
Computer Intensive Statistics
STAT:7400

Luke Tierney

Spring 2019

Introduction

Syllabus and Background

Basics

• Review the course syllabus

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/syllabus.pdf

• Fill out info sheets.

– name
– field
– statistics background
– computing background

Homework

• some problems will cover ideas not covered in class

• working together is OK

• try to work on your own

• write-up must be your own

• do not use solutions from previous years

• submission by GitHub at http://github.uiowa.edu or by Icon
at http://icon.uiowa.edu/.

1

http://www.stat.uiowa.edu/~luke/classes/STAT7400/syllabus.pdf
http://github.uiowa.edu
http://icon.uiowa.edu/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Project

• Find a topic you are interested in.

• Written report plus possibly some form of presentation.

Ask Questions

• Ask questions if you are confused or think a point needs more discussion.

• Questions can lead to interesting discussions.

2

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Computational Tools

Computers and Operating Systems

• We will use software available on the Linux workstations in the Mathe-
matical Sciences labs (Schaeffer 346 in particular).

• Most things we will do can be done remotely by using ssh to log into
one of the machines in Schaeffer 346 using ssh. These machines are

l-lnx2xy.stat.uiowa.edu

with xy = 00, 01, 02, . . . , 19.

• You can also access the CLAS Linux systems using a browser at

http://fastx.divms.uiowa.edu/

– This connects you to one of several servers.

– It is OK to run small jobs on these servers.

– For larger jobs you should log into one of the lab machines.

• Most of the software we will use is available free for installing on any
Linux, Mac OS X, or Windows computer.

• You are free to use any computer you like, but I will be more likely to be
able to help you resolve problems you run into if you are using the lab
computers.

3

http://fastx.divms.uiowa.edu/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Git and GitHub

• Git is a version control system that is very useful for keeping track of
revision history and collaboration.

• We will be using the University’s GitHub server.

• Today you should log into the page http://github.uiowa.edu
with your HawkID.

• I will then create a repository for you to use within the class organization
at https://github.uiowa.edu/STAT7400-Spring-2019.

• A brief introduction to Git is available at http://www.stat.uiowa.
edu/˜luke/classes/STAT7400/git.html.

What You Will Need

• You will need to know how to

– run R

– Compile and run C programs

• Other Tools you may need:

– text editor

– command shell

– make, grep, etc.

4

http://github.uiowa.edu
https://github.uiowa.edu/STAT7400-Spring-2019
http://www.stat.uiowa.edu/~luke/classes/STAT7400/git.html
http://www.stat.uiowa.edu/~luke/classes/STAT7400/git.html

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Class Web Pages

The class web page

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/

contains some pointers to available tools and documentation. It will be up-
dated throughout the semester.

Reading assignments and homework will be posted on the class web pages.

Computing Account Setup: Do This Today!

• Make sure you are able to log into the CLAS Linux systems with your
HawkID and password. The resources page at

http://www.stat.uiowa.edu/˜luke/classes/
STAT7400/resources.html

provides some pointers on how to do this. If you cannot, please let me
know immediately.

• If you have not done so already, log into the page

http://github.uiowa.edu

with your HawkID to activate your GitHub account.

5

http://www.stat.uiowa.edu/~luke/classes/STAT7400/
http://www.stat.uiowa.edu/~luke/classes/STAT7400/resources.html
http://www.stat.uiowa.edu/~luke/classes/STAT7400/resources.html
http://github.uiowa.edu

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Computational Statistics, Statistical Computing, and
Data Science

Computational Statistics: Statistical procedures that depend heavily on com-
putation.

• Statistical graphics

• Bootstrap

• MCMC

• Smoothing

• Machine lerning

• . . .

Statistical Computing: Computational tools for data analysis.

• Numerical analysis

• Optimization

• Design of statistical languages

• Graphical tools and methods

• ...

Data Science: A more recent term, covering areas like

• Accessing and cleaning data

• Working with big data

• Working with complex and non-standard data

• Machine learning methods

• Graphics and visualization

• . . .

Overlap: The division is not sharp; some consider the these terms to be equiv-
alent.

6

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Course Topics

• The course will cover, in varying levels of detail, a selection from these
topics in Computational Statistics, Statistical Computing, and Data Sci-
ence:

– basics of computer organization

– data technologies

– graphical methods and visualization

– random variate generation

– design and analysis of simulation experiments

– bootstrap

– Markov chain Monte Carlo

– basics of computer arithmetic

– numerical linear algebra

– optimization algorithms for model fitting

– smoothing

– machine learning and data mining

– parallel computing in statistics

– symbolic computation

– use and design of high level languages

• Some topics will be explored in class, some in homework assignments.

• Many could fill an entire course; we will only scratch the surface.

• Your project is an opportunity to go into more depth on one or more of
these areas.

• The course will interleave statistical computing with computational statis-
tics and data science; progression through the topics covered will not be
linear.

• Working computer assignments and working on the project are the most
important part.

7

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Class discussions of issues that arise in working problems can be very
valuable, so raise issues for discussion.

• Class objectives:

– Become familiar with some ideas from computational statistics, sta-
tistical computing, and data science.

– Develop skills and experience in using the computer as a research
tool.

8

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Thumbnail Sketch of R

• R is a language for statistical computing and graphics.

• Related to the S language developed at Bell Labs.

• High level language

– somewhat functional in nature

– has some object-oriented features

– interactive

– can use compiled C or FORTRAN code

• many built-in features and tools

• well developed extension mechanism (packages)

– tools for writing packages

– many contributed packages available.

9

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some examples:

• Fitting a linear regression to simulated data:

> x <- c(1,2,3,4,3,2,1)
> y <- rnorm(length(x), x + 2, 0.2)
> lm(y ˜ x)

Call:
lm(formula = y ˜ x)

Coefficients:
(Intercept) x

1.887 1.019

• A function to sum the values in a vector

> mysum <- function(x) {
+ s <- 0
+ for (y in x) s <- s + y
+ s
+ }
> mysum(1:10)
[1] 55

10

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Thumbnail Sketch of C

• C is a low level language originally developed for systems programming

• Originally developed at Bell Labs for programming UNIX

• Can be used to write very efficient code

• Can call libraries written in C, FORTRAN, etc. on most systems

• A reasonable book on C is Practical C Programming, 3rd Edition, By
Steve Oualline. The publisher’s web site is

http://www.oreilly.com/catalog/pcp3/

There are many other good books available.

• A simple example program is available at

http://www.stat.uiowa.edu/˜luke/classes/
STAT7400/examples/hello.

11

http://www.oreilly.com/catalog/pcp3/
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/hello
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/hello

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: summing the numbers in a vector:

#include <stdio.h>

#define N 1000000
#define REPS 1000

double x[N];

double sum(int n, double *x)
{

double s;
int i;

s = 0.0;
for (i = 0; i < N; i++) {

s = s + x[i];
}
return s;

}

int main()
{

double s;
int i, j;

for (i = 0; i < N; i++)
x[i] = i + 1;

for (j = 0; j < REPS; j++)
s = sum(N, x);

printf("sum = %f\n", s);
return 0;

}

12

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Speed Comparisons

Consider two simple problems:

• computing the sum of a vector of numbers

• computing the dot product of two vectors

The directory

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/
examples/speed

contains code for these problems in C, Lisp-Stat, and R. Timings are obtained
with commands like

time ddot

for the C versions, and

x<-as.double(1:1000000)
system.time(for (i in 1:1000) ddot(x,x))

for R.

13

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/speed
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/speed

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

The results:

Sum Time (sec) base = C base = C -O2
C sum 2.33 1.00 2.21
C sum -O2 1.05 0.45 1.00
R sum 0.81 0.35 0.77
R mysum 21.42 9.21 20.40
C sumk 7.92 3.41 7.54
C sumk -O2 4.21 1.81 4.00
R mysumk 83.15 35.76 79.19

Dot Product Time (sec) base = C base = C -O2
C ddot 2.34 1.00 2.25
C ddot -O2 1.04 0.45 1.00
R ddot 47.85 20.47 46.01
R crossp 1.46 0.63 1.40

Notes:

• R sum means built-in sum; R crossp means crossprod

• sumk and mysumk use Kahan summation.

Some conclusions and comments:

• Low level languages like C can produce much faster code.

• It is much easier to develop code in an interactive, high level language.

• Usually the difference is much less.

• Improvements in high level language runtime systems (e.g. byte compi-
lation, runtime code generation) can make a big difference.

• Using the right high level language function (e.g. sum) can eliminate the
difference.

• High level language functions may be able to take advantage of multiple
cores.

• Speed isn’t everything: accuracy is most important!

14

https://en.wikipedia.org/wiki/Kahan_summation_algorithm

Basic Computer
Architecture

Typical Machine Layout

Figure based on M. L. Scott, Programming Language Pragmatics, Figure 5.1,
p. 205

15

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Structure of Lab Workstations

Processor and Cache

luke@l-lnx200 ˜% lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 94
Model name: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
Stepping: 3
CPU MHz: 3895.093
CPU max MHz: 4000.0000
CPU min MHz: 800.0000
BogoMIPS: 6816.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 8192K
NUMA node0 CPU(s): 0-7
Flags: ...

• There is a single quad-core processor with hyperthreading that acts like
eight separate processors

• Each has 8Mb of L3 cache

16

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Memory and Swap Space

luke@l-lnx200 ˜% free
total used free shared buff/cache available

Mem: 32866464 396876 27076056 33620 5393532 31905476
Swap: 16449532 0 16449532

• The workstations have about 32G of memory.

• The swap space is about 16G.

Disk Space

Using the df command produces:

luke@l-lnx200 ˜% df
luke@l-lnx200 ˜% df
Filesystem 1K-blocks Used Available Use% Mounted on
...
/dev/mapper/vg00-root 65924860 48668880 13884156 78% /
/dev/mapper/vg00-tmp 8125880 28976 7661092 1% /tmp
/dev/mapper/vg00-var 75439224 13591304 57992768 19% /var
/dev/mapper/vg00-scratch 622877536 33068 622844468 1% /var/scratch
...
netapp2:/vol/grad 553648128 319715584 233932544 58% /mnt/nfs/netapp2/grad
...
netapp2:/vol/students 235929600 72504448 163425152 31% /mnt/nfs/netapp2/students
...

• Local disks are large but mostly unused

• Space in /var/scratch can be used for temporary storage.

• User space is on network disks.

• Network speed can be a bottle neck.

17

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Performance Monitoring

• Using the top command produces:

top - 11:06:34 up 4:06, 1 user, load average: 0.00, 0.01, 0.05
Tasks: 127 total, 1 running, 126 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.0%us, 0.0%sy, 0.0%ni, 99.8%id, 0.2%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 16393524k total, 898048k used, 15495476k free, 268200k buffers
Swap: 18481148k total, 0k used, 18481148k free, 217412k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1445 root 20 0 445m 59m 23m S 2.0 0.4 0:11.48 kdm_greet

1 root 20 0 39544 4680 2036 S 0.0 0.0 0:01.01 systemd
2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd
3 root 20 0 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/0
5 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/0:0H
6 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/u:0
7 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/u:0H
8 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0
9 root RT 0 0 0 0 S 0.0 0.0 0:00.07 watchdog/0
10 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/1
12 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/1:0H
13 root 20 0 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/1
14 root RT 0 0 0 0 S 0.0 0.0 0:00.10 watchdog/1
15 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/2
17 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/2:0H
18 root 20 0 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/2

...

• Interactive options allow you to kill or renice (change the priority of)
processes you own.

• The command htop may be a little nicer to work with.

• A GUI tool, System Monitor, is available from one of the menus. From
the command line this can be run as gnome-system-monitor.

• Another useful command is ps (process status)

luke@l-lnx200 ˜% ps -u luke
PID TTY TIME CMD

4618 ? 00:00:00 sshd
4620 pts/0 00:00:00 tcsh
4651 pts/0 00:00:00 ps

There are many options; see man ps for details.

18

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Processors

Basics

• Processors execute a sequence of instructions

• Each instruction requires some of

– decoding instruction

– fetching operands from memory

– performing an operation (add, multiply, . . .)

– etc.

• Older processors would carry out one of these steps per clock cycle and
then move to the next.

• most modern processors use pipelining to carry out some operations in
parallel.

19

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Pipelining

A simple example:

s← 0
for i = 1 to n do

s← s+ xiyi
end

Simplified view: Each step has two parts,

• Fetch xi and yi from memory

• Compute s = s+ xiyi

Suppose the computer has two functional units that can operate in parallel,

• An Integer unit that can fetch from memory

• A Floating Point unit that can add and multiply

20

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

If each step takes roughly the same amount of time, a pipeline can speed the
computation by a factor of two:

• Floating point operations are much slower than this.

• Modern chips contain many more separate functional units.

• Pipelines can have 10 or more stages.

• Some operations take more than one clock cycle.

