
Density Estimation and Smoothing

Density Estimation

• Suppose we have a random sample X1, . . . ,Xn from a population with
density f .

• Nonparametric density estimation is useful if we

– want to explore the data without a specific parametric model

– want to assess the fit of a parametric model

– want a compromise between a parametric and a fully non-parametric
approach

• A simple method for estimating f at a point x:

f̂n(x) =
no. of Xi in [x−h,x+h]

2hn

for some small value of h

• This estimator has bias

Bias( f̂n(x)) =
1

2h
ph(x)− f (x)

and variance

Var( f̂n(x)) =
ph(x)(1− ph(x))

4h2n
with

ph(x) =
∫ x+h

x−h
f (u)du
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• If f is continuous at x and f (x)> 0, then as h→ 0

– the bias tends to zero;

– the variance tends to infinity.

• Choosing a good value of h involves a variance-bias tradeoff.
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Kernel Density Estimation

• The estimator f̂n(x) can be written as

f̂n(x) =
1
nh

n

∑
i=1

K
(

x− xi

h

)
with

K(u) =

{
1/2 if |u|< 1
0 otherwise

• Other kernel functions K can be used; usually

– K is a density function

– K has mean zero

– K has positive, finite variance σ2
K

Often K is symmetric.

• Common choices of K:

K(u) Range Name
1/2 |u|< 1 Uniform, Boxcar

1√
2π

e−u2/2 Gaussian
1−|u| |u|< 1 Triangular

3
4(1−u2) |u|< 1 Epanechnikov

15
16(1−u2)2 |u|< 1 Biweight
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Mean Square Error for Kernel Density Estimators

• The bias and variance of a kernel density estimator are of the form

Bias( f̂n(x)) =
h2σ2

K f ′′(x)
2

+O(h4)

Var( f̂n(x)) =
f (x)R(K)

nh
+o
(

1
nh

)
with

R(g) =
∫

g(x)2dx

if h→ 0 and nh→ ∞ and f is reasonable.

• The pointwise asymptotic mean square error is

AMSE( f̂n(x)) =
f (x)R(K)

nh
+

h4σ4
K f ′′(x)2

4

and the asymptotic mean integrated square error is

AMISE( f̂n) =
R(K)

nh
+

h4σ4
KR( f ′′)
4

• The resulting asymptotically optimal bandwidths h are

h0(x) =
(

f (x)R(K)

σ4
K f ′′(x)2

)1/5

n−1/5

h0 =

(
R(K)

σ4
KR( f ′′)

)1/5

n−1/5

with optimal AMSE and AMISE

AMSE0( f̂n(x)) =
5
4
(σK f (x)R(K))4/5 f ′′(x)2/5n−4/5

AMISE0( f̂n) =
5
4
(σKR(K))4/5R( f ′′)1/5n−4/5
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Choosing a Bandwidth

• One way to chose a bandwidth is to target a particular family, such as a
Gaussian f :

– The optimal bandwidth for minimizing AMISE when f is Gaussian
and K is Gaussian

h0 = 1.059σn−1/5

– σ can be estimated using S or the interquartile range
– The default for density in R is

0.9×min(S, IQR/1.34)n−1/5

based on a suggestion of Silverman (1986, pp 45–47).

• This can often serve as a reasonable starting point.

• It does not adapt to information in the data that suggests departures from
normality.

• So-called plug-in methods estimate R( f ′′) to obtain

ĥ =

(
R(K)

σ4
KR̂( f ′′)

)1/5

n−1/5

• The Sheather-Jones method uses a different bandwidth (and kernel?) to
estimate f̂ and then estimates R( f ′′) by R( f̂ ′′).

• Specifying bw="SJ" in R’s density uses the Sheather-Jones method.
There are two variants:

– SJ-dpi: direct plug-in
– SJ-ste: solve the equation

The default for bw="SJ" is ste.

• Other approaches based on leave-one-out cross-validation are available.

