Numerical Linear Algebra

Preliminaries

Conditioning and Stability

- Some problems are inherently difficult: no algorithm involving rounding of inputs can be expected to work well. Such problems are called illconditioned.
- A numerical measure of conditioning, called a condition number, can sometimes be defined:
- Suppose the objective is to compute $y=f(x)$.
- If x is perturbed by Δx then the result is changed by

$$
\Delta y=f(x+\Delta x)-f(x) .
$$

- If

$$
\frac{|\Delta y|}{|y|} \approx \kappa \frac{|\Delta x|}{|x|}
$$

for small perturbations Δx then κ is the condition number for the problem of computing $f(x)$.

- A particular algorithm for computing an approximation $\tilde{f}(x)$ to $f(x)$ is numerically stable if for small perturbations Δx of the input the result is close to $f(x)$.

Error Analysis

- Analyzing how errors accumulate and propagate through a computation, called forward error analysis, is sometimes possible but often very difficult.
- Backward error analysis tries to show that the computed result

$$
\tilde{y}=\tilde{f}(x)
$$

is the exact solution to a slightly perturbed problem, i.e.

$$
\tilde{y}=f(\tilde{x})
$$

for some $\tilde{x} \approx x$.

- If
- the problem of computing $f(x)$ is well conditioned, and
- the algorithm \tilde{f} is stable,
then

$$
\tilde{y}=\tilde{f}(x)
$$

$$
=f(\tilde{x}) \quad \text { exact result for some } \tilde{x} \approx x
$$

$$
\approx f(x) \quad \text { since } f \text { is well-conditioned }
$$

- Backward error analysis is used heavily in numerical linear algebra.

Solving Linear Systems

Many problems involve solving linear systems of the form

$$
A x=b
$$

- least squares normal equations:

$$
X^{T} X \beta=X^{T} y
$$

- stationary distribution of a Markov chain:

$$
\begin{aligned}
\pi P & =\pi \\
\sum \pi_{i} & =1
\end{aligned}
$$

If A is $n \times n$ and non-singular then in principle the solution is

$$
x=A^{-1} b
$$

This is not usually a good numerical approach because

- it can be numerically inaccurate;
- it is inefficient except for very small n.

Triangular Systems

- Triangular systems are easy to solve.
- The upper triangular system

$$
\left[\begin{array}{ll}
5 & 3 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
16 \\
4
\end{array}\right]
$$

has solution

$$
\begin{aligned}
& x_{2}=4 / 2=2 \\
& x_{1}=\left(16-3 x_{2}\right) / 5=10 / 5=2
\end{aligned}
$$

- This is called back substitution
- Lower triangular systems are solved by forward substitution.
- If one of the diagonal elements in a triangular matrix is zero, then the matrix is singular.
- If one of the diagonal elements in a triangular matrix is close to zero, then the solution is very sensitive to other inputs:

$$
\left[\begin{array}{ll}
1 & a \\
0 & \varepsilon
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

has solution

$$
\begin{aligned}
& x_{2}=\frac{b_{2}}{\varepsilon} \\
& x_{1}=b_{1}-a \frac{b_{2}}{\varepsilon}
\end{aligned}
$$

- This sensitivity for small ε is inherent in the problem: For small values of ε the problem of finding the solution x is ill-conditioned.

Gaussian Elimination

- The system

$$
\left[\begin{array}{cc}
5 & 3 \\
10 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
16 \\
36
\end{array}\right]
$$

can be reduced to triangular form by subtracting two times the first equation from the second.

- In matrix form:

$$
\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]\left[\begin{array}{cc}
5 & 3 \\
10 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
16 \\
36
\end{array}\right]
$$

or

$$
\left[\begin{array}{ll}
5 & 3 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
16 \\
4
\end{array}\right]
$$

which is the previous triangular system.

- For a general 2×2 matrix A the lower triangular matrix used for the reduction is

$$
\left[\begin{array}{cc}
1 & 0 \\
-\frac{a_{21}}{a_{11}} & 1
\end{array}\right]
$$

- The ratio $\frac{a_{21}}{a_{11}}$ is a called a multiplier.
- This strategy works as long as $a_{11} \neq 0$.
- If $a_{11} \approx 0$, say

$$
A=\left[\begin{array}{ll}
\varepsilon & 1 \\
1 & 1
\end{array}\right]
$$

for small ε, then the multiplier $1 / \varepsilon$ is large and this does not work very well, even though A is very well behaved.

- Using this approach would result in a numerically unstable algorithm for a well-conditioned problem.

Partial Pivoting

- We can ensure that the multiplier is less than or equal to one in magnitude by switching rows before eliminating:

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
5 & 3 \\
10 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
16 \\
36
\end{array}\right]
$$

or

$$
\left[\begin{array}{cc}
10 & 8 \\
5 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
36 \\
16
\end{array}\right]
$$

- The matrix to reduce this system to triangular form is now

$$
\left[\begin{array}{cc}
1 & 0 \\
-0.5 & 1
\end{array}\right]
$$

- So the final triangular system is constructed as

$$
\left[\begin{array}{cc}
1 & 0 \\
-0.5 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
5 & 3 \\
10 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-0.5 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
16 \\
36
\end{array}\right]
$$

or

$$
\left[\begin{array}{cc}
10 & 8 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
36 \\
-2
\end{array}\right]
$$

- Equivalently, we can think of our original system as

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0.5 & 1
\end{array}\right]\left[\begin{array}{cc}
10 & 8 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
16 \\
36
\end{array}\right]
$$

- The decomposition of A as

$$
A=P L U
$$

with P a permutation matrix, L lower trianbular with ones on the diagonal, and U upper triangular is called a $P L U$ decomposition.