• The compiler or the processor orders operations to keep the pipeline
busy.

• If this fails, then the pipeline stalls.

21

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Superscalar Processors, Hyper-Threading, and Multiple Cores

• Some processors have enough functional units to have more than one
pipeline running in parallel.

• Such processors are called superscalar

• In some cases there are enough functional units per processor to allow
one physical processor to pretend like it is two (somewhat simpler) logi-
cal processors. This approach is called hyper-threading.

– Hyper-threaded processors on a single physical chip share some re-
sources, in particular cache.

– Benchmarks suggest that hyper-threading produces about a 20%
speed-up in cases where dual physical processors would produce
a factor of 2 speed-up

• Recent advances allow full replication of processors within one chip;
these are multi core processors.

– Multi-core machines are effectively full multi-processor machines
(at least for most purposes).

– Dual core processors are now ubiquitous.

– The machines in the department research cluster have two dual core
processors, or four effective processors.

– Our lab machines have a single quad core processor.

– Processors with 6 or 8 or even more cores are available.

• Many processors support some form of vectorized operations, e.g. SSE2
(Single Instruction, Multiple Data, Extensions 2) on Intel and AMD pro-
cessors.

22

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Implications

• Modern processors achieve high speed though a collection of clever tricks.

• Most of the time these tricks work extremely well.

• Every so often a small change in code may cause pipelining heuristics to
fail, resulting in a pipeline stall.

• These small changes can then cause large differences in performance.

• The chances are that a “small change” in code that causes a large change
in performance was not in fact such a small change after all.

• Processor speeds have not been increasing very much recently.

• Many believe that speed improvements will need to come from increased
use of explicit parallel programming.

• More details are available in a talk at

http://www.infoq.com/presentations/
click-crash-course-modern-hardware

23

http://www.infoq.com/presentations/click-crash-course-modern-hardware
http://www.infoq.com/presentations/click-crash-course-modern-hardware

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Memory

Basics

• Data and program code are stored in memory.

• Memory consists of bits (binary integers)

• On most computers

– bits are collected into groups of eight, called bytes

– there is a natural word size of W bits

– the most common value of W is still 32; 64 is becoming more com-
mon; 16 also occurs

– bytes are numbered consecutively, 0,1,2, . . . ,N = 2W

– an address for code or data is a number between 0 and N represent-
ing a location in memory, usually in bytes.

– 232 = 4,294,967,296 = 4GB

– The maximum amount of memory a 32-bit process can address is 4
Gigabytes.

– Some 32-bit machines can use more than 4G of memory, but each
process gets at most 4G.

– Most hard disks are much larger than 4G.

24

https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Byte

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Memory Layout

• A process can conceptually access up to 2W bytes of address space.

• The operating system usually reserves some of the address space for
things it does on behalf of the process.

• On 32-bit Linux the upper 1GB is reserved for the operating system ker-
nel.

• Only a portion of the usable address space has memory allocated to it.

• Standard 32-bit Linux memory layout:

• Standard heap can only grow to 1G.

• malloc implementations can allocate more using memory mapping.

• Obtaining large amounts of contiguous address space can be hard.

• Memory allocation can slow down when memory mapping is needed.

• Other operating systems differ in detail only.

• 64-bit machines are much less limited.

• The design matrix for n cases and p variables stored in double precision
needs 8np bytes of memory.

p = 10 p = 100 p = 1000
n = 100 8,000 80,000 800,000
n = 1,000 80,000 800,000 8,000,000
n = 10,000 800,000 8,000,000 80,000,000
n = 100,000 8,000,000 80,000,000 800,000,000

25

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Virtual and Physical Memory

• To use address space, a process must ask the kernel to map physical space
to the address space.

• There is a hierarchy of physical memory:

• Hardware/OS hides the distinction.

• Caches are usually on or very near the processor chip and very fast.

• RAM usually needs to be accessed via the bus

• The hardware/OS try to keep recently accessed memory and locations
nearby in cache.

26

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• A simple example:

msum <- function(x) {
nr <- nrow(x)
nc <- ncol(x)
s <- 0
for (i in 1 : nr)

for (j in 1 : nc)
s <- s + x[i, j]

s
}
m <- matrix(0, nrow = 5000000, 2)
system.time(msum(m))
user system elapsed
1.712 0.000 1.712
fix(msum) ## reverse the order of the sums
system.time(msum(m))
user system elapsed
0.836 0.000 0.835

• Matrices are stored in column major order.

• This effect is more pronounced in low level code.

• Careful code tries to preserve locality of reference.

27

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Registers

• Registers are storage locations on the processor that can be accessed very
fast.

• Most basic processor operations operate on registers.

• Most processors have separate sets of registers for integer and floating
point data.

• On some processors, including i386, the floating point registers have ex-
tended precision.

• The i386 architecture has few registers, 8 floating point, 8 integer data, 8
address; some of these have dedicated purposes. Not sure about x86 64
(our lab computers).

• RISC processors usually have 32 or more of each kind.

• Optimizing compilers work hard to keep data in registers.

• Small code changes can cause dramatic speed changes in optimized code
because they make it easier or harder for the compiler to keep data in
registers.

• If enough registers are available, then some function arguments can be
passed in registers.

• Vector support facilities, like SSE2, provide additional registers that com-
pilers may use to improve performance.

28

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Processes and Shells

• A shell is a command line interface to the computer’s operating system.

• Common shells on Linux and MacOS are bash and tcsh.

• You can now set your default Linix shell at https://hawkid.uiowa.
edu/

• Shells are used to interact with the file system and to start processes that
run programs.

• You can set process limits and environment variables the shell.

• Programs run from shells take command line arguments.

Some Basic bash/tcsh Commands

• hostname prints the name of the computer the shell is running on.

• pwd prints the current working directory.

• ls lists files a directory

– ls lists files in the current directory.

– ls foo lists files in a sub-directory foo.

• cd changes the working directory:

– cd or cd moves to your home directory;

– cd foo moves to the sub-directory foo;

– cd .. moves up to the parent directory;

• mkdir foo creates a new sub-directory foo in your current working
directory;

• rm, rmdir can be used to remove files and directories; BE VERY
CAREFUL WITH THESE!!!

29

https://hawkid.uiowa.edu/
https://hawkid.uiowa.edu/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Standard Input, Standard Output, and Pipes

• Programs can also be designed to read from standard input and write to
standard output.

• Shells can redirect standard input and standard output.

• Shells can also connect processes into pipelines.

• On multi-core systems pipelines can run in parallel.

• A simple example using the bash shell script P1.sh

#!/bin/bash

while true; do echo $1; done

and the rev program can be run as

bash P1.sh fox
bash P1.sh fox > /dev/null
bash P1.sh fox | rev
bash P1.sh fox | rev > /dev/null
bash P1.sh fox | rev | rev > /dev/null

The proc File System

• The proc file system allows you to view many aspects of a process.

30

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/pipes

Computer Arithmetic

Computer Arithmetic in Hardware

• Computer hardware supports two kinds of numbers:

– fixed precision integers

– floating point numbers

• Computer integers have a limited range

• Floating point numbers are a finite subset of the (extended) real line.

Overflow

• Calculations with native computer integers can overflow.

• Low level languages usually do not detect this.

• Calculations with floating point numbers can also overflow to ±∞.

Underflow

• Floating point operations can also underflow (be rounded to zero).

31

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

A Simple Example

A simple C program, available in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/
examples/fact

that calculates n! using integer and double precision floating point produces

luke@itasca2 notes% ./fact 10
ifac = 3628800, dfac = 3628800.000000
luke@itasca2 notes% ./fact 15
ifac = 2004310016, dfac = 1307674368000.000000
luke@itasca2 notes% ./fact 20
ifac = -2102132736, dfac = 2432902008176640000.000000
luke@itasca2 notes% ./fact 30
ifac = 1409286144, dfac = 265252859812191032188804700045312.000000
luke@itasca2 notes% ./fact 40
ifac = 0, dfac = 815915283247897683795548521301193790359984930816.000000
luke@itasca2 fact% ./fact 200
ifac = 0, dfac = inf

• Most current computers include±∞ among the finite set of representable
real numbers.

• How this is used may vary:

– On our x86 64 Linux workstations:

> exp(1000)
[1] Inf

– On a PA-RISC machine running HP-UX:

> exp(1000)
[1] 1.797693e+308

This is the largest finite floating point value.

32

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/fact
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/fact

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Arithmetic in R

Higher level languages may at least detect integer overflow. In R,

> typeof(1:100)
[1] "integer"
> p<-as.integer(1) # or p <- 1L
> for (i in 1:100) p <- p * i
Warning message:
NAs produced by integer overflow in: p * i
> p
[1] NA

Floating point calculations behave much like the C version:

> p <- 1
> for (i in 1:100) p <- p * i
> p
[1] 9.332622e+157
> p <- 1
> for (i in 1:200) p <- p * i
> p
[1] Inf

The prod function converts its argument to double precision floating point
before computing its result:

> prod(1:100)
[1] 9.332622e+157
> prod(1:200)
[1] Inf

33

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Bignum and Arbitrary Precision Arithmetic

Other high-level languages may provide

• arbitrarily large integers(often called bignums)

• rationals (ratios of arbitrarily large integers)

Some also provide arbitrary precision floating point arithmetic.

In Mathematica:

In[3]:= Factorial[100]

Out[3]= 933262154439441526816992388562667004907159682643816214685929638952175\
> 999932299156089414639761565182862536979208272237582511852109168640000000\
> 00000000000000000

In R we can use the gmp package available from CRAN:

> prod(as.bigz(1:100))
[1] "933262154439441526816992388562667004907159682643816214685929638952175

999932299156089414639761565182862536979208272237582511852109168640000000
00000000000000000"

• The output of these examples is slightly edited to make comparison eas-
ier.

• These calculations are much slower than floating point calculations.

• C now supports long double variables, which are often (but not al-
ways!) slower than double but usually provide more accuracy.

• Some FORTRAN compilers also support quadruple precision variables.

34

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Rounding Errors

A simple, doubly stochastic 2×2 Markov transition matrix:

> p <- matrix(c(1/3, 2/3, 2/3,1/3),nrow=2)
> p

[,1] [,2]
[1,] 0.3333333 0.6666667
[2,] 0.6666667 0.3333333

Theory says:

Pn→
[

1/2 1/2
1/2 1/2

]
Let’s try it:

> q <- p
> for (i in 1:10) q <- q %*% q
> q

[,1] [,2]
[1,] 0.5 0.5
[2,] 0.5 0.5

The values aren’t exactly equal to 0.5 though:

> q - 0.5
[,1] [,2]

[1,] -1.776357e-15 -1.776357e-15
[2,] -1.776357e-15 -1.776357e-15

35

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

We can continue:

> for (i in 1:10) q <- q %*% q
> q

[,1] [,2]
[1,] 0.5 0.5
[2,] 0.5 0.5
> for (i in 1:10) q <- q %*% q
> for (i in 1:10) q <- q %*% q
> q

[,1] [,2]
[1,] 0.4999733 0.4999733
[2,] 0.4999733 0.4999733

Rounding error has built up.

Continuing further:

> for (i in 1:10) q <- q %*% q
> q

[,1] [,2]
[1,] 0.4733905 0.4733905
[2,] 0.4733905 0.4733905
> for (i in 1:10) q <- q %*% q
> q

[,1] [,2]
[1,] 2.390445e-25 2.390445e-25
[2,] 2.390445e-25 2.390445e-25
> for (i in 1:10) q <- q %*% q
> for (i in 1:10) q <- q %*% q
> for (i in 1:10) q <- q %*% q
> q

[,1] [,2]
[1,] 0 0
[2,] 0 0

36

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

As another example, the log-likelihood for right-censored data includes terms
of the form log(1−F(x)). For the normal distribution, this can be computed
as

log(1 - pnorm(x))

An alternative is

pnorm(x, log = TRUE, lower = FALSE)

The expressions

x <- seq(7,9,len=100)
plot(x, pnorm(x, log = TRUE,lower = FALSE), type = "l")
lines(x, log(1 - pnorm(x)), col = "red")

produce the plot

37

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some notes:

• The problem is called catastrophic cancellation.

• Floating point arithmetic is not associative or distributive.

• The range considered here is quite extreme, but can be important in some
cases.

• The expression log(1 - pnorm(x)) produces invalid results (−∞)
for x above roughly 8.3.

• Most R cdf functions allow lower.tail and log.p arguments (short-
ened to log and lower here)

• The functions expm1 and log1p can also be useful.

expm1(x)= ex−1
log1p(x)= log(1+ x)

These functions also exist in the standard C math library.