• Many of these are available as options in R’s density and/or other
density estimation functions available in R packages.

• Variable bandwidth approaches can be based on pilot estimates of the
density produced with simpler fixed bandwidth rules.
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Example: Durations of Eruptions of Old Faithful

• Based on an example in Venables and Ripley (2002).

• Durations, in minutes, of 299 consecutive eruptions of Old Faithful were
recorded.

• The data are available as data set geyser in package MASS.

• Some density estimates are produced by

library(MASS)
data(geyser)
truehist(geyser$duration,nbin=25,col="lightgrey")
lines(density(geyser$duration))
lines(density(geyser$duration,bw="SJ"), col="red")
lines(density(geyser$duration,bw="SJ-dpi"), col="blue")
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• Animation can be a useful way of understanding the effect of smoothing
parameter choice. See files tkdens.R, shinydens.R, and geyser.R
in
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http://www.stat.uiowa.edu/˜luke/classes/
STAT7400/examples/

Also

http://www.stat.uiowa.edu/˜luke/classes/
STAT7400/examples/smoothex.Rmd
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Issues and Notes

• Kernel methods do not work well at boundaries of bounded regions.

• Transforming to unbounded regions is often a good alternative.

• Variability can be assessed by asymptotic methods or by bootstrapping.

• A crude MCMC bootstrap animation:

g <- geyser$duration
for (i in 1:1000) {

g[sample(299,1)] <- geyser$duration[sample(299,1)]
plot(density(g,bw="SJ"),ylim=c(0,1.2),xlim=c(0,6))
Sys.sleep(1/30)

}

• Computation is often done with equally spaced bins and fast Fourier
transforms.

• Methods that adjust bandwidth locally can be used.

• Some of these methods are based on nearest-neighbor fits and local poly-
nomial fits.

• Spline based methods can be used on the log scale; the logspline
package implements one approach.
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Density Estimation in Higher Dimensions

• Kernel density estimation can in principle be used in any number of di-
mensions.

• Usually a d-dimensional kernel Kd of the product form

Kd(u) =
d

∏
i=1

K1(ui)

is used.

• The kernel density estimate is then

f̂n(x) =
1

ndet(H)

n

∑
i=1

K(H−1(x− xi))

for some matrix H.

• Suppose H = hA where det(A) = 1. The asymptotic mean integrated
square error is of the form

AMISE =
R(K)

nhd +
h4

4

∫
(trace(AAT

∇
2 f (x)))2dx

and therefore the optimal bandwidth and AMISE are of the form

h0 = O(n−1/(d+4))

AMISE0 = O(n−4/(d+4))
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• Convergence is very slow if d is more than 2 or 3 since most of higher
dimensional space will be empty—this is known as the curse of dimen-
sionality.

• Density estimates in two dimensions can be visualized using perspective
plots, surface plots, image plots, and contour plots.

• Higher dimensional estimates can often only be visualized by condition-
ing, or slicing.

• The kde2d function in package MASS provides two-dimensional kernel
density estimates; an alternative is bkde2D in package KernSmooth.

• The kde3d function in the misc3d package provides three-dimensional
kernel density estimates.
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Example: Eruptions of Old Faithful

• In addition to duration times, waiting times, in minutes, until the follow-
ing eruption were recorded.

• The duration of an eruption can be used to predict the waiting time until
the next eruption.

• A modified data frame containing the previous duration is constructed by

geyser2<-data.frame(as.data.frame(geyser[-1,]),
pduration=geyser$duration[-299])

• Estimates of the joint density of previous eruption duration and waiting
time are computed by

kd1 <- with(geyser2,
kde2d(pduration,waiting,n=50,lims=c(0.5,6,40,110)))

contour(kd1,col="grey",xlab="Previous Duration", ylab="waiting")
with(geyser2, points(pduration,waiting,col="blue"))
kd2 <- with(geyser2,

kde2d(pduration,waiting,n=50,lims=c(0.5,6,40,110),
h=c(width.SJ(pduration),width.SJ(waiting))))

contour(kd2,xlab="Previous Duration", ylab="waiting")

Rounding of some durations to 2 and 4 minutes can be seen.
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Visualizing Density Estimates

Some examples are given in geyser.R and kd3.R in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/
examples/

• Animation can be a useful way of understanding the effect of smoothing
parameter choice.

