑ |δi|

Ridge Regression

• Ridge regression uses the L2 penalty λ ∑δ 2
i .

• Using a quadratic penalty δ T Dδ with strictly positive definite D is some-
times called generalized ridge regression.

• The minimizer of

min
δ

{‖Y −Xδ‖2 +λδ
T Dδ}

is
δ̂λ = (XT X +λD)−1XTY

which shrinks the OLS estimate towards zero as λ → ∞.

• If XT X = D = I then the ridge regression estimate is

δ̂λ =
1

1+λ
δ̂OLS

10



Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

LASSO

• The LASSO (Least Absolute Shrinkage and Selection Operator) or L1-
penalized minimization problem

min
δ

{‖Y −Xδ‖2 +2λ ∑ |δi|}

does not in general have a closed form solution, but if XT X = I then

δ̂i,λ = sign(δ̂i,OLS)(|δ̂i,OLS|−λ )+

The OLS estimates are shifted towards zero and truncated at zero.

• The L1 penalty approach has a Bayesian interpretation as a posterior
mode for a Laplace or double exponential prior.

• The variable selection property of the L1 penalty is particularly appealing
when the number of regressors is large, possibly larger than the number
of observations.

• For least squares regression with the LASSO penalty

– the solution path as λ varies is piece-wise linear

– there are algorithms for computing the entire solution path efficiently

– Common practice is to plot the coefficients β j(λ ) against the shrink-
age factor s = ‖β (λ )‖1/‖β (∞)‖1

• R Packages implementing general L1-penalized regression include lars,
lasso2, and glmnet.

• A paper, talk slides, and R package present a significance test for coeffi-
cients entering the model.
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Elastic Net

• The elastic net penalty is a combination of the LASSO and Ridge penal-
ties:

λ
[
(1−α)∑δ

2
i +2α ∑ |δi|

]
– Ridge regression corresponds to α = 0.

– LASSO corresponds to α = 1.

• λ and α can be estimated by cross-validation.

• Elastic net was introduced to address some shortcomings of LASSO,
including

– inability to select more than n predictors in p > n problems;

– tendency to select only one of correlated predictors.

• The glmnet package implements elastic net regression.

• Scaling of predictors is important; by default glmnet standardizes be-
fore fitting.
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Non-Convex Penalties

• The elastic net penalties are convex for all α .

• This greatly simplifies the optimization to be solved.

• LASSO and other elastic net fits tend to select more variables than needed.

• Some non-convex penalties have the theoretical property of consistently
estimating the set of covariates with non-zero coefficients under some
asymptotic formulations.

• Some also reduce the bias for the non-zero coefficient estimates.

• Some examples are

– smoothly clipped absolute deviation (SCAD);

– minimax concave penalty (MCP).

• MCP is of the form ∑ρ(δi,λ ,γ) with

ρ(x,λ ,γ) =

{
λ |x|− x2

2γ
if |x| ≤ γλ

1
2γλ 2 otherwise

for γ > 1.

• This behaves like λ |x| for small |x| and smoothly transitions to a constant
for large |x|. SCAD is similar in shape.

• Jian Huang and Patrick Breheny have worked extensively on these.

13



Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Alternative Bases

• Many other bases are used, including

– polynomials

– trigonometric polynomials (Fourier basis)

– wavelet bases

• Different bases are more suitable for modeling different functions

• General idea: choose a basis in which the target can be approximated
well with a small number of basis elements.
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Wavelets

• Wavelet smoothing often assumes observations at N = 2J equally spaced
points and uses an orthonormal basis of N vectors organized in J levels.
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• A common approach for wavelet smoothing is to use L1 shrinkage with

λ = σ̂
√

2logN

A variant is to use different levels of smoothing at each level of detail.

• σ̂ is usually estimated by assuming the highest frequency lavel is pure
noise.

• Several R packages are available for wavelet modeling, including waveslim,
rwt, wavethresh, and wavelets

• Matlab has very good wavelet toolboxes.

• S-Plus also has a good wavelet library.

15



Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Other Approaches

• MARS, multiple adaptive regression splines. Available in the mda pack-
age.

• polymars in package polyspline.

• Smoothing spline ANOVA.

• Projection pursuit regression.

• Single and multiple index models.

• Neural networks.

• Tree models.
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