38

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Another illustration is provided by the behavior of the expression

e−2x2− e−8x2

near the origin:

x <- seq(-1e-8, 1e-8, len = 101)
plot(x, exp(-2 * x ˆ 2) - exp(-8 * x ˆ 2), type = "l")

Rewriting the expression as

e−2x2
(

1− e−6x2
)
=−e−2x2

expm1(−6x2)

produces a more stable result:

lines(x, -exp(-2 * x ˆ 2) * expm1(-6 * x ˆ 2), col = "red")

−1e−08 −5e−09 0e+00 5e−09 1e−08

0e
+

00
1e

−
16

2e
−

16
3e

−
16

4e
−

16
5e

−
16

x

ex
p(

−
2

*
x^

2)
 −

 e
xp

(−
8

*
x^

2)

39

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Sample Standard Deviations

> x <- 100000000000000 + rep(c(1,2), 5)
> x
[1] 1e+14 1e+14 1e+14 1e+14 1e+14 1e+14 1e+14 1e+14 1e+14 1e+14

> print(x, digits = 16)
[1] 100000000000001 100000000000002 100000000000001 100000000000002
[5] 100000000000001 100000000000002 100000000000001 100000000000002
[9] 100000000000001 100000000000002

> n <- length(x)
> s <- sqrt((sum(xˆ2) - n * mean(x)ˆ2) / (n - 1))
> s
[1] 0
> s == 0
[1] TRUE
> y <- rep(c(1,2), 5)
> y
[1] 1 2 1 2 1 2 1 2 1 2

> sqrt((sum(yˆ2) - n * mean(y)ˆ2) / (n - 1))
[1] 0.5270463
> sd(x)
[1] 0.5270463
> sd(y)
[1] 0.5270463

• The “computing formula” ∑x2
i −nx2 is not numerically stable.

• A two-pass algorithm that first computes the mean and then computes
∑(xi− x)2 works much better.

• There are also reasonably stable one-pass algorithms.

40

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Truncated Normal Distribution

• Sometimes it is useful to simulate from a standard normal distribution
conditioned to be at least a, or truncated from below at a.

• The CDF is

F(x|a) = Φ(x)−Φ(a)
1−Φ(a)

for x≥ a.

• The inverse CDF is

F−1(u|a) = Φ
−1(Φ(a)+u(1−Φ(a)))

• This can be computed using

Finv0 <- function(u, a) {
p <- pnorm(a)
qnorm(p + u * (1 - p))

}

• Some plots:

u <- (1:100) / 101
plot(u, Finv0(u, 0), type = "l")
plot(u, Finv0(u, 2), type = "l")
plot(u, Finv0(u, 4), type = "l")
plot(u, Finv0(u, 8), type = "l")

• An improved version:

Finv1 <- function(u, a) {
q <- pnorm(a, lower.tail = FALSE)
qnorm(q * (1 - u), lower.tail = FALSE)

}

lines(u, Finv1(u, 8), col = "red")

• This could be further improved if the tails need to be more accurate.

41

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Interger Arithmetic

• Integer data types can be signed or unsigned; they have a finite range.

• Almost all computers now use binary place-value for unsigned integers
and two’s complement for signed integers.

• Ranges are

unsigned: 0,1, . . . ,2n−1
signed: −2n−1, . . . ,2n−1−1.

For C int and Fortran integer the value n = 32 is almost universal.

• If the result of +, *, or - is representable, then the operation is exact;
otherwise it overflows.

• The result of / is typically truncated; some combinations can overflow.

• Typically overflow is silent.

• Integer division by zero signals an error; on Linux a SIGFPE (floating
point error signal!) is sent.

• statistical calculations rarely need to use integers directly except

– as dimension sizes and indices for arrays

– as sizes in storage allocation requests

– as frequencies for categorical data

• Storing scaled floating point values as small integers (e.g. single bytes)
can save space.

• As data sets get larger, being able to represent integers larger than 231−1
is becoming important.

• Double precision floating point numbers can represent integers up to 253

exactly.

42

http://en.wikipedia.org/wiki/Two's_complement

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Detecting integer overflow portably is hard; one possible strategy: use
double precision floating point for calculation and check whether the
result fits.

– This works if integers are 32-bit and double precision is 64-bit IEEE

– These assumptions are almost universally true but should be tested
at compile time.

Other strategies may be faster, in particular for addition, but are harder
to implement.

• You can find out how R detects integer overflow by looking in the file

src/main/arithmetic.c

The R sources are available at

https://svn.r-project.org/R/

43

https://svn.r-project.org/R/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Floating Point Arithmetic

• Floating point numbers are represented by a sign s, a significand or man-
tissa sig, and an exponent exp; the value of the number is

(−1)s× sig×2exp

The significand and the exponent are represented as binary integers.

• Bases other than 2 were used in the past, but virtually all computers now
follow the IEEE standard number 754 (IEEE 754 for short; the corre-
sponding ISO standard is ISO/IEC/IEEE 60559:2011).

• IEEE 754 specifies the number of bits to use:

sign significand exponent total
single precision 1 23 8 32
double precision 1 52 11 64
extended precision 1 64 15 80

• A number is normalized if 1≤ sig < 2. Since this means it looks like

1.something×2exp

we can use all bits of the mantissa for the something and get an extra bit
of precision from the implicit leading one.

• Numbers smaller in magnitude than 1.0×2expmin can be represented with
reduced precision as

0.something×2expmin

These are denormalized numbers.

• Denormalized numbers allow for gradual underflow. IEEE 745 includes
them; many older approaches did not.

• Some GPUs set denormalized numbers to zero.

44

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

For a significand with three bits, expmin = −1, and expmax = 2 the available
nonnegative floating point numbers look like this:

Normalized numbers are blue, denormalized numbers are red.

• Zero is not a normalized number (but all representations include it).

• Without denormalized numbers, the gap between zero and the first pos-
itive number is larger than the gap between the first and second positive
numbers.

There are actually two zeros in this framework: +0 and −0. One way to see
this in R:

> zp <- 0 ## this is read as +0
> zn <- -1 * 0 ## or zn <- -0; this produces -0
> zn == zp
[1] TRUE
> 1 / zp
[1] Inf
> 1 / zn
[1] -Inf

This can identify the direction from which underflow occurred.

45

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• The IEEE 754 representation of floating point numbers looks like

Single precision, exponent bias b = 127

s - e f

Double precision, exponent bias b = 1023

s - e f

• The exponent is represented by a nonnegative integer e from which a
bias b is subtracted.

• The fractional part is a nonnegative integer f .

• The representation includes several special values: ±∞, NaN (Not a
Number) values:

e f Value
Normalized 1≤ e≤ 2b any ±1. f ×2e−b

Denormalized 0 6= 0 ±0. f ×2−b+1

Zero 0 0 ±0
Infinity 2b+1 0 ±∞

NaN 2b+1 6= 0 NaN

• 1.0/0.0 will produce +∞; 0.0/0.0 will produce NaN.

• On some systems a flag needs to be set so 0.0/0.0 does not produce an
error.

• Library functions like exp, log will behave predictably on most systems,
but there are still some where they do not.

• Comparisons like x <= y or x == y should produce FALSE if one of
the operands is NaN; most Windows C compilers violate this.

• Range of exactly representable integers in double precision:

±(253−1)≈±9.0072×1015

• Smallest positive (denormalized) double precision number:

2−b+1×2−52 = 2−1074 ≈ 4.940656×10−324

46

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Machine Characteristics

Machine Characteristics in R

The variable .Machine contains values for the characteristics of the current
machine:

> .Machine
$double.eps
[1] 2.220446e-16
$double.neg.eps
[1] 1.110223e-16
$double.xmin
[1] 2.225074e-308
$double.xmax
[1] 1.797693e+308
$double.base
[1] 2
$double.digits
[1] 53
$double.rounding
[1] 5
$double.guard
[1] 0
$double.ulp.digits
[1] -52
$double.neg.ulp.digits
[1] -53
$double.exponent
[1] 11
$double.min.exp
[1] -1022
$double.max.exp
[1] 1024
$integer.max
[1] 2147483647
$sizeof.long
[1] 8
$sizeof.longlong
[1] 8
$sizeof.longdouble
[1] 16
$sizeof.pointer
[1] 8

The help page gives details.

47

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Machine Epsilon and Machine Unit

Let m be the smallest and M the largest positive finite normalized floating
point numbers.

Let fl(x) be the closest floating point number to x.

Machine Unit

The machine unit is the smallest number u such that

|fl(x)− x| ≤ u |x|

for all x ∈ [m,M]; this implies that for every x ∈ [m,M]

fl(x) = x(1+u)

for some u with |u| ≤ u. For double precision IEEE arithmetic,

u =
1
2

21−53 = 2−53 ≈ 1.110223×10−16

Machine Epsilon

The machine epsilon εm is the smallest number x such that

fl(1+ x) 6= 1

For double precision IEEE arithmetic,

εm = 2−52 = 2.220446×10−16 = 2u

u and εm are very close; they are sometimes used interchangeably.

48

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Computing Machine Constants

A standard set of routines for computing machine information is provided by

Cody, W. J. (1988) MACHAR: A subroutine to dynamically deter-
mine machine parameters. Transactions on Mathematical Software,
14, 4, 303-311.

Simple code for computing machine epsilon is in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/
examples/macheps

The R code looks like

eps <- 2
neweps <- eps / 2
while (1 + neweps != 1) {

eps <- neweps
neweps <- neweps / 2.0

}
eps

and produces

> eps
[1] 2.220446e-16
> .Machine$double.eps
[1] 2.220446e-16
> eps == .Machine$double.eps
[1] TRUE

49

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/macheps
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/macheps

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Analogous C code compiled with

cc -Wall -pedantic -o eps eps.c

produces

luke@itasca2 macheps% ./eps
epsilon = 2.22045e-16

The same C code compiled with optimization (and an older gcc compiler) on
a i386 system

cc -Wall -pedantic -o epsO2 eps.c -O2

produces

luke@itasca2 macheps% ./epsO2
epsilon = 1.0842e-19

Why does this happen?

Here is a hint:

> log2(.Machine$double.eps)
[1] -52
> log2(1.0842e-19)
[1] -63

50

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some Notes

• Use equality tests x == y for floating point numbers with caution

• Multiplies can overflow—use logs (log likelihoods)

• Cases where care is needed:

– survival likelihoods

– mixture likelihoods.

• Double precision helps a lot

51

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Floating Point Equality

• R FAQ 7.31: Why doesn’t R think these numbers are equal?

> b <- 1 - 0.8
> b
[1] 0.2
> b == 0.2
[1] FALSE
> b - 0.2
[1] -5.551115e-17

• Answer from FAQ:

The only numbers that can be represented exactly in R’s nu-
meric type are integers and fractions whose denominator is a
power of 2. Other numbers have to be rounded to (typically) 53
binary digits accuracy. As a result, two floating point numbers
will not reliably be equal unless they have been computed by
the same algorithm, and not always even then. For example

> a <- sqrt(2)
> a * a == 2
[1] FALSE
> a * a - 2
[1] 4.440892e-16

The function all.equal() compares two objects using a
numeric tolerance of .Machine$double.eps ˆ 0.5. If
you want much greater accuracy than this you will need to con-
sider error propagation carefully.

• The function all.equal() returns either TRUE or a string describing
the failure. To use it in code you would use something like

if (identical(all.equal(x, y), TRUE)) ...
else ...

but using an explicit tolerance test is probably clearer.

• Bottom line: be VERY CAREFUL about using equality comparisons
with floating point numbers.

52

Numerical Linear Algebra

Preliminaries

Conditioning and Stability

• Some problems are inherently difficult: no algorithm involving rounding
of inputs can be expected to work well. Such problems are called ill-
conditioned.

• A numerical measure of conditioning, called a condition number, can
sometimes be defined:

– Suppose the objective is to compute y = f (x).

– If x is perturbed by ∆x then the result is changed by

∆y = f (x+∆x)− f (x).

– If
|∆y|
|y|
≈ κ
|∆x|
|x|

for small perturbations ∆x then κ is the condition number for the
problem of computing f (x).

• A particular algorithm for computing an approximation f̃ (x) to f (x) is
numerically stable if for small perturbations ∆x of the input the result is
close to f (x).

53

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Error Analysis

• Analyzing how errors accumulate and propagate through a computation,
called forward error analysis, is sometimes possible but often very diffi-
cult.

• Backward error analysis tries to show that the computed result

ỹ = f̃ (x)

is the exact solution to a slightly perturbed problem, i.e.

ỹ = f (x̃)

for some x̃≈ x.

• If

– the problem of computing f (x) is well conditioned, and

– the algorithm f̃ is stable,

then

ỹ = f̃ (x) computed result
= f (x̃) exact result for some x̃≈ x
≈ f (x) since f is well-conditioned

• Backward error analysis is used heavily in numerical linear algebra.

54

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Solving Linear Systems

Many problems involve solving linear systems of the form

Ax = b

• least squares normal equations:

XT Xβ = XT y

• stationary distribution of a Markov chain:

πP = π

∑πi = 1

If A is n×n and non-singular then in principle the solution is

x = A−1b

This is not usually a good numerical approach because

• it can be numerically inaccurate;

• it is inefficient except for very small n.