• Bootstrap animation can help in visualizing uncertainty.

• For 2D estimates, options include

– perspective plots

– contour plots

– image plots, with or without contours

• For 3D estimates contour plots are the main option

• Example: Data and contours for mixture of three trivariate normals and
two bandwidths

BW = 0.2 BW = 0.5

12

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/


Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Kernel Smoothing and Local Regression

• A simple non-parametric regression model is

Yi = m(xi)+ εi

with m a smooth mean function.

• A kernel density estimator of the conditional density f (y|x) is

f̂n(y|x) =
1

nh2 ∑K
(x−xi

h

)
K
(y−yi

h

)
1
nh ∑K

(x−xi
h

) =
1
h

∑K
(x−xi

h

)
K
(y−yi

h

)
∑K

(x−xi
h

)
• Assuming K has mean zero, an estimate of the conditional mean is

m̂n(x) =
∫

y f̂n(y|x)dy =
∑K

(x−xi
h

)∫
y1

hK
(y−yi

h

)
dy

∑K
(x−xi

h

)
=

∑K
(x−xi

h

)
yi

∑K
(x−xi

h

) = ∑wi(x)yi

This is the Nadaraya-Watson estimator.

• This estimator can also be viewed as the result of a locally constant fit:
m̂n(x) is the value β0 that minimizes

∑wi(x)(yi−β0)
2

• Higher degree local polynomial estimators estimate m(x) by minimizing

∑wi(x)(yi−β0−β1(x− xi)−·· ·−βp(x− xi)
p)2

• Odd values of p have advantages, and p= 1, local linear fitting, generally
works well.

• Local cubic fits, p = 3, are also used.

• Problems exist near the boundary; these tend to be worse for higher de-
gree fits.
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• Bandwidth can be chosen globally or locally.

• A common local choice uses a fraction of nearest neighbors in the x
direction.

• Automatic choices can use estimates of σ and function roughness and
plug in to asymptotic approximate mean square errors.

• Cross-validation can also be used; it often undersmooths.

• Autocorrelation creates an identifiability problem.

• Software available in R includes

– ksmooth for compatibility with S (but much faster).

– locpoly for fitting and dpill for bandwidth selection in package
KernSmooth.

– lowess and loess for nearest neighbor based methods; also try
to robustify.

– supsmu, Friedman’s super smoother, a very fast smoother.

– package locfit on CRAN

All of these are also available for R; some are available as stand-alone
code.
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Spline Smoothing

• Given data (x1,y1), . . . ,(xn,yn) with xi ∈ [a,b] one way to fit a smooth
mean function is to choose m to minimize

S(m,λ ) = ∑(yi−m(xi))
2 +λ

∫ b

a
m′′(u)2du

The term λ
∫ b

a m′′(u)2du is a roughness penalty.

• Among all twice continuously differentiable functions on [a,b] this is
minimized by a natural cubic spline with knots at the xi. This minimizer
is called a smoothing spline.

• A cubic spline is a function g on an interval [a,b] such that for some
knots ti with a = t0 < t1 < · · ·< tn+1 = b

– on (ti−1, ti) the function g is a cubic polynomial

– at t1, . . . , tn the function values, first and second derivatives are con-
tinuous.

• A cubic spline is natural if the second and third derivatives are zero at a
and b.

• A natural cubic spline is linear on [a, t1] and [tn,b].

• For a given λ the smoothing spline is a linear estimator.

• The set of equations to be solved is large but banded.

• The fitted values m̂n(xi,λ ) can be viewed as

m̂n(x,λ ) = A(λ )y

where A(λ ) is the smoothing matrix or hat matrix for the linear fit.