PLU Decomposition

- In general, we can write a square matrix A as

$$
A=P L U
$$

where

- P is a permutation matrix, i.e.
* it is an identity matrix with some rows switched
* it satisfies $P P^{T}=P^{T} P=I$, i.e. it is an orthogonal matrix
- L is a unit lower triangular matrix, i.e.
* it is lower triangular
* it has ones on the diagonal
- U is upper triangular
- The permutation matrix P can be chosen so that the multipliers used in forming L all have magnitude at most one.
- A is non-singular if and only if the diagonal entries in U are all non-zero.
- If A is non-singular, then we can solve

$$
A x=b
$$

in three steps:

1. Solve $P z=b$ for $z=P^{T} b$ (permute the right hand side)
2. Solve $L y=z$ for y (forward solve lower triangular system)
3. Solve $U x=y$ for x (back solve upper triangular system)

- Computational complexity:
- Computing the $P L U$ decomposition takes $O\left(n^{3}\right)$ operations.
- Computing a solution from a $P L U$ decomposition takes $O\left(n^{2}\right)$ operations.

Condition Number

- Linear systems $A x=b$ have unique solutions if A is non-singular.
- Solutions are sensitive to small perturbations if A is close to singular.
- We need a useful measure of closeness to singularity
- The condition number is a useful measure:

$$
\begin{aligned}
\kappa(A) & =\frac{\max _{x \neq 0} \frac{\|A x\|}{\|x\|}}{\min _{x \neq 0} \frac{\|x x\|}{\|x\|}} \\
& =\left(\max _{x \neq 0} \frac{\|A x\|}{\|x\|}\right)\left(\max _{x \neq 0} \frac{\left\|A^{-1} x\right\|}{\|x\|}\right) \\
& =\|A\|\left\|A^{-1}\right\|
\end{aligned}
$$

where $\|y\|$ is a vector norm (i.e. a measure of length) of y and

$$
\|B\|=\max _{x \neq 0} \frac{\|B x\|}{\|x\|}
$$

is the corresponding matrix norm of B.

- Some common vector norms:

$$
\begin{array}{rr}
\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}} & \text { Euclidean norm } \\
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| & L_{1} \text { norm, Manhattan norm } \\
\|x\|_{\infty}=\max _{i}\left|x_{i}\right| & L_{\infty} \text { norm }
\end{array}
$$

Some Properties of Condition Numbers

- $\kappa(A) \geq 1$ for all A.
- $\kappa(A)=\infty$ if A is singular
- If A is diagonal, then

$$
\kappa(A)=\frac{\max \left|a_{i i}\right|}{\min \left|a_{i i}\right|}
$$

- Different norms produce different values; the values are usually qualitatively similar

Sensitivity of Linear Systems

Suppose x solves the original system and x^{*} solves a slightly perturbed system,

$$
(A+\Delta A) x^{*}=b+\Delta b
$$

and suppose that

$$
\begin{aligned}
\delta \kappa(A) & \leq \frac{1}{2} \\
\frac{\|\Delta A\|}{\|A\|} & \leq \delta \\
\frac{\|\Delta b\|}{\|b\|} & \leq \delta
\end{aligned}
$$

Then

$$
\frac{\left\|x-x^{*}\right\|}{\|x\|} \leq 4 \delta \kappa(A)
$$

Stability of Gaussian Elimination with Partial Pivoting

Backward error analysis: The numerical solution \hat{x} to the system

$$
A x=b
$$

produced by Gaussian elimination with partial pivoting is the exact solution for a perturbed system

$$
(A+\Delta A) \hat{x}=b
$$

with

$$
\frac{\|\Delta A\|_{\infty}}{\|A\|_{\infty}} \leq 8 n^{3} \rho \mathbf{u}+O\left(\mathbf{u}^{2}\right)
$$

- The value of ρ is not guaranteed to be small, but is rarely larger than 10
- The algorithm would be considered numerically stable if ρ were guaranteed to be bounded.
- Complete pivoting is a bit more stable, but much more work.
- The algorithm is considered very good for practical purposes.

General Linear Systems in R

R provides

- solve for general systems, based on LAPACK's DGESV.
- DGESV uses the $P L U$ decomposition.
- forwardsolve, backsolve for triangular systems.
- kappa computes an estimate of the condition number or the exact condition number based on the Euclidean norm.

Cholesky Factorization

Suppose A is symmetric and (strictly) positive definite, i.e.

$$
x^{T} A x>0
$$

for all $x \neq 0$. Examples:

- If X is the $n \times p$ design matrix for a linear model and X is of rank p, then $A=X^{T} X$ is strictly positive definite.
If X is not of full rank then $A=X^{T} X$ is non-negative definite or positive semi-definite, i.e. $x^{T} A x \geq 0$ for all x.
- If A is the covariance matrix of a random vector X then A is positive semidefinite:

$$
\begin{aligned}
c^{T} A c & =c^{T} E\left[(X-\mu)(X-\mu)^{T}\right] c \\
& =E\left[\left((X-\mu)^{T} c\right)^{T}(X-\mu)^{T} c\right] \\
& =\operatorname{Var}\left((X-\mu)^{T} c\right) \geq 0
\end{aligned}
$$

The covariance matrix is strictly positive definite unless $P\left(c^{T} X=c^{T} \mu\right)=$ 1 for some $c \neq 0$, i.e. unless there is a perfect linear relation between some of the components of X.

Theorem

If A is strictly positive definite, then there exists a unique lower triangular matrix L with positive diagonal entries such that

$$
A=L L^{T}
$$

This is called the Cholesky factorization.