55

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Triangular Systems

• Triangular systems are easy to solve.

• The upper triangular system[
5 3
0 2

][
x1
x2

]
=

[
16
4

]
has solution

x2 = 4/2 = 2
x1 = (16−3x2)/5 = 10/5 = 2

• This is called back substitution

• Lower triangular systems are solved by forward substitution.

• If one of the diagonal elements in a triangular matrix is zero, then the
matrix is singular.

• If one of the diagonal elements in a triangular matrix is close to zero,
then the solution is very sensitive to other inputs:[

1 a
0 ε

][
x1
x2

]
=

[
b1
b2

]
has solution

x2 =
b2

ε

x1 = b1−a
b2

ε

• This sensitivity for small ε is inherent in the problem: For small values
of ε the problem of finding the solution x is ill-conditioned.

56

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Gaussian Elimination

• The system [
5 3

10 8

][
x1
x2

]
=

[
16
36

]
can be reduced to triangular form by subtracting two times the first equa-
tion from the second.

• In matrix form: [
1 0
−2 1

][
5 3

10 8

][
x1
x2

]
=

[
1 0
−2 1

][
16
36

]
or [

5 3
0 2

][
x1
x2

]
=

[
16
4

]
which is the previous triangular system.

• For a general 2× 2 matrix A the lower triangular matrix used for the
reduction is [

1 0
−a21

a11
1

]
• The ratio a21

a11
is a called a multiplier.

• This strategy works as long as a11 6= 0.

• If a11 ≈ 0, say

A =

[
ε 1
1 1

]
for small ε , then the multiplier 1/ε is large and this does not work very
well, even though A is very well behaved.

• Using this approach would result in a numerically unstable algorithm for
a well-conditioned problem.

57

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Partial Pivoting

• We can ensure that the multiplier is less than or equal to one in magnitude
by switching rows before eliminating:[

0 1
1 0

][
5 3

10 8

][
x1
x2

]
=

[
0 1
1 0

][
16
36

]
or [

10 8
5 3

][
x1
x2

]
=

[
36
16

]
• The matrix to reduce this system to triangular form is now[

1 0
−0.5 1

]
• So the final triangular system is constructed as[

1 0
−0.5 1

][
0 1
1 0

][
5 3

10 8

][
x1
x2

]
=

[
1 0
−0.5 1

][
0 1
1 0

][
16
36

]
or [

10 8
0 −1

][
x1
x2

]
=

[
36
−2

]
• Equivalently, we can think of our original system as[

0 1
1 0

][
1 0

0.5 1

][
10 8
0 −1

][
x1
x2

]
=

[
16
36

]
• The decomposition of A as

A = PLU

with P a permutation matrix, L lower trianbular with ones on the diago-
nal, and U upper triangular is called a PLU decomposition.

58

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

PLU Decomposition

• In general, we can write a square matrix A as

A = PLU

where

– P is a permutation matrix, i.e.

∗ it is an identity matrix with some rows switched
∗ it satisfies PPT = PT P = I, i.e. it is an orthogonal matrix

– L is a unit lower triangular matrix, i.e.

∗ it is lower triangular
∗ it has ones on the diagonal

– U is upper triangular

• The permutation matrix P can be chosen so that the multipliers used in
forming L all have magnitude at most one.

• A is non-singular if and only if the diagonal entries in U are all non-zero.

• If A is non-singular, then we can solve

Ax = b

in three steps:

1. Solve Pz = b for z = PT b (permute the right hand side)

2. Solve Ly = z for y (forward solve lower triangular system)

3. Solve Ux = y for x (back solve upper triangular system)

• Computational complexity:

– Computing the PLU decomposition takes O(n3) operations.

– Computing a solution from a PLU decomposition takes O(n2) oper-
ations.

59

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Condition Number

• Linear systems Ax = b have unique solutions if A is non-singular.

• Solutions are sensitive to small perturbations if A is close to singular.

• We need a useful measure of closeness to singularity

• The condition number is a useful measure:

κ(A) =
maxx 6=0

‖Ax‖
‖x‖

minx 6=0
‖Ax‖
‖x‖

=

(
max
x 6=0

‖Ax‖
‖x‖

)(
max
x 6=0

‖A−1x‖
‖x‖

)
= ‖A‖‖A−1‖

where ‖y‖ is a vector norm (i.e. a measure of length) of y and

‖B‖= max
x 6=0

‖Bx‖
‖x‖

is the corresponding matrix norm of B.

• Some common vector norms:

‖x‖2 =

√
n

∑
i=1

x2
i Euclidean norm

‖x‖1 =
n

∑
i=1
|xi| L1 norm, Manhattan norm

‖x‖∞ = max
i
|xi| L∞ norm

60

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some Properties of Condition Numbers

• κ(A)≥ 1 for all A.

• κ(A) = ∞ if A is singular

• If A is diagonal, then

κ(A) =
max |aii|
min |aii|

• Different norms produce different values; the values are usually qualita-
tively similar

Sensitivity of Linear Systems

Suppose x solves the original system and x∗ solves a slightly perturbed system,

(A+∆A)x∗ = b+∆b

and suppose that

δκ(A)≤ 1
2

‖∆A‖
‖A‖

≤ δ

‖∆b‖
‖b‖

≤ δ

Then
‖x− x∗‖
‖x‖

≤ 4δκ(A)

61

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Stability of Gaussian Elimination with Partial Pivoting

Backward error analysis: The numerical solution x̂ to the system

Ax = b

produced by Gaussian elimination with partial pivoting is the exact solution
for a perturbed system

(A+∆A)x̂ = b

with
‖∆A‖∞

‖A‖∞

≤ 8n3
ρu+O(u2)

• The value of ρ is not guaranteed to be small, but is rarely larger than 10

• The algorithm would be considered numerically stable if ρ were guaran-
teed to be bounded.

• Complete pivoting is a bit more stable, but much more work.

• The algorithm is considered very good for practical purposes.

62

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

General Linear Systems in R

R provides

• solve for general systems, based on LAPACK’s DGESV.

• DGESV uses the PLU decomposition.

• forwardsolve, backsolve for triangular systems.

• kappa computes an estimate of the condition number or the exact con-
dition number based on the Euclidean norm.

63

http://www.netlib.org/lapack/explore-html/d8/d72/dgesv_8f.html

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Cholesky Factorization

Suppose A is symmetric and (strictly) positive definite, i.e.

xT Ax > 0

for all x 6= 0. Examples:

• If X is the n× p design matrix for a linear model and X is of rank p, then
A = XT X is strictly positive definite.

If X is not of full rank then A = XT X is non-negative definite or positive
semi-definite, i.e. xT Ax≥ 0 for all x.

• If A is the covariance matrix of a random vector X then A is positive
semidefinite:

cT Ac = cT E[(X−µ)(X−µ)T]c

= E[((X−µ)T c)T (X−µ)T c]

= Var((X−µ)T c)≥ 0

The covariance matrix is strictly positive definite unless P(cT X = cT µ)=
1 for some c 6= 0, i.e. unless there is a perfect linear relation between
some of the components of X .

Theorem

If A is strictly positive definite, then there exists a unique lower triangular
matrix L with positive diagonal entries such that

A = LLT

This is called the Cholesky factorization.

64

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Properties of the Cholesky Factorization Algorithm

• It uses the symmetry to produce an efficient algorithm.

• The algorithm needs to take square roots to find the diagonal entries.

• An alternative that avoids square roots factors A as

A = LDLT

with D diagonal and L unit lower triangular.

• The algorithm is numerically stable, and is guaranteed not to attempt
square roots of negative numbers if

qnuκ2(A)≤ 1

where qn is a small constant depending on the dimension n.

• The algorithm will fail if the matrix is not (numerically) strictly positive
definite.

• Modifications using pivoting are available that can be used for nonnega-
tive definite matrices.

• Another option is to factor Aλ = A+λ I with λ > 0 chosen large enough
to make Aλ numerically strictly positive definite. This is often used in
optimization.

65

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some Applications of the Cholesky Factorization

• Solving the normal equations in least squares. This requires that the
predictors be linearly independent

• Generating multivariate normal random vectors.

• Parameterizing strictly positive definite matrices: Any lower triangular
matrix L with arbitrary values below the diagonal and positive diagonal
entries determines and is uniquely determined by the positive definite
matrix A = LLT

66

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Cholesky Factorization in R

• The function chol computes the Cholesky factorization.

• The returned value is the upper triangular matrix R = LT .

• LAPACK is used.

67

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

QR Factorization

An m×n matrix A with m≥ n can be written as

A = QR

where

• Q is m×n with orthonormal columns, i.e. QT Q = In

• R is upper triangular

• Several algorithms are available for computing the QR decomposition:

– Modified Gram-Schmidt

– Householder transformations (reflections)

– Givens transformations (rotations)

Each has advantages and disadvantages.

• LINPACK dqrdc and LAPACK DGEQP3 use Householder transforma-
tions.

• The QR decomposition exists regardless of the rank of A.

• The rank of A is n if and only if the diagonal elements of R are all non-
zero.

68

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Householder Transformations

• A Householder transformation is a matrix of the form

P = I−2vvT/vT v

where v is a nonzero vector.

• Px is the reflection of x in the hyperplane orthogonal to v.

• Given a vector x 6= 0, choosing v = x+αe1 with

α =±‖x‖2

and e1 the first unit vector (first column of the identity) produces

Px =∓‖x‖2e1

This can be used to zero all but the first element of the first column of a
matrix:

P


× × ×
× × ×
× × ×
× × ×
× × ×

=


× × ×
0 × ×
0 × ×
0 × ×
0 × ×


This is the first step in computing the QR factorization.

• The denominator vT v can be written as

vT v = xT x+2αx1 +α
2

• Choosing α = sign(x1)‖x‖2 ensures that all terms are non-negative and
avoids cancellation.

• With the right choice of sign Householder transformations are very sta-
ble.

69

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Givens Rotations

• A Givens rotation is a matrix G that is equal to the identity except for
elements Gii,Gi j,G ji,G j j, which are[

Gii Gi j
G ji G j j

]
=

[
c s
−s c

]
with c = cos(θ) and s = sin(θ) for some θ .

• Premultiplication by GT is a clockwise rotation by θ radians in the (i, j)
coordinate plane.

• Given scalars a,b one can compute c,s so that[
c s
−s c

]T [a
b

]
=

[
r
0

]
This allows G to zero one element while changing only one other ele-
ment.

• A stable way to choose c,s:

if b = 0
c = 1; s = 0

else
if |b|> |a|

τ =−a/b; s = 1/
√

1+ τ2; c = sτ

else
τ =−b/a; c = 1/

√
1+ τ2; s = cτ

end
end

• A sequence of Givens rotations can be used to compute the QR factor-
ization.

– The zeroing can be done working down columns or across rows.

– Working across rows is useful for incrementally adding more obser-
vations.

70

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Applications

• The QR decomposition can be used for solving n× n systems of equa-
tions

Ax = b

since Q−1 = QT and so
Ax = QRx = b

is equivalent to the upper triangular system

Rx = QT b

• The QR decomposition can also be used to solve the normal equations
in linear regression: If X is the n× p design matrix then the normal
equations are

XT Xb = XT y

If X = QR is the QR decomposition of X , then

XT X = RT QT QR = RT R

XT y = RT QT y

If X is of full rank then RT is invertible, and the normal equations are
equivalent to the upper triangular system

Rb = QT y

This approach avoids computing XT X .

• If X is of full rank then RT R is the Cholesky factorization of XT X (up to
multiplications of rows of R by ±1).

QR with Column Pivoting

Sometimes the columns of X are linearly dependent or nearly so.

By permuting columns we can produce a factorization

A = QRP

where

71

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• P is a permutation matrix

• R is upper triangular and the diagonal elements of R have non-increasing
magnitudes, i.e.

|rii| ≥ |r j j|

if i≤ j

• If some of the diagonal entries of R are zero, then R will be of the form

R =

[
R11 R12
0 0

]
where R11 is upper triangular with non-zero diagonal elements non-increasing
in magnitude.

• The rank of the matrix is the number of non-zero rows in R.

• The numerical rank of a matrix can be determined by

– computing its QR factorization with column pivoting

– specifying a tolerance level ε such that all diagonal entries |rii| < ε

are considered numerically zero.

– Modifying the computed QR factorization to zero all rows corre-
sponding to numerically zero rii values.

72

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some Regression Diagnostics

The projection matrix, or hat matrix, is

H = X(XT X)−1XT = QR(RT R)−1RT QT = QQT

The diagonal elements of the hat matrix are therefore

hi =
p

∑
j=1

q2
i j

If êi = yi− ŷi is the residual, then

s2
−i =

SSE− ê2
i /(1−hi)

n− p−1
= estimate of variance without obs. i

ti =
êi

s−i
√

1−hi
= externally studentized residual

Di =
ê2

i hi

(1−hi)2s2 p
= Cook’s distance

73

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

QR Decomposition and Least Squares in R

• The R function qr uses either LINPACK or LAPACK to compute QR
factorizations.