• The function smooth.spline implements smoothing splines in R.

15
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Example: Old Faithful Eruptions

• A nonparametric fit of waiting time to previous duration may be useful
in predicting the time of the next eruption.

• The different smoothing methods considered produce the following:

with(geyser2, {
plot(pduration,waiting)
lines(lowess(pduration,waiting), col="red")
lines(supsmu(pduration,waiting), col="blue")
lines(ksmooth(pduration,waiting), col="green")
lines(smooth.spline(pduration,waiting), col="orange")

})
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• An animated version of the smoothing spline (available on line) shows
the effect of varying the smoothing parameter.

16

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/geyser.R


Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Degrees of Freedom of a Linear Smoother

• For a linear regression fit with hat matrix

H = X(XT X)−1XT

and full rank regressor matrix X

tr(H) = number of fitted parameters = degrees of freedom of fit

• By analogy define the degrees of freedom of a linear smoother as

dffit = tr(A(λ ))

For the geyser data, the degrees of freedom of a smoothing spline fit with
the default bandwidth selection rule are

> sum(with(geyser2,smooth.spline(pduration,waiting))$lev)
[1] 4.169843
> with(geyser2,smooth.spline(pduration,waiting))$df
[1] 4.169843

• For residual degrees of freedom the definition usually used is

dfres = n−2tr(A(λ ))+ tr(A(λ )A(λ )T )

• Assuming constant error variance, a possible estimate is

σ̂
2
ε =

∑(yi− m̂n(xi,λ ))
2

dfres(λ )
=

RSS(λ )
dfres(λ )

• The simpler estimator

σ̂
2
ε =

RSS(λ )
tr(I−A(λ ))

=
RSS(λ )
n−dffit

is also used.

• To reduce bias it may make sense to use a rougher smooth for variance
estimation than for mean function estimation.

17
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Choosing Smoothing Parameters for Linear Smoothers

• Many smoothing methods are linear for a given value of a smoothing
parameter λ .

• Choice of the smoothing parameter λ can be based on leave-one-out
cross-validation, i.e. minimizing the cross-validation score

CV(λ ) =
1
n ∑(yi− m̂(−i)

n (xi,λ ))
2

• If the smoother satisfies (at least approximately)

m̂(−i)
n (xi,λ ) =

∑ j 6=i A(λ )i jy j

∑ j 6=i A(λ )i j

and
n

∑
j=1

A(λ )i j = 1 for all i

then the cross-validation score can be computed as

CV(λ ) =
1
n ∑

(
yi− m̂n(xi,λ )

1−Aii(λ )

)2

• The generalized cross-validation criterion, or GCV, uses average lever-
age values:

GCV(λ ) =
1
n ∑

(
yi− m̂n(xi,λ )

1−n−1trace(A(λ ))

)2

• The original motivation for GCV was computational; with better algo-
rithms this is no longer an issue.
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• An alternative motivation for GCV:

– For an orthogonal transformation Q one can consider fitting yQ =
QY with AQ(λ ) = QA(λ )QT .

– Coefficient estimates and SSres are the same for all Q, but the CV
score is not.

– One can choose an orthogonal transformation such that the diagonal
elements of AQ(λ ) are constant.

– For any such Q we have AQ(λ )ii = n−1trace(AQ(λ ))= n−1trace(A(λ ))

• Despite the name, GCV does not generalize CV.