Properties of the Cholesky Factorization Algorithm

- It uses the symmetry to produce an efficient algorithm.
- The algorithm needs to take square roots to find the diagonal entries.
- An alternative that avoids square roots factors A as

$$
A=L D L^{T}
$$

with D diagonal and L unit lower triangular.

- The algorithm is numerically stable, and is guaranteed not to attempt square roots of negative numbers if

$$
q_{n} \mathbf{u} \kappa_{2}(A) \leq 1
$$

where q_{n} is a small constant depending on the dimension n.

- The algorithm will fail if the matrix is not (numerically) strictly positive definite.
- Modifications using pivoting are available that can be used for nonnegative definite matrices.
- Another option is to factor $A_{\lambda}=A+\lambda I$ with $\lambda>0$ chosen large enough to make A_{λ} numerically strictly positive definite. This is often used in optimization.

Some Applications of the Cholesky Factorization

- Solving the normal equations in least squares. This requires that the predictors be linearly independent
- Generating multivariate normal random vectors.
- Parameterizing strictly positive definite matrices: Any lower triangular matrix L with arbitrary values below the diagonal and positive diagonal entries determines and is uniquely determined by the positive definite matrix $A=L L^{T}$

Cholesky Factorization in \mathbf{R}

- The function chol computes the Cholesky factorization.
- The returned value is the upper triangular matrix $R=L^{T}$.
- LAPACK is used.

QR Factorization

An $m \times n$ matrix A with $m \geq n$ can be written as

$$
A=Q R
$$

where

- Q is $m \times n$ with orthonormal columns, i.e. $Q^{T} Q=I_{n}$
- R is upper triangular
- Several algorithms are available for computing the QR decomposition:
- Modified Gram-Schmidt
- Householder transformations (reflections)
- Givens transformations (rotations)

Each has advantages and disadvantages.

- LINPACK dqrdc and LAPACK DGEQP 3 use Householder transformations.
- The QR decomposition exists regardless of the rank of A.
- The rank of A is n if and only if the diagonal elements of R are all nonzero.

Householder Transformations

- A Householder transformation is a matrix of the form

$$
P=I-2 v v^{T} / v^{T} v
$$

where v is a nonzero vector.

- $P x$ is the reflection of x in the hyperplane orthogonal to v.
- Given a vector $x \neq 0, \operatorname{choosing} v=x+\alpha e_{1}$ with

$$
\alpha= \pm\|x\|_{2}
$$

and e_{1} the first unit vector (first column of the identity) produces

$$
P x=\mp\|x\|_{2} e_{1}
$$

This can be used to zero all but the first element of the first column of a matrix:

$$
P\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times
\end{array}\right]=\left[\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times
\end{array}\right]
$$

This is the first step in computing the $Q R$ factorization.

- The denominator $v^{T} v$ can be written as

$$
v^{T} v=x^{T} x+2 \alpha x_{1}+\alpha^{2}
$$

- Choosing $\alpha=\operatorname{sign}\left(x_{1}\right)\|x\|_{2}$ ensures that all terms are non-negative and avoids cancellation.
- With the right choice of sign Householder transformations are very stable.

Givens Rotations

- A Givens rotation is a matrix G that is equal to the identity except for elements $G_{i i}, G_{i j}, G_{j i}, G_{j j}$, which are

$$
\left[\begin{array}{cc}
G_{i i} & G_{i j} \\
G_{j i} & G_{j j}
\end{array}\right]=\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]
$$

with $c=\cos (\theta)$ and $s=\sin (\theta)$ for some θ.

- Premultiplication by G^{T} is a clockwise rotation by θ radians in the (i, j) coordinate plane.
- Given scalars a, b one can compute c, s so that

$$
\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]^{T}\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right]
$$

This allows G to zero one element while changing only one other element.

- A stable way to choose c, s :

```
if \(b=0\)
    \(c=1 ; s=0\)
else
    if \(|b|>|a|\)
        \(\tau=-a / b ; s=1 / \sqrt{1+\tau^{2}} ; c=s \tau\)
        else
            \(\tau=-b / a ; c=1 / \sqrt{1+\tau^{2}} ; s=c \tau\)
        end
end
```

- A sequence of Givens rotations can be used to compute the $Q R$ factorization.
- The zeroing can be done working down columns or across rows.
- Working across rows is useful for incrementally adding more observations.

Applications

- The QR decomposition can be used for solving $n \times n$ systems of equations

$$
A x=b
$$

since $Q^{-1}=Q^{T}$ and so

$$
A x=Q R x=b
$$

is equivalent to the upper triangular system

$$
R x=Q^{T} b
$$

- The QR decomposition can also be used to solve the normal equations in linear regression: If X is the $n \times p$ design matrix then the normal equations are

$$
X^{T} X b=X^{T} y
$$

If $X=Q R$ is the QR decomposition of X, then

$$
\begin{aligned}
X^{T} X & =R^{T} Q^{T} Q R=R^{T} R \\
X^{T} y & =R^{T} Q^{T} y
\end{aligned}
$$

If X is of full rank then R^{T} is invertible, and the normal equations are equivalent to the upper triangular system

$$
R b=Q^{T} y
$$

This approach avoids computing $X^{T} X$.

- If X is of full rank then $R^{T} R$ is the Cholesky factorization of $X^{T} X$ (up to multiplications of rows of R by ± 1).

QR with Column Pivoting

Sometimes the columns of X are linearly dependent or nearly so.
By permuting columns we can produce a factorization

$$
A=Q R P
$$

where

- P is a permutation matrix
- R is upper triangular and the diagonal elements of R have non-increasing magnitudes, i.e.

$$
\left|r_{i i}\right| \geq\left|r_{j j}\right|
$$

if $i \leq j$

- If some of the diagonal entries of R are zero, then R will be of the form

$$
R=\left[\begin{array}{cc}
R_{11} & R_{12} \\
0 & 0
\end{array}\right]
$$

where R_{11} is upper triangular with non-zero diagonal elements non-increasing in magnitude.