• LINPACK is the default.

• The core linear model fitting function lm.fit uses QR factorization
with column pivoting.

74

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Singular Value Decomposition

An m×n matrix A with m≥ n can be factored as

A =UDV T

where

• U is m×n with orthonormal columns, i.e. UTU = In.

• V is n×n orthogonal, i.e. VV T =V TV = In.

• D = diag(d1, . . . ,dn) is n×n diagonal with d1 ≥ d2 ≥ ·· · ≥ dn ≥ 0.

This is the singular value decomposition, or SVD of A.

• The values d1, . . . ,dn are the singular values of A.

• The columns of U are the right singular vectors of A.

• The columns of V are the left singular vectors of A.

• If the columns of A have been centered so the column sums of A are zero,
then the columns of UD are the principal components of A.

• Excellent algorithms are available for computing the SVD.

• These algorithms are usually several times slower than the QR algo-
rithms.

75

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some Properties of the SVD

• The Euclidean matrix norm of A is defined as

‖A‖2 = max
x 6=0

‖Ax‖2

‖x‖2

with ‖x‖2 =
√

xT x the Euclidean vector norm.

• If A has SVD A =UDV T , then

‖A‖2 = d1

• If k < rank(A) and

Ak =
k

∑
i=1

diuivT
i

then
min

B:rank(B)≤k
‖A−B‖2 = ‖A−Ak‖= dk+1

In particular,

– d1u1vT
1 is the best rank one approximation to A (in the Euclidean

matrix norm).
– Ak is the best rank k approximation to A.
– If m = n then dn = min{d1,dn} is the distance between A and the

set of singular matrices.

• If A is square then the condition number based on the Euclidean norm is

κ2(A) = ‖A‖2‖A−1‖2 =
d1

dn

• For an n× p matrix with n > p we also have

κ2(A) =
maxx 6=0

‖Ax‖2
‖x‖2

minx 6=0
‖Ax‖2
‖x‖2

=
d1

dn

– This can be used to relate κ2(AT A) to κ2(A).
– This has implications for regression computations.

• The singular values are the non-negative square roots of the eigenvalues
of AT A and the columns of V are the corresponding eigenvectors.

76

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Moore-Penrose Generalized Inverse

Suppose A has rank r ≤ n and SVD A =UDV T . Then

dr+1 = · · ·= dn = 0

Let

D+ = diag
(

1
d1
, . . . ,

1
dr
,0, . . . ,0

)
and

A+ =V D+UT

Then A+ satisfies

AA+A = A
A+AA+ = A+

(AA+)T = AA+

(A+A)T = A+A

A+ is the unique matrix with these properties and is called the Moore-Penrose
generalized inverse or pseudo-inverse.

77

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

SVD and Least Squares

If X is an n× p design matrix of less than full rank, then there are infinitely
many values of b that minimize

‖y−Xb‖2
2

Among these solutions,
b = (XT X)+XT y

minimizes ‖b‖2.

This is related to penalized regression where one might choose b to minimize

‖y−Xb‖2
2 +λ‖b‖2

2

for some choice of λ > 0.

78

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

SVD and Principal Components Analysis

• Let X be an n× p matrix of n observations on p variables.

• Principal components analysis involves estimating the eigenvectors and
eigenvalues of the covariance matrix.

• Let X̃ be the data matrix with columns centered at zero by subtracting
the column means.

• The sample covariance matrix is

S =
1

n−1
X̃T X̃

• Let X̃ =UDV T be the SVD of the centered data matrix X̃ .

• Then
S =

1
n−1

V DUTUDV T =
1

n−1
V D2V T

• So

– The diagonal elements of 1
n−1D2 are the eigenvalues of S.

– The columns of V are the eigenvectors of S.

• Using the SVD of X̃ is more numerically stable than

– forming X̃T X̃

– computing the eigenvalues and eigenvectors.

79

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

SVD and Numerical Rank

• The rank of a matrix A is equal to the number of non-zero singular values.

• Exact zeros may not occur in the SVD due to rounding.

• Numerical rank determination can be based on the SVD. All di ≤ δ can
be set to zero for some choice of δ . Golub and van Loan recommend
using

δ = u‖A‖∞

• If the entries of A are only accurate to d decimal digits, then Golub and
van Loan recommend

δ = 10−d‖A‖∞

• If the numerical rank of A is r̂ and dr̂� δ then r̂ can be used with some
confidence; otherwise caution is needed.

80

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Other Applications

• The SVD is used in many areas of numerical analysis.

• It is also often useful as a theoretical tool.

• Some approaches to compressing m×n images are based on the SVD.

• A simple example using the volcano data:

Original Image Rank 1 Approximation Rank 2 Approximation

Rank 3 Approximation Rank 4 Approximation Rank 5 Approximation

s$d
[1] 9644.2878216 488.6099163 341.1835791 298.7660207 141.8336254
[6] 72.1244275 43.5569839 33.5231852 27.3837593 19.9762196
...
[61] 0.9545092

81

https://teara.govt.nz/en/photograph/3920/maungawhau-mt-eden

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

SVD in R

• R provides the function svd to compute the SVD.

• Implementation used to use LINPACK but now can use LINPACK or
LAPACK, with LAPACK the default.

• You can ask for the singular values only—this is will be faster for larger
problems.

82

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Eigenvalues and Eigenvectors

Let A be an n×n matrix. λ is an eigenvalue of A if

Av = λv

for some v 6= 0; v is an eigenvector or A.

• If A is a real n×n matrix then it has n eigenvalues.

– Several eigenvalues may be identical
– Some eigenvalues may be complex; if so, then they come in conju-

gate pairs.
– The set of eigenvalues is called the spectrum

• If A is symmetric then the eigenvalues are real

• If A is symmetric then

– A is strictly positive definite if and only if all eigenvalues are posi-
tive.

– A is positive semi-definite if and only if all eigenvalues are non-
negative.

– There exists an orthogonal matrix V such that

A =V ΛV T

with Λ = diag(λ1, . . . ,λn); the columns of V are the corresponding
normalized eigenvectors.

– This is called the spectral decomposition of A.

• Some problems require only the largest eigenvalue or the largest few,
sometimes the corresponding eigenvectors are also needed.

– The stationary distribution of an irreducible finite state-space Markov
chain is the unique eigenvector, normalized to sum to one, corre-
sponding to the largest eigenvalue λ = 1.

– The speed of convergence to the stationary distribution depends on
the magnitude of the second largest eigenvalue.

• The R function eigen can be used to compute eigenvalues and, option-
ally, eigenvectors.

83

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Determinants

• Theoretically the determinant can be computed as the product of

– the diagonals of U in the PLU decomposition

– the squares of the diagonals of L in the Cholesky factorization

– the diagonals of R in the QR decomposition

– the eigenvalues

• Numerically these are almost always bad ideas.

• It is almost always better to work out the sign and compute the sum of
the logarithms of the magnitudes of the factors.

• The R functions det and determinant compute the determinant.

– determinant is more complicated to use, but has a logarithm
option.

• Likelihood and Bayesian analyses often involve a determinant;

– usually the log likelihood and log determinant should be used.

– usually the log determinant can be computed from a decomposition
needed elsewhere in the log likelihood calculation, e.g. a Cholesky
factorization

84

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Non-Negative Matrix Factorization

A number of problems lead to the desire to approximate a non-negative matrix
X by a product

X ≈WH

where W , H are non-negative matricies of low rank, i.e. with few columns.

There are a number of algorithms available, most of the form

min
W,H

[D(X ,WH)+R(W,H)]

where D is a loss function and R is a possible penalty for encouraging desirable
characteristics of W , H, such as smoothness or sparseness.

The R package NMF provides one approach, and a vignette in the package
provides some background and references.

As an example, using default settings in the NMF package the volcano
image can be approximated with factorizations of rank 1, . . . ,5 by

library(NMF)
nmf1 = nmf(volcano, 1); V1 <- nmf1@fit@W %*% nmf1@fit@H
nmf2 = nmf(volcano, 2); V2 <- nmf2@fit@W %*% nmf2@fit@H
nmf3 = nmf(volcano, 3); V3 <- nmf3@fit@W %*% nmf3@fit@H
nmf4 = nmf(volcano, 4); V4 <- nmf4@fit@W %*% nmf4@fit@H
nmf5 = nmf(volcano, 5); V5 <- nmf5@fit@W %*% nmf5@fit@H

The relative error for the final image is

> max(abs(volcano - V5)) / max(abs(volcano))
[1] 0.03273659

85

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

The images:

Original Image Rank 1 Approximation Rank 2 Approximation

Rank 3 Approximation Rank 4 Approximation Rank 5 Approximation

Another application is recommender systems.

• For example, X might be ratings of movies (columns) by viewers (rows).

• The set of actual values would be very sparse as each viewer will typi-
cally rate only a small subset of all movies.

• W would be a user preference matrix, H a corresponding movie feature
matrix.

• The product WH would provide predicted ratings for movies the users
have not yet seen.

86

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Other Factorizations

Many other factorizations of matrices are available and being developed. Some
examples are

• Robust variants of the SVD

• Sparse variants, e.g. Dan Yang, Zongming Ma, and Andreas Buja (2014),
“A Sparse Singular Value Decomposition Method for High-Dimensional
Data,” Journal of Computational and Graphical Statistics 23(4), 923–
942.

• Constrained factorizations, e.g. C. Ding, T. Li, and M. I. Jordan (2010),
“Convex and Semi-Nonnegative Matrix Factorizations,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 32(1), 45–55.

87

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Exploiting Special Structure

Specialized algorithms can sometimes be used for matrices with special struc-
ture.

Toeplitz Systems

• Stationary time series have covariance matrices that look like
σ0 σ1 σ2 σ3 . . .
σ1 σ0 σ1 σ2 . . .
σ2 σ1 σ0 σ1 . . .

σ3 σ2 σ1 σ0
. . .

.


• This is a Toeplitz matrix.

• This matrix is also symmetric — this is not required for a Toeplitz matrix.

• Special algorithms requiring O(n2) operations are available for Toeplitz
systems.

• General Cholesky factorization requires O(n3) operations.

• The R function toeplitz creates Toeplitz matrices.

88

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Circulant Systems

• Some problems give rise to matrices that look like

Cn =


a1 a2 a3 . . . an
an a1 a2 . . . an−1

an−1 an a1 . . . an−2
...

a2 a3 a4 . . . a1


• This is a circulant matrix, a subclass of Toeplitz matrices.

• Circulant matrices satisfy

Cn = F∗n diag(
√

nFna)Fn

where Fn is the Fourier matrix with

Fn(j,k) =
1√
n

e−(j−1)(k−1)2π
√
−1/n

and F∗n is the conjugate transpose, Hermitian transpose, or adjoint ma-
trix of Fn.

• The eigen values are the elements of
√

nFna.

• Products Fn x and F∗n x can be computed with the fast Fourier transform
(FFT).

• In R
√

nFnx = fft(x)
√

nF∗n x = fft(x, inverse = TRUE)

• These computations are generally O(n logn) in complexity.

• Circulant systems can be used to approximate other systems.

• Multi-dimensional analogs exist as well.

• A simple example is available on line.

89

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/circulant.Rmd

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Sparse Systems

• Many problems lead to large systems in which only a small fraction of
coefficients are non-zero.

• Some methods are available for general sparse systems.

• Specialized methods are available for structured sparse systems such as

– tri-diagonal systems

– block diagonal systems

– banded systems

• Careful choice of row and column permutations can often turn general
sparse systems into banded ones.

Sparse and Structured Systems in R

• Sparse matrix support in R is improving.

• Some packages, like nlme, provide utilities they need.

• One basic package available on CRAN is sparseM

• A more extensive package is Matrix

• Matrix is the engine for mixed effects/multi-level model fitting in lme4

90

http://cran.r-project.org

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Update Formulas

• Update formulas are available for most decompositions that allow for
efficient adding or dropping of rows or columns.

• These can be useful for example in cross-validation and variable selec-
tion computations.

• They can also be useful for fitting linear models to very large data sets;
the package biglm uses this approach.

• I am not aware of any convenient implementations in R at this point but
they may exist.

91

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Iterative Methods

• Iterative methods can be useful in large, sparse problems.

• Iterative methods for sparse problems can also often be parallelized ef-
fectively.

• Iterative methods are also useful when

– Ax can be computed efficiently for any given x

– It is expensive or impossible to compute A explicitly

Gauss-Seidel Iteration

Choose an initial solution x(0) to

Ax = b

and then update from x(k) to x(k+1) by

x(k+1)
i =

1
aii

(
bi−

i−1

∑
j=1

ai jx
(k+1)
j −

n

∑
j=i+1

ai jx
(k)
j

)

for i = 1, . . . ,n.