• Both CV and GCV have a tendency to undersmooth.
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• For the geyser data the code

with(geyser2, {
lambda <- seq(0.5,2,len=30)
f <- function(s, cv = FALSE)

smooth.spline(pduration,waiting, spar=s, cv=cv)$cv
gcv <- sapply(lambda, f)
cv <- sapply(lambda, f, TRUE)
plot(lambda, gcv, type="l")
lines(lambda, cv, col="blue")

})

extracts and plots GCV and CV values:

0.5 1.0 1.5 2.0

39
40

41
42

lambda

gc
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• Both criteria select a value of λ close to 1.
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• Other smoothing parameter selection criteria include

– Mallows Cp,
Cp = RSS(λ )+2σ̂

2
ε dffit(λ )

– Akaike’s information criterion (AIC)

AIC(λ ) = log{RSS(λ )}+2dffit(λ )/n

– Corrected AIC of Hurvich, Simonoff, and Tsai (1998)

AICC(λ ) = log{RSS(λ )}+ 2(dffit(λ )+1)
n−dffit(λ )−2

21
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Spline Representations

• Splines can be written in terms of many different bases,

– B-splines
– truncated power basis
– radial or thin plate basis

Some are more useful numerically, others have interpretational advan-
tages.

• One useful basis for a cubic spline with knots {κ1, . . . ,κK} is the radial
basis or thin plate basis

1,x, |x−κ1|3, . . . , |x−κK|3

• More generally, a basis for splines of order 2m−1 is

1,x, . . . ,xm−1, |x−κ1|2m−1, . . . , |x−κK|2m−1

for m = 1,2,3, . . . .

– m = 2 produces cubic splines
– m = 1 produces linear splines

• In terms of this basis a spline is a function of the form

f (x) =
m−1

∑
j=0

β jx j +
K

∑
k=1

δk|x−κk|2m−1

• References:

– P. J. Green and B. W. Silverman (1994). Nonparametric Regression
and Generalied Linear Models

– D. Ruppert, M. P. Wand, and R. J. Carroll (2003). Semiparametric
Regression. SemiPar is an R package implementing the methods
of this book.

– G. Wahba (1990). Spline Models for Observational Data.
– S. Wood (2017). Generalized Additive Models: An Introduction

with R, 2nd Ed.. This is related to the mgcv package.
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• A generic form for the fitted values is

ŷ = X0β +X1δ .

• Regression splines refers to models with a small number of knots K fit
by ordinary least squares, i.e. by choosing β ,δ to minimize

‖y−X0β −X1δ‖2

• Penalized spline smoothing fits models with a larger number of knots
subject to a quadratic constraint

δ
T Dδ ≤C

for a positive definite D and some C.

• Equivalently, by a Lagrange multiplier argument, the solution minimizes
the penalized least squares criterion

‖y−X0β −X1δ‖2 +λδ
T Dδ

for some λ > 0.

• A common form of D is

D =
[
|κi−κ j|2m−1]

1≤i, j≤K

• A variant uses
D = Ω

1/2(Ω1/2)T

with
Ω =

[
|κi−κ j|2m−1]

1≤i, j≤K

where the principal square root M1/2 of a matrix M with SVD

M =Udiag(d)V T

is defined as
M1/2 =Udiag(

√
d)V T

This form ensures that D is at least positive semi-definite.
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• Smoothing splines are penalized splines of degree 2m−1 = 3 with knots
κi = xi and

D =
[
|κi−κ j|3

]
1≤i, j≤n

and the added natural boundary constraint

XT
0 δ = 0

• For a natural cubic spline ∫
g′′(t)2dt = δ

T Dδ

The quadratic form δ T Dδ is strictly positive definite on the subspace
defined by XT

0 δ = 0.

• Penalized splines can often approximate smoothing splines well using
far fewer knots.

• The detailed placement of knots and their number is usually not critical
as long as there are enough.

• Simple default rules that often work well (Ruppert, Wand, and Carroll
2003):

– knot locations:

κk =

(
k+1
K +2

)
th sample quantile of unique xi

– number of knots:

K = min
(

1
4
× number of unique xi, 35

)
The SemiPar package actually seems to use the default

K = max
(

1
4
× number of unique xi, 20

)
• More sophisticated methods for choosing number and location of knots

are possible but not emphasized in the penalized spline literature at this
point.
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A Useful Computational Device