- The rank of the matrix is the number of non-zero rows in R.
- The numerical rank of a matrix can be determined by
- computing its QR factorization with column pivoting
- specifying a tolerance level ε such that all diagonal entries $\left|r_{i i}\right|<\varepsilon$ are considered numerically zero.
- Modifying the computed QR factorization to zero all rows corresponding to numerically zero $r_{i i}$ values.

Some Regression Diagnostics

The projection matrix, or hat matrix, is

$$
H=X\left(X^{T} X\right)^{-1} X^{T}=Q R\left(R^{T} R\right)^{-1} R^{T} Q^{T}=Q Q^{T}
$$

The diagonal elements of the hat matrix are therefore

$$
h_{i}=\sum_{j=1}^{p} q_{i j}^{2}
$$

If $\hat{e}_{i}=y_{i}-\hat{y}_{i}$ is the residual, then

$$
\begin{aligned}
s_{-i}^{2} & =\frac{\mathrm{SSE}-\hat{e}_{i}^{2} /\left(1-h_{i}\right)}{n-p-1}=\text { estimate of variance without obs. } i \\
t_{i} & =\frac{\hat{e}_{i}}{s_{-i} \sqrt{1-h_{i}}}=\text { externally studentized residual } \\
D_{i} & =\frac{\hat{e}_{i}^{2} h_{i}}{\left(1-h_{i}\right)^{2} s^{2} p}=\text { Cook's distance }
\end{aligned}
$$

QR Decomposition and Least Squares in \mathbf{R}

- The R function qr uses either LINPACK or LAPACK to compute QR factorizations.
- LINPACK is the default.
- The core linear model fitting function lm.fit uses QR factorization with column pivoting.

Singular Value Decomposition

An $m \times n$ matrix A with $m \geq n$ can be factored as

$$
A=U D V^{T}
$$

where

- U is $m \times n$ with orthonormal columns, i.e. $U^{T} U=I_{n}$.
- V is $n \times n$ orthogonal, i.e. $V V^{T}=V^{T} V=I_{n}$.
- $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is $n \times n$ diagonal with $d_{1} \geq d_{2} \geq \cdots \geq d_{n} \geq 0$.

This is the singular value decomposition, or SVD of A.

- The values d_{1}, \ldots, d_{n} are the singular values of A.
- The columns of U are the right singular vectors of A.
- The columns of V are the left singular vectors of A.
- If the columns of A have been centered so the column sums of A are zero, then the columns of $U D$ are the principal components of A.
- Excellent algorithms are available for computing the SVD.
- These algorithms are usually several times slower than the QR algorithms.

Some Properties of the SVD

- The Euclidean matrix norm of A is defined as

$$
\|A\|_{2}=\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

with $\|x\|_{2}=\sqrt{x^{T} x}$ the Euclidean vector norm.

- If A has SVD $A=U D V^{T}$, then

$$
\|A\|_{2}=d_{1}
$$

- If $k<\operatorname{rank}(A)$ and

$$
A_{k}=\sum_{i=1}^{k} d_{i} u_{i} v_{i}^{T}
$$

then

$$
\min _{B: \operatorname{rank}(B) \leq k}\|A-B\|_{2}=\left\|A-A_{k}\right\|=d_{k+1}
$$

In particular,

- $d_{1} u_{1} v_{1}^{T}$ is the best rank one approximation to A (in the Euclidean matrix norm).
- A_{k} is the best rank k approximation to A.
- If $m=n$ then $d_{n}=\min \left\{d_{1}, \ldots d_{n}\right\}$ is the distance between A and the set of singular matrices.
- If A is square then the condition number based on the Euclidean norm is

$$
\kappa_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}=\frac{d_{1}}{d_{n}}
$$

- For an $n \times p$ matrix with $n>p$ we also have

$$
\kappa_{2}(A)=\frac{\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}}{\min _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}}=\frac{d_{1}}{d_{n}}
$$

- This can be used to relate $\kappa_{2}\left(A^{T} A\right)$ to $\kappa_{2}(A)$.
- This has implications for regression computations.
- The singular values are the non-negative square roots of the eigenvalues of $A^{T} A$ and the columns of V are the corresponding eigenvectors.

Moore-Penrose Generalized Inverse

Suppose A has rank $r \leq n$ and SVD $A=U D V^{T}$. Then

$$
d_{r+1}=\cdots=d_{n}=0
$$

Let

$$
D^{+}=\operatorname{diag}\left(\frac{1}{d_{1}}, \ldots, \frac{1}{d_{r}}, 0, \ldots, 0\right)
$$

and

$$
A^{+}=V D^{+} U^{T}
$$

Then A^{+}satisfies

$$
\begin{aligned}
A A^{+} A & =A \\
A^{+} A A^{+} & =A^{+} \\
\left(A A^{+}\right)^{T} & =A A^{+} \\
\left(A^{+} A\right)^{T} & =A^{+} A
\end{aligned}
$$

A^{+}is the unique matrix with these properties and is called the Moore-Penrose generalized inverse or pseudo-inverse.

SVD and Least Squares

If X is an $n \times p$ design matrix of less than full rank, then there are infinitely many values of b that minimize

$$
\|y-X b\|_{2}^{2}
$$

Among these solutions,

$$
b=\left(X^{T} X\right)^{+} X^{T} y
$$

minimizes $\|b\|_{2}$.
This is related to penalized regression where one might choose b to minimize

$$
\|y-X b\|_{2}^{2}+\lambda\|b\|_{2}^{2}
$$

for some choice of $\lambda>0$.