This is similar in spirit to Gibbs sampling.

92

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

This can be written in matrix form as

x(k+1) = (D+L)−1(−Ux(k)+b)

with

L =


0 0 0

a21 0 . . .
...

a31 a32
. . . 0

... 0 0
an1 an2 . . . an,n−1 0


D = diag(a11, . . . ,ann)

U =


0 a12 a1n

0 0 . . .
...

0 0 . . . an−2,n
... an−1,n
0 0 . . . 0 0



93

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Splitting Methods

The Gauss-Seidel method is a member of a class of splitting methods where

Mx(k+1) = Nx(k)+b

with A = M−N.

For the Gauss-Seidel method

M = D+L
N =−U.

Other members include Jacobi iterations with

MJ = D
NJ =−(L+U)

Splitting methods are practical if solving linear systems with matrix M is easy.

Convergence

A splitting method for a non-singular matrix A will converge to the unique
solution of Ax = b if

ρ(M−1N)< 1

where
ρ(G) = max{|λ | : λ is an eigenvalue of G}

is the spectral radius of G.

This is true, for example, for the Gauss-Seidel method if A is strictly positive
definite.

Convergence can be very slow if ρ(M−1N) is close to one.

94

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Successive Over-Relaxation

A variation is to define

x(k+1)
i =

ω

aii

(
bi−

i−1

∑
j=1

ai jx
(k+1)
j −

n

∑
j=i+1

ai jx
(k)
j

)
+(1−ω)x(k)i

or, in matrix form,
Mωx(k+1) = Nωx(k)+ωb

with

Mω = D+ωL
Nω = (1−ω)D−ωU

for some ω , usually with 0 < ω < 1.

• This is called successive over-relaxation (SOR), from its first application
in a structural engineering problem.

• For some choices of ω we can have

ρ(M−1
ω Nω)� ρ(M−1N)

and thus faster convergence.

• For some special but important problems the value of ω that minimizes
ρ(M−1

ω Nω) is known or can be computed.

95

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Conjugate Gradient Method

If A is symmetric and strictly positive definite then the unique solution to
Ax = b is the unique minimizer of the quadratic function

f (x) =
1
2

xT Ax− xT b

Any nonlinear or quadratic optimization method can be used to find the min-
imum; the most common one used in this context is the conjugate gradient
method.

Choose an initial x0, set d0 = −g0 = b− Ax0, and then, while gk 6= 0, for
k = 0,1, . . . compute

αk =−
gT

k dk

dT
k Adk

xk+1 = xk +αkdk

gk+1 = Axk+1−b

βk+1 =
gT

k+1Adk

dT
k Adk

dk+1 =−gk+1 +βk+1dk

Some properties:

• An alternate form of gk+1 is

gk+1 = gk +αkAdk

This means only one matrix-vector multiplication is needed per iteration.

• The vector gk is the gradient of f at xk.

• The initial direction d0 =−g0 is the direction of steepest descent from x0

• The directions d0,d1, . . . are A-conjugate, i.e. dT
i Ad j = 0 for i 6= j.

• The directions d0,d1, . . . ,dn−1 are linearly independent.

96

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Convergence

• With exact arithmetic,
Axn = b

That is, the conjugate gradient algorithm terminates with the exact solu-
tion in n steps.

• Numerically this does not happen.

• Numerically, the directions will not be exactly A-conjugate.

• A convergence tolerance is used for termination; this can be based on the
relative change in the solution

‖xk+1− xk‖
‖xk‖

or the residual or gradient

gk = Axk−b

or some combination; an iteration count limit is also a good idea.

• If the algorithm does not terminate within n steps it is a good idea to
restart it with a steepest descent step from the current xk.

• In many sparse and structured problems the algorithm will terminate in
far fewer than n steps for reasonable tolerances.

• Convergence is faster if the condition number of A is closer to one. The
error can be bounded as

‖x− xk‖A ≤ 2‖x− x0‖A

(√
κ2(A)−1√
κ2(A)+1

)k

with ‖x‖A =
√

xT Ax.

• Preconditioning strategies can improve convergence; these transform the
original problem to one with Ã =C−1AC−1 for some symmetric strictly
positive definite C, and then use the conjugate gradient method for Ã

• Simple choices of C are most useful; sometimes a diagonal matrix will
do.

• Good preconditioners can sometimes be designed for specific problems.

97

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

A Simple Implementation

cg <- function(A, b, x, done) {
dot <- function(x, y) crossprod(x, y)[1]

n <- 0
g <- A(x) - b
d <- -g

repeat {
h <- A(d)
u <- dot(d, h)
a <- -dot(g, d) / u

n <- n + 1
x.old <- x
x <- x + a * d
g <- g + a * h

b <- dot(h, g) / u
d <- -g + b * d
if (done(g, x, x.old, n))

return(list(x = as.vector(x),
g = as.vector(g),
n = n))

}
}

• The linear transformation and the termination condition are specified as
functions.

• The termination condition can use a combination of the gradient, current
solution, previous solution, or iteration count.

• A simple example:

> X <- crossprod(matrix(rnorm(25), 5))
> y <- rnorm(5)
> cg(function(x) X %*% x, y, rep(0, 5), function(g, x, x.old, n) n >= 5)
$x
[1] 11.461061 -7.774344 1.067511 87.276967 -8.151556

$g
[1] -9.219292e-13 2.566836e-13 -1.104117e-12 1.690870e-13 1.150191e-13

$n
[1] 5

> solve(X, y)
[1] 11.461061 -7.774344 1.067511 87.276967 -8.151556

98

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Linear Algebra Software

Some Standard Packages

Open source packages developed at national laboratories:

• LINPACK for linear equations and least squares

• EISPACK for eigenvalue problems

• LAPACK newer package for linear equations and eigenvalues

Designed for high performance. Available from Netlib at

http://www.netlib.org/

Commercial packages:

• IMSL used more in US

• NAG used more in UK

• ...

99

http://www.netlib.org/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

BLAS: Basic Linear Algebra Subroutines

Modern BLAS has three levels:

Level 1: Vector and vector/vector operations such as

• dot product xT y

• scalar multiply and add (axpy): αx+ y

• Givens rotations

Level 2: Matrix/vector operations, such as Ax

Level 3: Matrix/matrix operations, such as AB

• LINPACK uses only Level 1; LAPACK uses all three levels.

• BLAS defines the interface.

• Standard reference implementations are available from Netlib.

• Highly optimized versions are available from hardware vendors and re-
search organizations.

100

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Cholesky Factorization in LAPACK

The core of the DPOTRF routine:

*
* Compute the Cholesky factorization A = L*L’.

*
DO 20 J = 1, N

*
* Compute L(J,J) and test for non-positive-definiteness.

*
AJJ = A(J, J) - DDOT(J-1, A(J, 1), LDA, A(J, 1),

$ LDA)
IF(AJJ.LE.ZERO) THEN

A(J, J) = AJJ
GO TO 30

END IF
AJJ = SQRT(AJJ)
A(J, J) = AJJ

*
* Compute elements J+1:N of column J.

*
IF(J.LT.N) THEN

CALL DGEMV(’No transpose’, N-J, J-1, -ONE, A(J+1, 1),
$ LDA, A(J, 1), LDA, ONE, A(J+1, J), 1)

CALL DSCAL(N-J, ONE / AJJ, A(J+1, J), 1)
END IF

20 CONTINUE

• DDOT and DSCAL are Level 1 BLAS routines

• DGEMV is a Level 2 BLAS routine

101

http://www.netlib.org/lapack/explore-3.1.1-html/dpotf2.f.html

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

ATLAS: Automatically Tuned Linear Algebra Software

Available at

http://math-atlas.sourceforge.net/

• Analyzes machine for properties such as cache characteristics.

• Runs extensive tests to determine performance trade-offs.

• Creates Fortran and C versions of BLAS and some LAPACK routines
tailored to the particular machine.

• Provides some routines that take advantage of multiple processors using
worker threads.

OpenBLAS

• Another high-performance BLAS library was developed and maintained
by Kazushige Goto.

• This is now being developed and maintained as the OpenBLAS project,
available from

http://xianyi.github.com/OpenBLAS/

• Also provides versions that take advantage of multiple processors.

Vendor Libraries

• Intel provides the Math Kernel Libraries (MKL)

• AMD has a similar library.

102

http://math-atlas.sourceforge.net/
http://xianyi.github.com/OpenBLAS/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Using a High-Performance BLAS with R

• R comes with a basic default BLAS.

• R can be built to use a specified BLAS.

• Once built one can change the BLAS R uses by replacing the shared
library R uses.

• Some simple computations using the default and MKL vendor BLAS for
the data

N <- 1000
X <- matrix(rnorm(Nˆ2), N)
XX <- crossprod(X)

Results:

Default/ MKL MKL
Timing Expression Reference SEQ THR
system.time(for (i in 1:5) crossprod(X)) 2.107 0.405 0.145
system.time(for (i in 1:5) X %*% X) 3.401 0.742 0.237
system.time(svd(X)) 3.273 0.990 0.542
system.time(for (i in 1:5) qr(X)) 2.290 1.094 1.107
system.time(for (i in 1:5) qr(X, LAPACK=TRUE)) 2.629 0.834 0.689
system.time(for (i in 1:20) chol(XX)) 2.824 0.556 0.186

• These results are based on the non-threaded and threaded Intel Math Ker-
nel Library (MKL) using the development version of R.

• Versions of the current R using MKL for BLAS are available as

/group/statsoft/R-patched/build-MKL-seq/bin/R
/group/statsoft/R-patched/build-MKL-thr/bin/R

• Currently the standard version of R on our Linux systems seems to be
using OpenBLAS with multi-threading disabled.

103

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Final Notes

• Most reasonable approaches will be accurate for reasonable problems.

• Choosing good scaling and centering can make problems more reason-
able (both numerically and statistically)

• Most methods are efficient enough for our purposes.

• In some problems worrying about efficiency is important if reasonable
problem sizes are to be handled.

• Making sure you are using the right approach to the right problem is
much more important than efficiency.

• Some quotes:

– D. E. Knuth, restating a comment by C. A. R. Hoare:

We should forget about small efficiencies, say about 97%
of the time: premature optimization is the root of all evil.

– W. A. Wulf:

More computing sins are committed in the name of effi-
ciency (without necessarily achieving it) than for any other
single reason — including blind stupidity.

104

Optimization

Preliminaries

Many statistical problems involve minimizing (or maximizing) a function f :
X → R, i.e. finding

x∗ = argmin
x∈X

f (x)

• Maximizing f (x) is equivalent to mimimizing − f (x).

• The domain X can be

– a finite set — combinatorial optimization

– a continuous, usually connected, subset of Rn

• The function can be

– continuous

– twice continuously differentiable

– unrestricted

• The function can

– have a single local minimum that is also a global minimum

– have one or more local minima but no global minimum

– have many local minima and a global minimum

105

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Algorithms can be designed to

– find a local minimum from some specified starting point

– find the global minimum

• The objective can be

– to find a global minimum

– to find a local minimum

– to improve on an initial guess

• Very good software is available for many problems

– general purpose optimizers will often do well

– occasionally it is useful to write your own, usually to exploit special
structure

– understanding general strategies is useful even when using canned
software

• Optimization problems often require some tuning

– proper scaling is often critical

106

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

One-Dimensional Optimization

Given an initial point x(k) and a direction d we can define

x(t) = x(k)+ td

and set
x(k+1) = x(k)+ t∗d

where
t∗ = argmint f (x(t))

with t ∈ R restricted to satisfy x(t) ∈X .

• This is often called a line search.

• Many one-dimensional optimization methods are available.

• Many are based on finding a root of the derivative.

• Newton’s method approximates f (x(t)) by a quadratic.

• Once the function f has been minimized in the direction d a new direc-
tion can be tried.

• It is usually not necessary to find the minimizer t∗ exactly — a few steps
in an iterative algorithm are often sufficient.

• R provides

– optimize for minimizing a function over an interval

– uniroot for finding the root of a function in an interval

107

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Choosing Search Directions

Several methods are available for choosing search directions:

• Cyclic descent, or coordinate descent: if x = (x1, . . . ,xn) then minimize
first with respect to x1, then x2, and so on through xn, and repeat until
convergence

– This method is also called non-liner Gauss-Seidel iteration or back-
fitting. It is similar in spirit to Gibbs sampling.

– This may take more iterations than other methods, but often the in-
dividual steps are very fast.

– A recent paper and the associated sparsenet package takes ad-
vantage of this for fitting sparse linear models.

• Steepest descent: Take d =−∇ f (x(k)).

– Steepest descent can be slow to converge due to zig-zagging.

– It can work well for problems with nearly circular contours.

– Preconditioning to improve the shape of the contours can help.