To minimize
‖Y −X0β −X1δ‖2 +λδ

T Dδ

for a given λ , suppose B satisties

λD = BT B

and

Y ∗ =
[
Y
0

]
X∗ =

[
X0 X1
0 B

]
β
∗ =

[
β

δ

]
Then

‖Y ∗−X∗β ∗‖2 = ‖Y −X0β −X1δ‖2 +λδ
T Dδ

So β̂ and δ̂ can be computed by finding the OLS coefficients for the regression
of Y ∗ on X∗.
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Penalized Splines and Mixed Models

• For strictly positive definite D and a given λ minimizing the objective
function

‖y−X0β −X1δ‖2 +λδ
T Dδ

is equivalent to maximizing the log likelihood for the mixed model

Y = X0β +X1δ + ε

with fixed effects parameters β and

ε ∼ N(0,σ2
ε I)

δ ∼ N(0,σ2
δ

D−1)

λ = σ
2
ε /σ

2
δ

with λ known.

• Some consequences:

– The penalized spline fit at x is the BLUP for the mixed model with
known mixed effects covariance structure.

– Linear mixed model software can be used to fit penalized spline
models (the R package SemiPar does this).

– The smoothing parameter λ can be estimated using ML or REML
estimates of σ2

ε and σ2
δ

from the linear mixed model.

– Interval estimation/testing formulations from mixed models can be
used.

• Additional consequences:

– The criterion has a Bayesian interpretation.

– Extension to models containing smoothing and mixed effects are
immediate.

– Extension to generalized linear models can use GLMM methodol-
ogy.

26
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Example: Old Faithful Eruptions

• Using the function spm from SemiPar a penalized spline model can be
fit with

> library(SemiPar)
> attach(geyser2) # needed because of flaws in spm implementation
> summary(spm(waiting ˜ f(pduration)))
Summary for non-linear components:

df spar knots
f(pduration) 4.573 2.9 28

Note this includes 1 df for the intercept.

• The plot method for the spm result produces a plot with pointwise error
bars:

> plot(spm(waiting ˜ f(pduration)), ylim = range(waiting))
> points(pduration, waiting)
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A fit using mgcv:

> library(mgcv)
> gam.fit <- gam(waiting ˜ s(pduration), data = geyser2)
> summary(gam.fit)

Family: gaussian
Link function: identity

Formula:
waiting ˜ s(pduration)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 72.2886 0.3594 201.1 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(pduration) 3.149 3.987 299.8 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

R-sq.(adj) = 0.801 Deviance explained = 80.3%
GCV = 39.046 Scale est. = 38.503 n = 298

A plot of the smooth component with the mean-adjusted waiting times is pro-
duced by

> plot(gam.fit)
> with(geyser2, points(pduration, waiting - mean(waiting)))
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Smoothing with Multiple Predictors

• Many methods have natural generalizations

• All suffer from the curse of dimensionality.

• Generalizations to two or three variables can work reasonably.

• Local polynomial fits can be generalized to p predictors.

• loess is designed to handle multiple predictors, in principle at least.

• Spline methods can be generalized in two ways:

– tensor product splines use all possible products of single variable
spline bases.

– thin plate splines generalize the radial basis representation.

• A thin plate spline of order m in d dimensions is of the form

f (x) =
M

∑
i=1

βiφi(x)+
K

∑
k=1

δkr(x−κk)

with

r(u) =

{
‖u‖2m−d for d odd
‖u‖2m−d log‖u‖ for d even

and where the φi are a basis for the space of polynomials of total degree
≤ m−1 in d variables. The dimension of this space is

M =

(
d +m−1

d

)
If d = 2,m = 2 then M = 3 and a basis is

φ1(x) = 1,φ2(x) = x1,φ3(x) = x2
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Penalized Thin Plate Splines

• Penalized thin plate splines usually use a penalty with

D = Ω
1/2(Ω1/2)T

where
Ω = [r(κi−κ j)]

1≤i, j≤K

This corresponds at least approximately to using a squared derivative
penalty.

• Simple knot selection rules are harder for d > 1.