SVD and Principal Components Analysis

- Let X be an $n \times p$ matrix of n observations on p variables.
- Principal components analysis involves estimating the eigenvectors and eigenvalues of the covariance matrix.
- Let \widetilde{X} be the data matrix with columns centered at zero by subtracting the column means.
- The sample covariance matrix is

$$
S=\frac{1}{n-1} \widetilde{X}^{T} \widetilde{X}
$$

- Let $\widetilde{X}=U D V^{T}$ be the SVD of the centered data matrix \widetilde{X}.
- Then

$$
S=\frac{1}{n-1} V D U^{T} U D V^{T}=\frac{1}{n-1} V D^{2} V^{T}
$$

- So
- The diagonal elements of $\frac{1}{n-1} D^{2}$ are the eigenvalues of S.
- The columns of V are the eigenvectors of S.
- Using the SVD of \widetilde{X} is more numerically stable than
- forming $\widetilde{X}^{T} \widetilde{X}$
- computing the eigenvalues and eigenvectors.

SVD and Numerical Rank

- The rank of a matrix A is equal to the number of non-zero singular values.
- Exact zeros may not occur in the SVD due to rounding.
- Numerical rank determination can be based on the SVD. All $d_{i} \leq \delta$ can be set to zero for some choice of δ. Golub and van Loan recommend using

$$
\delta=\mathbf{u}\|A\|_{\infty}
$$

- If the entries of A are only accurate to d decimal digits, then Golub and van Loan recommend

$$
\delta=10^{-d}\|A\|_{\infty}
$$

- If the numerical rank of A is \hat{r} and $d_{\hat{r}} \gg \delta$ then \hat{r} can be used with some confidence; otherwise caution is needed.

Other Applications

- The SVD is used in many areas of numerical analysis.
- It is also often useful as a theoretical tool.
- Some approaches to compressing $m \times n$ images are based on the SVD.
- A simple example using the volcano data:

SVD in R

- R provides the function svd to compute the SVD.
- Implementation used to use LINPACK but now can use LINPACK or LAPACK, with LAPACK the default.
- You can ask for the singular values only-this is will be faster for larger problems.

Eigenvalues and Eigenvectors

Let A be an $n \times n$ matrix. λ is an eigenvalue of A if

$$
A v=\lambda v
$$

for some $v \neq 0 ; v$ is an eigenvector or A.

- If A is a real $n \times n$ matrix then it has n eigenvalues.
- Several eigenvalues may be identical
- Some eigenvalues may be complex; if so, then they come in conjugate pairs.
- The set of eigenvalues is called the spectrum
- If A is symmetric then the eigenvalues are real
- If A is symmetric then
- A is strictly positive definite if and only if all eigenvalues are positive.
- A is positive semi-definite if and only if all eigenvalues are nonnegative.
- There exists an orthogonal matrix V such that

$$
A=V \Lambda V^{T}
$$

with $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$; the columns of V are the corresponding normalized eigenvectors.

- This is called the spectral decomposition of A.
- Some problems require only the largest eigenvalue or the largest few, sometimes the corresponding eigenvectors are also needed.
- The stationary distribution of an irreducible finite state-space Markov chain is the unique eigenvector, normalized to sum to one, corresponding to the largest eigenvalue $\lambda=1$.
- The speed of convergence to the stationary distribution depends on the magnitude of the second largest eigenvalue.
- The R function eigen can be used to compute eigenvalues and, optionally, eigenvectors.

Determinants

- Theoretically the determinant can be computed as the product of
- the diagonals of U in the $P L U$ decomposition
- the squares of the diagonals of L in the Cholesky factorization
- the diagonals of R in the QR decomposition
- the eigenvalues
- Numerically these are almost always bad ideas.
- It is almost always better to work out the sign and compute the sum of the logarithms of the magnitudes of the factors.
- The R functions det and determinant compute the determinant.
- determinant is more complicated to use, but has a logarithm option.
- Likelihood and Bayesian analyses often involve a determinant;
- usually the log likelihood and \log determinant should be used.
- usually the log determinant can be computed from a decomposition needed elsewhere in the log likelihood calculation, e.g. a Cholesky factorization

Non-Negative Matrix Factorization

A number of problems lead to the desire to approximate a non-negative matrix X by a product

$$
X \approx W H
$$

where W, H are non-negative matricies of low rank, i.e. with few columns.
There are a number of algorithms available, most of the form

$$
\min _{W, H}[D(X, W H)+R(W, H)]
$$

where D is a loss function and R is a possible penalty for encouraging desirable characteristics of W, H, such as smoothness or sparseness.

The R package NMF provides one approach, and a vignette in the package provides some background and references.

As an example, using default settings in the NMF package the volcano image can be approximated with factorizations of rank $1, \ldots, 5$ by

```
library(NMF)
nmfl = nmf(volcano, 1); V1 <- nmfl@fit@W %*% nmfl@fit@H
nmf2 = nmf(Volcano, 2); V2 <- nmf2@fit@W %*% nmf2@fit@H
nmf3 = nmf(volcano, 3); V3 <- nmf3@fit@W %*% nmf3@fit@H
nmf4 = nmf(Volcano, 4); V4 <- nmf4@fit@W %*% nmf4@fit@H
nmf5 = nmf(volcano, 5); V5 <- nmf5@fit@W %*% nmf5@fit@H
```

The relative error for the final image is

```
> max(abs(volcano - V5)) / max(abs(volcano))
```

[1] 0.03273659

The images:

Another application is recommender systems.