• Conjugate gradient: Start with the steepest descent direction and then
choose directions conjugate to a strictly positive definite matrix A, often
a Hessian matrix.

– This can reduce the zig-zagging.

– It needs to be restarted at least every n steps.

– Unless the objective function f is quadratic a new matrix A is typi-
cally computed at each restart.

Most of these methods will be linearly convergent: under suitable regularity
conditions and if x(0) is close enough to a local minimizer x∗ then

lim
k→∞

‖x(k+1)− x∗‖
‖x(k)− x∗‖

= a

with 0 < a < 1; a is the rate of convergence. A method for which a = 0 is said
to converge super-linearly.

108

http://www.stanford.edu/~hastie/Papers/Sparsenet/jasa_MFH_final.pdf

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Newton’s Method

Newton’s method approximates f by the quadratic

f (k)(x) = f (x(k))+∇ f (x(k))(x− x(k))+
1
2
(x− x(k))T

∇
2 f (x(k))(x− x(k))

and computes x(k+1) to minimize the quadratic approximation f (k):

x(k+1) = x(k)−
(

∇
2 f (x(k))

)−1
∇ f (x(k))

• Convergence can be very fast: if

– f is twice continuously differentiable near a local minimizer x∗

– ∇2 f (x∗) is strictly positive definite

– x(0) is sufficiently close to x∗

then

lim
k→∞

‖x(k+1)− x∗‖
‖x(k)− x∗‖2

= a

with 0 < a < ∞. This is called quadratic convergence.

109

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• If these conditions fail then Newton’s method may not converge, even
for a convex unimodal function.

• If the new value x(k+1) does not improve f then one can use a line search
in the direction of the Newton step.

• Newton’s method requires first and second derivatives:

– Numerical derivatives can be used.

– Computing the derivatives can be very expensive if n is large.

• Many implementations

– modify the second derivative matrix if it is not strictly positive defi-
nite.

– switch to an alternate method, such as steepest descent, if the New-
ton direction does not produce sufficient improvement

• Computation of the Newton step is usually done using a Cholesky fac-
torization of the Hessian.

• A modified factorization is often used if the Hessian is not numerically
strictly positive definite.

• If θ̃ is a consistent estimate of θ and θ̂ is computed as a single Newton
step from θ̃ , then, under mild regularity conditions, θ̂ will have the same
asymptotic normal distribution as the MLE.

110

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/newtonbad.Rmd
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/newtonbad.Rmd

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Quasi-Newton Methods

Quasi-Newton methods compute the next step as

x(k+1) = x(k)−B−1
k ∇ f (x(k))

where Bk is an approximation to the Hessian matrix ∇2 f (x(k)).

• Bk+1 is usually chosen so that

∇ f (x(k+1)) = ∇ f (x(k))+Bk+1(x(k+1)− x(k))

• For n= 1 this leads to the secant method; for n> 1 this is under-determined.

• For n > 1 various strategies for low rank updating of B are available;
often these are based on successive gradient values.

• The inverse can be updated using the Sherman-Morrison-Woodbury for-
mula: If A is invertible then

(A+uvT)−1 = A−1− A−1uvT A−1

1+ vT A−1u

as long as the denominator is not zero.

• Commonly used methods include

– Davidon-Fletcher-Powell (DFP)

– Broyden-Fletcher-Goldfarb-Shanno (BFGS)

• Methods generally ensure that

– Bk is symmetric

– Bk is strictly positive definite

• Convergence of Quasi-Newton methods is generally super-linear but not
quadratic.

111

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Fisher Scoring

Maximum likelihood estimates can be computed by minimizing the negative
log likelihood

f (θ) =− logL(θ)

• The Hessian matrix ∇2 f (θ (k)) is the observed information matrix at θ (k).

• Sometimes the expected information matrix I(θ (k)) is easy to compute.

• The Fisher scoring method uses a Newton step with the observed infor-
mation matrix replaced by the expected information matrix:

θ
(k+1) = θ

(k)+ I(θ (k))−1
∇ logL(θ (k))

112

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Logistic Regression

Suppose yi ∼ Binomial(mi,πi) with

πi =
exp(xT

i β)

1+ exp(xT
i β)

The negative log likelihood, up to additive constants, is

f (β) =−∑(yixT
i β −mi log(1+ exp(xT

i β))

with gradient

∇ f (β) =−∑

(
yixi−mi

exp(xT
i β)

1+ exp(xT
i β)

xi

)
=−∑(yixi−miπixi)

=−∑(yi−miπi)xi

and Hessian
∇

2 f (β) = ∑miπi(1−πi)xixT
i

The Hessian is non-stochastic, so Fisher scoring and Newton’s method are
identical and produce the update

β
(k+1) = β

(k)+
(
∑miπ

(k)
i (1−π

(k)
i)xixT

i

)−1(
∑(yi−miπ

(k)
i)xi

)

113

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

If X is the matrix with rows xT
i , W (k) is the diagonal matrix with diagonal

elements
W (k)

ii = miπ
(k)
i (1−π

(k)
i)

and V (k) is the vector with elements

V (k)
i =

yi−miπ
(k)
i

Wii

then this update can be written as

β
(k+1) = β

(k)+(XTW (k)X)−1XTW (k)V (k)

Thus the change in β is the result of fitting the linear model V (k) ∼ X by
weighted least squares with weights W (k).

• This type of algorithm is called an iteratively reweighted least squares
(IRWLS) algorithm.

• Similar results hold for all generalized linear models.

• In these models Fisher scoring and Newton’s method are identical when
the canonical link function is chosen which makes the natural parameter
linear in β .

114

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Gauss-Newton Method

Suppose
Yi ∼ N(η(xi,θ),σ

2).

For example, η(x,θ) might be of the form

η(x,θ) = θ0 +θ1e−θ2x.

Then the MLE minimizes

f (θ) =
n

∑
i=1

(yi−η(xi,θ))
2.

We can approximate η near a current guess θ (k) by the Taylor series expansion

ηk(xi,θ)≈ η(xi,θ
(k))+∇θ η(xi,θ

(k))(θ −θ
(k))

This leads to the approximate objective function

fk(θ)≈
n

∑
i=1

(yi−ηk(xi,θ))
2

=
n

∑
i=1

(yi−η(xi,θ
(k))−∇θ η(xi,θ

(k))(θ −θ
(k)))2

This is the sum of squared deviations for a linear regression model, so is min-
imized by

θ
(k+1) = θ

(k)+(JT
k Jk)

−1JT
k (y−η(x,θ (k)))

where Jk = ∇θ η(x,θ(k)) is the Jacobian matrix of the mean function.

• The Gauss-Newton algorithm works well for problems with small resid-
uals, where it is close to Newton’s method.

• Like Newton’s method it can suffer from taking too large a step.

• Backtracking or line search can be used to address this.

• An alternative is the Levenberg-Marquardt algorithm that uses

θ
(k+1) = θ

(k)+(JT
k Jk +λ I)−1JT

k (y−η(x,θ (k)))

for some damping parameter λ . Various strategies for choosing λ are
available.

The R function nls uses these approaches.

115

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Termination and Scaling

Optimization algorithms generally use three criteria for terminating the search:

• relative change in x

• relative or absolute change in the function values and/or derivatives

• number of iterations

How well these work often depends on problem scaling

• Implementations often allow specification of scaling factors for parame-
ters.

• Some also allow scaling of the objective function.

Dennis and Schnabel (1983) recommend

• a relative gradient criterion

max
1≤i≤n

∣∣∣∣∇ f (x)i max{|xi|, typxi}
max{| f (x)|, typ f}

∣∣∣∣≤ εgrad

where typxi and typ f are typical magnitudes of xi and f .

• a relative change in x criterion

max
1≤i≤n

|∆xi|
max{|xi|, typxi}

≤ εstep

Practical use of optimization algorithms often involves

• trying different starting strategies

• adjusting scaling after preliminary runs

• other reparameterizations to improve conditioning of the problem

116

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Nelder-Mead Simplex Method

This is not related to the simplex method for linear programming!

• The method uses only function values and is fairly robust but can we
quite slow and need repeated restarts. It can work reasonably even if the
objective function is not differentiable.

• The method uses function values at a set of n+ 1 affinely independent
points in n dimensions, which form a simplex.

• Affine independence means that the points x1, . . . ,xn+1 are such that x1−
xn+1, . . . ,xn− xn+1 are linearly independent.

• The method goes through a series of reflection, expansion, contraction ,
and reduction steps to transform the simplex until the function values do
not change much or the simplex becomes very small.

117

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

One version of the algorithm, adapted from Wikipedia:

1. Order the vertices according to their function values,

f (x1)≤ f (x2)≤ ·· · ≤ f (xn+1)

2. Calculate x0 =
1
n ∑

n
i=1 xi, the center of the face opposite the worst point

xn+1.

3. Reflection: compute the reflected point

xr = x0 +α(x0− xn+1)

for some α ≥ 1, e.g. α = 1. If f (x1) ≤ f (xr) < f (xn), i.e. xr is better
than the second worst point xn but not better than the best point x1, then
replace the worst point xn+1 by xr and go to Step 1.

4. Expansion: If f (xr)< f (x1), i.e. xr is the best point so far, then compute
the expanded point

xe = x0 + γ(x0− xn+1)

for some γ > α , e.g. γ = 2. If f (xe)< f (xr) then replace xn+1 by xe and
go to Step 1. Otherwise replace xn+1 with xr and go to Step 1.

5. Contraction: If we reach this step then we know that f (xr) ≥ f (xn).
Compute the contracted point

xc = x0 +ρ(x0− xn+1)

for some ρ < 0, e.g. ρ = −1/2. If f (xc) < f (xn+1) replace xn+1 by xc
and go to Step 1. Otherwise go to Step 6.

6. Reduction: For i = 2, . . . ,n+1 set

xi = x1 +σ(xi− x1)

for some σ < 1, e.g. σ = 1/2.

The Wikipedia page shows some examples as animations.

118

http://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
http://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Simulated Annealing

• Simulated annealing is motivated by an analogy to slowly cooling metals
in order to reach the minimum energy state.

• It is a stochastic global optimization method.

• It can be very slow but can be effective for difficult problems with many
local minima.

• For any value T > 0 the function

fT (x) = e f (x)/T

has minima at the same locations as f (x).

• Increasing the temperature parameter T flattens fT ; decreasing T sharp-
ens the local minima.

• Suppose we have a current estimate of the minimizer, x(k) and a mecha-
nism for randomly generating a proposal y for the next estimate.

• A step in the simulated annealing algorithm given a current estimate x(k):

– Generate a proposal y for the next estimate.

– If f (y)≤ f (x(k)) then accept y and set x(k+1) = y.

– If f (y) > f (x(k)) then with probability fT (x(k))/ fT (y) accept y and
set x(k+1) = y.

– Otherwise, reject y and set x(k+1) = x(k).

– Adjust the temperature according to a cooling schedule and repeat.

• Occasionally accepting steps that increase the objective function allows
escape from local minima.

119

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• A common way to generate y is as a multivariate normal vector centered
at x(k).

• A common choice of cooling schedule is of the form T = 1/ log(k).

• The standard deviations of the normal proposals may be tied to the cur-
rent temperature setting.

• Under certain conditions this approach can be shown to converge to a
global minimizer with probability one.

• Using other forms of proposals this approach can also be used for dis-
crete optimization problems.

120

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

EM and MCEM Algorithms

Suppose we have a problem where complete data X ,Z has likelihood

Lc(θ |x,z) = f (x,z|θ)

but we only observe incomplete data X with likelihood

L(θ |x) = g(x|θ) =
∫

f (x,z|θ)dz

• Often the complete data likelihood is much simpler than the incomplete
data one.

• The conditional density of the unobserved data given the observed data
is

k(z|x,θ) = f (x,z|θ)
g(x|θ)

• Define, taking expectations with respect to k(z|x,φ),

Q(θ |φ ,x) = Eφ [log f (x,z|θ)|x]
H(θ |φ ,x) = Eφ [logk(z|x,θ)|x]

• The EM algorithm consists of starting with an initial estimate θ̂ (0) and
repeating two steps until convergence:

– E(xpectation)-Step: Construct Q(θ |θ̂ (i))

– M(aximization)-Step: Compute θ̂ (i+1) = argmaxθ Q(θ |θ̂ (i))

121

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• This algorithm was introduced by Dempster, Laird and Rubin (1977); it
unified many special case algorithms in the literature.

• The EM algorithm increases the log likelihood at every step; this helps
to ensure a very stable algorithm.

• The EM algorithm is typically linearly convergent.

• Acceleration methods may be useful. Givens and Hoeting describe some;
others are available in the literature.

• If Q(θ |φ ,x) cannot be constructed in closed form, it can often be com-
puted by Monte Carlo methods; this is the MCEM algorithm of Wei and
Tanner (1990).

• In many cases MCMC methods will have to be used in the MCEM algo-
rithm.