• Some approaches:

– space-filling designs (Nychka and Saltzman, 1998)

– clustering algorithms, such as clara
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Multivariate Smoothing Splines

• The bivariate smoothing spline objective of minimizing

∑(yi−g(xi))
2 +λJ(g)

with

J(g) =
∫ ∫ (

∂ 2g
∂x2

1

)2

+2
(

∂ 2g
∂x1∂x2

)2

+

(
∂ 2g
∂x2

2

)2

dx1dx2

is minimized by a thin plate spline with knots at the xi and a constraint
on the δk analogous to the natural spline constraint.

• Scaling of variables needs to be addressed

• Thin-plate spline smoothing is closely related to kriging.

• The general smoothing spline uses

D = X1 = [r(κi−κi)]

with the constraint XT
0 δ = 0.

• Challenge: the linear system to be solved for each λ value to fit a smooth-
ing spline is large and not sparse.
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Thin Plate Regression Splines

• Wood (2017) advocates an approach called thin plate regression splines
that is implemented in the mgcv package.

• The approach uses the spectral decomposition of X1

X1 =UEUT

with E the diagonal matrix of eigen values, and the columns of U the
corresponding eigen vectors.

• The eigen values are ordered so that |Eii| ≥ |E j j| for i≤ j.

• The approach replaces X1 with a lower rank approximation

X1,k =UkEkUT
k

using the k largest eigen values in magnitude.

• The implementation uses an iterative algorithm (Lanczos iteration) for
computing the largest k eigenvalues/singular values and vectors.

• The k leading eigenvectors form the basis for the fit.

• The matrix X1 does not need to be formed explicitly; it is enough to be
able to compute X1v for any v.

• k could be increased until the change in estimates is small or a specified
limit is reached.

• As long as k is large enough results are not very sensitive to the particular
value of k.

• mgcv by default uses k = 10×3d−1 for a d-dimensional smooth.
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• This approach seems to be very effective in practice and avoids the need
to specify a set of knots.

• The main drawback is that the choice of k and its impact on the basis
used are less interpretable.

• With this approach the computational cost is reduced from O(n3) to
O(n2k).

• For large n Wood (2017) recommends using a random sample of nr rows
to reduce the computation cost to O(n2

r k). (From the help files the ap-
proach in mgcv looks more like O(n×nr× k) to me).
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Example: Scallop Catches

• Data records location and size of scallop catches off Long Island.

• A bivariate penalized spline fit is computed by

> data(scallop)
> attach(scallop)
> log.catch <- log(tot.catch + 1)
> fit <- spm(log.catch ˜ f(longitude, latitude))
> summary(fit)

Summary for non-linear components:

df spar knots
f(longitude,latitude) 25.12 0.2904 37

• Default knot locations are determined using clara

• Knot locations and fit:
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A fit using mgcv would use

> scallop.gam <- gam(log.catch ˜ s(longitude, latitude), data = scallop)
> summary(scallop.gam)

Family: gaussian
Link function: identity

Formula:
log.catch ˜ s(longitude, latitude)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.4826 0.1096 31.77 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(longitude,latitude) 26.23 28.53 8.823 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

R-sq.(adj) = 0.623 Deviance explained = 69%
GCV = 2.1793 Scale est. = 1.7784 n = 148
> plot(scallop.gam)
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Computational Issues

• Algorithms that select the smoothing parameter typically need to com-
pute smooths for many parameter values.

• Smoothing splines require solving an n×n system.

– For a single variable the fitting system can be made tri-diagonal.

– For thin plate splines of two or more variables the equations are not
sparse.

• Penalized splines reduce the computational burden by choosing fewer
knots, but then need to select knot locations.

• Thin plate regression splines (implemented in the mgcv package) use a
rank k approximation for a user-specified k.

• As long as the number of knots or the number of terms k is large enough
results are not very sensitive to the particular value of k.

• Examples are available in

http://www.stat.uiowa.edu/˜luke/classes/
STAT7400/examples/smoothex.Rmd
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