- For example, X might be ratings of movies (columns) by viewers (rows).
- The set of actual values would be very sparse as each viewer will typically rate only a small subset of all movies.
- W would be a user preference matrix, H a corresponding movie feature matrix.
- The product $W H$ would provide predicted ratings for movies the users have not yet seen.

Other Factorizations

Many other factorizations of matrices are available and being developed. Some examples are

- Robust variants of the SVD
- Sparse variants, e.g. Dan Yang, Zongming Ma, and Andreas Buja (2014), "A Sparse Singular Value Decomposition Method for High-Dimensional Data," Journal of Computational and Graphical Statistics 23(4), 923942.
- Constrained factorizations, e.g. C. Ding, T. Li, and M. I. Jordan (2010), "Convex and Semi-Nonnegative Matrix Factorizations," IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1), 45-55.

Exploiting Special Structure

Specialized algorithms can sometimes be used for matrices with special structure.

Toeplitz Systems

- Stationary time series have covariance matrices that look like

$$
\left[\begin{array}{ccccc}
\sigma_{0} & \sigma_{1} & \sigma_{2} & \sigma_{3} & \ldots \\
\sigma_{1} & \sigma_{0} & \sigma_{1} & \sigma_{2} & \ldots \\
\sigma_{2} & \sigma_{1} & \sigma_{0} & \sigma_{1} & \ldots \\
\sigma_{3} & \sigma_{2} & \sigma_{1} & \sigma_{0} & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right]
$$

- This is a Toeplitz matrix.
- This matrix is also symmetric - this is not required for a Toeplitz matrix.
- Special algorithms requiring $O\left(n^{2}\right)$ operations are available for Toeplitz systems.
- General Cholesky factorization requires $O\left(n^{3}\right)$ operations.
- The R function toeplitz creates Toeplitz matrices.

Circulant Systems

- Some problems give rise to matrices that look like

$$
C_{n}=\left[\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n} \\
a_{n} & a_{1} & a_{2} & \ldots & a_{n-1} \\
a_{n-1} & a_{n} & a_{1} & \ldots & a_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{2} & a_{3} & a_{4} & \ldots & a_{1}
\end{array}\right]
$$

- This is a circulant matrix, a subclass of Toeplitz matrices.
- Circulant matrices satisfy

$$
C_{n}=F_{n}^{*} \operatorname{diag}\left(\sqrt{n} F_{n} a\right) F_{n}
$$

where F_{n} is the Fourier matrix with

$$
F_{n}(j, k)=\frac{1}{\sqrt{n}} e^{-(j-1)(k-1) 2 \pi \sqrt{-1} / n}
$$

and F_{n}^{*} is the conjugate transpose, Hermitian transpose, or adjoint matrix of F_{n}.

- The eigen values are the elements of $\sqrt{n} F_{n} a$.
- Products $F_{n} x$ and $F_{n}^{*} x$ can be computed with the fast Fourier transform (FFT).
- In R

$$
\begin{aligned}
\sqrt{n} F_{n} x & =\mathrm{fft}(\mathrm{x}) \\
\sqrt{n} F_{n}^{*} x & =\mathrm{fft}(\mathrm{x}, \text { inverse }=\mathrm{TRUE})
\end{aligned}
$$

- These computations are generally $O(n \log n)$ in complexity.
- Circulant systems can be used to approximate other systems.
- Multi-dimensional analogs exist as well.
- A simple example is available on line.

Sparse Systems

- Many problems lead to large systems in which only a small fraction of coefficients are non-zero.
- Some methods are available for general sparse systems.
- Specialized methods are available for structured sparse systems such as
- tri-diagonal systems
- block diagonal systems
- banded systems
- Careful choice of row and column permutations can often turn general sparse systems into banded ones.

Sparse and Structured Systems in R

- Sparse matrix support in R is improving.
- Some packages, like nlme, provide utilities they need.
- One basic package available on CRAN is sparseM
- A more extensive package is Matrix
- Matrix is the engine for mixed effects/multi-level model fitting in lme 4

Update Formulas

- Update formulas are available for most decompositions that allow for efficient adding or dropping of rows or columns.
- These can be useful for example in cross-validation and variable selection computations.
- They can also be useful for fitting linear models to very large data sets; the package biglm uses this approach.
- I am not aware of any convenient implementations in R at this point but they may exist.

Iterative Methods

- Iterative methods can be useful in large, sparse problems.
- Iterative methods for sparse problems can also often be parallelized effectively.
- Iterative methods are also useful when
- Ax can be computed efficiently for any given x
- It is expensive or impossible to compute A explicitly

Gauss-Seidel Iteration

Choose an initial solution $x^{(0)}$ to

$$
A x=b
$$

and then update from $x^{(k)}$ to $x^{(k+1)}$ by

$$
x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k+1)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}\right)
$$

for $i=1, \ldots, n$.
This is similar in spirit to Gibbs sampling.

This can be written in matrix form as

$$
x^{(k+1)}=(D+L)^{-1}\left(-U x^{(k)}+b\right)
$$

with

$$
\begin{aligned}
L & =\left[\begin{array}{ccccc}
0 & 0 & \ldots & \ldots & 0 \\
a_{21} & 0 & \ldots & & \vdots \\
a_{31} & a_{32} & \ddots & & 0 \\
\vdots & & & 0 & 0 \\
a_{n 1} & a_{n 2} & \ldots & a_{n, n-1} & 0
\end{array}\right] \\
D & =\operatorname{diag}\left(a_{11}, \ldots, a_{n n}\right) \\
U & =\left[\begin{array}{ccccc}
0 & a_{12} & \ldots & \ldots & a_{1 n} \\
0 & 0 & \ldots & \vdots \\
0 & 0 & \ddots & & a_{n-2, n} \\
\vdots & & & & a_{n-1, n} \\
0 & 0 & \ldots & 0 & 0
\end{array}\right]
\end{aligned}
$$

Splitting Methods

The Gauss-Seidel method is a member of a class of splitting methods where

$$
M x^{(k+1)}=N x^{(k)}+b
$$

with $A=M-N$.
For the Gauss-Seidel method

$$
\begin{aligned}
M & =D+L \\
N & =-U .
\end{aligned}
$$

Other members include Jacobi iterations with

$$
\begin{aligned}
M_{J} & =D \\
N_{J} & =-(L+U)
\end{aligned}
$$

Splitting methods are practical if solving linear systems with matrix M is easy.

Convergence

A splitting method for a non-singular matrix A will converge to the unique solution of $A x=b$ if

$$
\rho\left(M^{-1} N\right)<1
$$

where

$$
\rho(G)=\max \{|\lambda|: \lambda \text { is an eigenvalue of } G\}
$$

is the spectral radius of G.
This is true, for example, for the Gauss-Seidel method if A is strictly positive definite.
Convergence can be very slow if $\rho\left(M^{-1} N\right)$ is close to one.

Successive Over-Relaxation

A variation is to define

$$
x_{i}^{(k+1)}=\frac{\omega}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k+1)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}\right)+(1-\omega) x_{i}^{(k)}
$$

or, in matrix form,

$$
M_{\omega} x^{(k+1)}=N_{\omega} x^{(k)}+\omega b
$$

with

$$
\begin{aligned}
M_{\omega} & =D+\omega L \\
N_{\omega} & =(1-\omega) D-\omega U
\end{aligned}
$$

for some ω, usually with $0<\omega<1$.

- This is called successive over-relaxation (SOR), from its first application in a structural engineering problem.
- For some choices of ω we can have

$$
\rho\left(M_{\omega}^{-1} N_{\omega}\right) \ll \rho\left(M^{-1} N\right)
$$

and thus faster convergence.

- For some special but important problems the value of ω that minimizes $\rho\left(M_{\omega}^{-1} N_{\omega}\right)$ is known or can be computed.

Conjugate Gradient Method

If A is symmetric and strictly positive definite then the unique solution to $A x=b$ is the unique minimizer of the quadratic function

$$
f(x)=\frac{1}{2} x^{T} A x-x^{T} b
$$

Any nonlinear or quadratic optimization method can be used to find the minimum; the most common one used in this context is the conjugate gradient method.

Choose an initial x_{0}, set $d_{0}=-g_{0}=b-A x_{0}$, and then, while $g_{k} \neq 0$, for $k=0,1, \ldots$ compute

$$
\begin{aligned}
\alpha_{k} & =-\frac{g_{k}^{T} d_{k}}{d_{k}^{T} A d_{k}} \\
x_{k+1} & =x_{k}+\alpha_{k} d_{k} \\
g_{k+1} & =A x_{k+1}-b \\
\beta_{k+1} & =\frac{g_{k+1}^{T} A d_{k}}{d_{k}^{T} A d_{k}} \\
d_{k+1} & =-g_{k+1}+\beta_{k+1} d_{k}
\end{aligned}
$$

Some properties:

- An alternate form of g_{k+1} is

$$
g_{k+1}=g_{k}+\alpha_{k} A d_{k}
$$

This means only one matrix-vector multiplication is needed per iteration.

- The vector g_{k} is the gradient of f at x_{k}.
- The initial direction $d_{0}=-g_{0}$ is the direction of steepest descent from x_{0}
- The directions d_{0}, d_{1}, \ldots are A-conjugate, i.e. $d_{i}^{T} A d_{j}=0$ for $i \neq j$.
- The directions $d_{0}, d_{1}, \ldots, d_{n-1}$ are linearly independent.

Convergence

- With exact arithmetic,

$$
A x_{n}=b
$$

That is, the conjugate gradient algorithm terminates with the exact solution in n steps.

- Numerically this does not happen.
- Numerically, the directions will not be exactly A-conjugate.
- A convergence tolerance is used for termination; this can be based on the relative change in the solution

$$
\frac{\left\|x_{k+1}-x_{k}\right\|}{\left\|x_{k}\right\|}
$$

or the residual or gradient

$$
g_{k}=A x_{k}-b
$$

or some combination; an iteration count limit is also a good idea.

- If the algorithm does not terminate within n steps it is a good idea to restart it with a steepest descent step from the current x_{k}.
- In many sparse and structured problems the algorithm will terminate in far fewer than n steps for reasonable tolerances.
- Convergence is faster if the condition number of A is closer to one. The error can be bounded as

$$
\left\|x-x_{k}\right\|_{A} \leq 2\left\|x-x_{0}\right\|_{A}\left(\frac{\sqrt{\kappa_{2}(A)}-1}{\sqrt{\kappa_{2}(A)}+1}\right)^{k}
$$

with $\|x\|_{A}=\sqrt{x^{T} A x}$.

- Preconditioning strategies can improve convergence; these transform the original problem to one with $\tilde{A}=C^{-1} A C^{-1}$ for some symmetric strictly positive definite C, and then use the conjugate gradient method for \tilde{A}
- Simple choices of C are most useful; sometimes a diagonal matrix will do.
- Good preconditioners can sometimes be designed for specific problems.

A Simple Implementation

```
cg <- function(A, b, x, done) {
    dot <- function(x, y) crossprod(x, y)[1]
    n <- 0
    g<- A(x) - b
    d <- -g
    repeat {
        h <- A(d)
        u <- dot(d, h)
        a <- - dot (g, d) / u
        n <- n + 1
        x.old <- x
        x <- x + a * d
        g <- g + a * h
        b <- dot(h, g) / u
        d <- -g + b * d
        if (done(g, x, x.old, n))
            return(list(x = as.vector(x),
                    g = as.vector(g),
                        n = n))
    }
}
```

- The linear transformation and the termination condition are specified as functions.
- The termination condition can use a combination of the gradient, current solution, previous solution, or iteration count.
- A simple example:

```
> X <- crossprod(matrix(rnorm(25), 5))
> y <- rnorm(5)
> cg(function(x) X %*% x, y, rep(0, 5), function(g, x, x.old, n) n >= 5)
$x
[1] 11.461061 -7.774344 1.067511 87.276967 -8.151556
$g
[1] -9.219292e-13 2.566836e-13 -1.104117e-12 1.690870e-13 1.150191e-13
$n
[1] 5
> solve(X, y)
[1] 11.461061 -7.774344 1.067511 87.276967 -8.151556
```


Linear Algebra Software

Some Standard Packages

Open source packages developed at national laboratories:

- LINPACK for linear equations and least squares
- EISPACK for eigenvalue problems
- LAPACK newer package for linear equations and eigenvalues

Designed for high performance. Available from Netlib at
http://www.netlib.org/

Commercial packages:

- IMSL used more in US
- NAG used more in UK

BLAS: Basic Linear Algebra Subroutines

Modern BLAS has three levels:

Level 1: Vector and vector/vector operations such as

- dot product $x^{T} y$
- scalar multiply and add (axpy): $\alpha x+y$
- Givens rotations

Level 2: Matrix/vector operations, such as $A x$
Level 3: Matrix/matrix operations, such as $A B$

- LINPACK uses only Level 1 ; LAPACK uses all three levels.
- BLAS defines the interface.
- Standard reference implementations are available from Netlib.
- Highly optimized versions are available from hardware vendors and research organizations.

Cholesky Factorization in LAPACK

The core of the DPOTRF routine:

```
*
* Compute the Cholesky factorization A = L*L'.
*
            DO 20 J = 1, N
    Compute L(J,J) and test for non-positive-definiteness.
        AJJ = A( J, J ) - DDOT (J-1, A(J, 1 ), LDA, A(J, 1 ),
            LDA )
            IF( AJJ.LE.ZERO ) THEN
            A( J, J ) = AJJ
            GO TO 30
            END IF
            AJJ = SQRT( AJJ )
            A( J, J ) = AJJJ
*
* Compute elements J+1:N of column J.
*
            IF( J.LT.N ) THEN
            CALL DGEMV ( 'No transpose', N-J, J-1, -ONE, A( J+1, 1 ),
                                    LDA, A(J, 1 ), LDA, ONE, A(J+1, J ), 1 )
            CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
            END IF
                CONTINUE
```

- DDOT and DSCAL are Level 1 BLAS routines
- DGEMV is a Level 2 BLAS routine

ATLAS: Automatically Tuned Linear Algebra Software

Available at
http://math-atlas.sourceforge.net/

- Analyzes machine for properties such as cache characteristics.
- Runs extensive tests to determine performance trade-offs.
- Creates Fortran and C versions of BLAS and some LAPACK routines tailored to the particular machine.
- Provides some routines that take advantage of multiple processors using worker threads.

OpenBLAS

- Another high-performance BLAS library was developed and maintained by Kazushige Goto.
- This is now being developed and maintained as the OpenBLAS project, available from
http://xianyi.github.com/OpenBLAS/
- Also provides versions that take advantage of multiple processors.

Vendor Libraries

- Intel provides the Math Kernel Libraries (MKL)
- AMD has a similar library.

Using a High-Performance BLAS with R

- R comes with a basic default BLAS.
- R can be built to use a specified BLAS.
- Once built one can change the BLAS R uses by replacing the shared library R uses.
- Some simple computations using the default and MKL vendor BLAS for the data

```
N <- 1000
X <- matrix(rnorm(N^2), N)
XX <- crossprod(X)
```

Results:

Timing Expression	Default/ Reference	$\begin{gathered} \text { MKL } \\ \text { SEQ } \end{gathered}$	$\begin{gathered} \text { MKL } \\ \text { THR } \end{gathered}$
system.time(for (i in 1:5) crossprod(X))	2.107	0.405	0.145
system.time(for (i in 1:5) X \% *\% X)	3.401	0.742	0.237
system.time(svd (X))	3.273	0.990	0.542
system.time(for (i in 1:5) qr (X))	2.290	1.094	1.107
system.time(for (i in 1:5) qr (X, LAPACK=TRUE))	2.629	0.834	0.689
system.time(for (i in 1:20) chol(XX))	2.824	0.556	0.186

- These results are based on the non-threaded and threaded Intel Math Kernel Library (MKL) using the development version of R.
- Versions of the current R using MKL for BLAS are available as
/group/statsoft/R-patched/build-MKL-seq/bin/R /group/statsoft/R-patched/build-MKL-thr/bin/R
- Currently the standard version of R on our Linux systems seems to be using OpenBLAS with multi-threading disabled.

Final Notes

- Most reasonable approaches will be accurate for reasonable problems.
- Choosing good scaling and centering can make problems more reasonable (both numerically and statistically)
- Most methods are efficient enough for our purposes.
- In some problems worrying about efficiency is important if reasonable problem sizes are to be handled.
- Making sure you are using the right approach to the right problem is much more important than efficiency.
- Some quotes:
- D. E. Knuth, restating a comment by C. A. R. Hoare:

We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil.

- W. A. Wulf:

More computing sins are committed in the name of efficiency (without necessarily achieving it) than for any other single reason - including blind stupidity.