122

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Normal Mixture Models

Suppose X1, . . . ,Xn are independent and identically distributed with density

f (x|θ) =
M

∑
j=1

p j f (x|µ j,σ
2
j)

with p1, . . . , pM ≥ 0, ∑ p j = 1, and f (x|µ,σ2) is a Normal(µ,σ2) density. M
is assumed known.

We can think of Xi as generated in two stages:

• First a category J is selected from {1, . . . ,M}with probabilities p1, . . . , pM.

• Then, given J = j, a normal random variable is generated from f (x|µ j,σ
2
j).

We can represent the unobserved category using indicator variables

Zi j =

{
1 if Ji = j
0 otherwise.

The complete data log likelihood is

logL(θ |x,z) =
n

∑
i=1

M

∑
j=1

zi j

[
log p j− logσ j−

1
2

(
xi−µ j

σ j

)2
]

123

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

The Expectation step produces

Q(θ |θ̂ (k)) =
n

∑
i=1

M

∑
j=1

p̂(k)i j

[
log p j− logσ j−

1
2

(
xi−µ j

σ j

)2
]

with

p̂(k)i j = E[Zi j|X = x,θ (k)] =
p̂(k)j f

(
xi

∣∣∣µ̂(k)
j , σ̂

(k)2
j

)
∑

M
`=1 p̂(k)` f

(
xi

∣∣∣µ̂(k)
` , σ̂

(k)2
`

)
The Maximization step then produces

µ̂
(k+1)
j =

∑
n
i=1 p̂(k)i j xi

∑
n
i=1 p̂(k)i j

σ̂
(k+1)2
j =

∑
n
i=1 p̂(k)i j (xi− µ̂

(k+1)
j)2

∑
n
i=1 p̂(k)i j

p̂(k+1)
j =

1
n

n

∑
i=1

p̂(k)i j

124

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

A simple R function to implement a single EM step might be written as

EMmix1 <- function(x, theta) {
mu <- theta$mu
sigma <- theta$sigma
p <- theta$p
M <- length(mu)

E step
Ez <- outer(x, 1:M, function(x, i) p[i] * dnorm(x, mu[i], sigma[i]))
Ez <- sweep(Ez, 1, rowSums(Ez), "/")
colSums.Ez <- colSums(Ez)

M step
xp <- sweep(Ez, 1, x, "*")
mu.new <- colSums(xp) / colSums.Ez

sqRes <- outer(x, mu.new, function(x, m) (x - m)ˆ2)
sigma.new <- sqrt(colSums(Ez * sqRes) / colSums.Ez)

p.new <- colSums.Ez / sum(colSums.Ez)

pack up result
list(mu = mu.new, sigma = sigma.new, p = p.new)

}

125

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some notes:

• Reasonable starting values are important.

• We want a local maximum near a good starting value, not a global max-
imum.

• Code to examine the log likelihood for a simplified example:

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/
examples/mixll.R

• Some recent papers:

– Tobias Ryden (2008). EM versus Markov chain Monte Carlo for
estimation of hidden Markov models: a computational perspective,
Bayesian Analysis 3 (4), 659–688.

– A. Berlinet and C. Roland (2009). Parabolic acceleration of the EM
algorithm. Statistics and Computing 19 (1), 35–48.

– Chen, Lin S., Prentice, Ross L., and Wang, Pei (2014). A penalized
EM algorithm incorporating missing data mechanism for Gaussian
parameter estimation, Biometrics 70 (2), 312–322.

126

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/mixll.R
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/mixll.R

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Theoretical Properties of the EM Algorithm

• The conditional density of the unobserved data given the observed data
is

k(z|x,θ) = f (x,z|θ)
g(x|θ)

• Define, taking expectations with respect to k(z|x,φ),

Q(θ |φ ,x) = Eφ [log f (x,z|θ)|x]
H(θ |φ ,x) = Eφ [logk(z|x,θ)|x]

• For any φ

logL(θ |x) = Q(θ |φ ,x)−H(θ |φ ,x)

since for any z

logL(θ |x) = logg(x|θ)
= log f (x,z|θ)− log f (x,z|θ)+ logg(x|θ)

= log f (x,z|θ)− log
f (x,z|θ)
g(x|θ)

= log f (x,z|θ)− logk(z|x,θ)

and therefore, taking taking expectations with respect to k(z|x,φ),

logL(θ |x) = Eφ [log f (x,z|θ)]−Eφ [logk(z|x,θ)]
= Q(θ |φ ,x)−H(θ |φ ,x)

127

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Furthermore, for all θ

H(θ |φ)≤ H(φ |φ)

since, by Jensen’s inequality,

H(θ |φ)−H(φ |φ) = Eφ [logk(z|θ ,x)]−Eφ [logk(z|φ ,x)]

= Eφ

[
log

k(z|θ ,x)
k(z|x,φ)

]
≤ logEφ

[
k(z|θ ,x)
k(z|x,φ)

]
= log

∫ k(z|θ ,x)
k(z|x,φ)

k(z|x,φ)dz

= log
∫

k(z|xθ)dz = 0.

• This implies that for any θ and φ

logL(θ |x)≥ Q(θ |φ ,x)−H(φ |φ ,x)

with equality when θ = φ , and therefore

– if θ̂ maximizes L(θ |x) then θ̂ maximizes Q(θ |θ̂ ,x) with respect to
θ :

Q(θ |θ̂ ,x)−H(θ̂ |θ̂ ,x)≤ logL(θ |x)
≤ logL(θ̂ |x) = Q(θ̂ |θ̂ ,x)−H(θ̂ |θ̂ ,x)

– if θ̂(φ) maximizes Q(θ |φ ,x) for a given φ then logL(φ |x)≤ logL(θ̂(φ)|x):

logL(φ |x) = Q(φ |φ ,x)−H(φ |φ ,x)
≤ Q(θ̂(φ)|φ ,x)−H(φ |φ ,x)
≤ Q(θ̂(φ)|φ ,x)−H(θ̂(φ)|φ ,x)
= logL(θ̂(φ)|x)

128

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

MM Algorithms

The EM algorithm can be viewed as a special case of an MM algorithm.

• MM stands for

– Minimization and Majorization, or

– Maximization and Minorization.

• Suppose the objective is to maximize a function f (θ).

• The assumption is that a surrogate function g(θ |φ) is available such that

f (θ)≥ g(θ |φ)

for all θ ,φ , with equality when θ = φ .

• The function g is said to minorize the function f .

• The MM algorithm starts with an initial guess θ̂ (0) and then computes

θ̂
(i+1) = argmaxθ g(θ |θ̂ (i))

129

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• As in the EM algorithm,

– if θ̂ maximizes f (θ) then θ̂ maximizes g(θ |θ̂)
– if θ̂(φ) maximizes g(θ |φ) then

f (φ)≤ f (θ̂(φ)).

• The objective function values will increase, and under reasonable condi-
tions the algorithm will converge to a local maxizer.

• Full maximization of g is not needed as long as sufficient progress is
made (single Newton steps are often sufficient).

• The art in designing an MM algorithm is finding a surrogate minorizing
function g that

– produces an efficient algorithm

– is easy to maximize

• In p-dimensional problems it is often possible to choose minorizing func-
tions of the form

g(θ |φ) =
p

∑
j=1

g j(θ j|φ)

so that g can be maximized by separate one-dimensional maximizations
of the g j.

130

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Bradley Terry Model

• In the Bradley Terry competition model each team has a strength θi and

P(i beats j) =
θi

θi +θ j

with θ1 = 1 for identifiability.

• Assuming independent games in which yi j is the number of times i beats
j the log likelihood is

logL(θ) = ∑
i, j

yi j (log(θi)− log(θi +θ j))

• Since the logarithm is concave, for any x and y

− logy≥− logx− y− x
x

and therefore for any θ and φ

logL(θ)≥∑
i, j

yi j

(
log(θi)− log(φi +φ j)−

θi +θ j−φi−φ j

φi +φ j

)
= g(θ |φ)
= ∑

i
gi(θi|φ)

with
gi(θi|φ) = ∑

j
yi j logθi−∑

j
(yi j + y ji)

θi−φi

φi +φ j
.

• The parameters are separated in g, and the one-dimensional maximizers
can be easily computed as

θ̂i(φ) =
∑ j yi j

∑ j(yi j + y ji)/(φi +φ j)

Some References on MM algorithms:

• Hunter DR and Lange K (2004), A Tutorial on MM Algorithms, The
American Statistician, 58: 30-37.

• Lange, K (2004). Optimization, Springer-Verlag, New York.

131

http://www.stat.psu.edu/~dhunter/papers/mmtutorial.pdf

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Constrained Optimization

• Equality constraints arise, for example, in

– restricted maximum likelihood estimation needed for the null hy-
pothesis in likelihood ratio tests

– estimating probabilities that sum to one

• Inequality constraints arise in estimating

– probabilities or rates that are constrained to be non-negative

– monotone functions or monotone sets of parameters

– convex functions

• Box constraints are the simplest and the most common.

• Linear inequality constraints also occur frequently.

• Inequality constraints are often handled by converting a constrained prob-
lem to an unconstrained one:

– Minimizing f (x) subject to gi(x) ≥ 0 for i = 1, . . . ,M is equivalent
to minimizing

F(x) =

{
f (x) if gi(x)≥ 0 for i = 1, . . . ,M
∞ otherwise.

– This objective function is not continuous.

• Sometimes a complicated unconstrained problem can be changed to sim-
pler constrained one.

132

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: L1 Regression

The L1 regression estimator is defined by the minimization problem

b̂ = argmin
b

∑ |yi− xT
i b|

This unconstrained optimization problem with a non-differentiable objective
function can be reformulated as a constrained linear programming problem:

For a vector z = (z1, . . . ,zn)
T let [z]+ denote the vector of positive parts of z,

i.e.
([z]+)i = max(zi,0)

and let

b+ = [b]+
b− = [−b]+

u = [y−Xb]+
v = [Xb− y]+

Then the L1 estimator satisfies

b̂ = argmin
b

1T u+1T v

subject to the constraints

y = Xb+−Xb−+u− v
u≥ 0,v≥ 0,b+ ≥ 0,b− ≥ 0

133

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• This linear programming problem can be solved by the standard simplex
algorithm.

• A specialized simplex algorithm taking advantage of structure in the
constraint matrix allows larger data sets to be handled (Barrodale and
Roberts, 1974).

• Interior point methods can also be used and are effective for large n and
moderate p.

• An alternative approach called smoothing is based on approximating the
absolute value function by a twice continuously differentiable function
and can be effective for moderate n and large p.

• Chen and Wei (2005) provide an overview in the context of the more
general quantile regression problem.

– Quantile regression uses a loss function of the form

ρτ(y) = y
(
τ−1{y<0}

)
= τ[y]++(1− τ)[−y]+.

for 0 < τ < 1.

– For τ = 1
2 this is ρ1

2
(y) = 1

2 |y|.

• Reformulation as a constrained optimization problem is also sometimes
used for LASSO and SVM computations.

134

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some Approaches and Algorithms

• If the optimum is in the interior of the feasible region then using standard
methods on F may work, especially if these use backtracking if they
encounter infinite values.

• For interior optima transormations to an unbounded feasible region may
help.

• Standard algorithms can often be modified to handle box constraints.

• Other constraints are often handled using barrier methods that approxi-
mate F by a smooth function

Fγ(x) =

{
f (x)− γ ∑

M
i=1 loggi(x) if g(x)≥ 0

∞ otherwise

for some γ > 0. The algorithm starts with a feasible solution, minimizes
Fγ for a given γ , reduces γ , and repeats until convergence.

• Barrier methods are also called path-following algorithms.

• Path-following algorithms are useful in other settings where a harder
problem can be approached through a sequence of easier problems.

• Path-following algorithms usually start the search for the next γ at the so-
lution for the previous γ; this is sometimes called a warm start approach.

• The intermediate results for positive γ are in the interior of the feasible
region, hence this is an interior point method

• More sophisticated interior point methods are available in particular for
convex optimization problems.

135

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

An Adaptive Barrier Algorithm

Consider the problem of minimizing f (x) subject to the linear inequality con-
straints

gi(x) = bT
i x− ci ≥ 0

for i = 1, . . . ,M. For an interior point x(k) of the feasible region define the
surrogate function

R(x|x(k)) = f (x)−µ

M

∑
i=1

[
gi(x(k)) log(gi(x))−bT

i x
]

for some µ > 0. As a function of x the barrier function

f (x)−R(x|x(k)) = µ

M

∑
i=1

[
gi(x(k)) log(gi(x))−bT

i x
]

is concave and maximized at x = x(k). Thus if

x(k+1) = argmin
x

R(x|x(k))

then

f (x(k+1)) = R(x(k+1)|x(k))+ f (x(k+1))−R(x(k+1)|x(k))
≤ R(x(k)|x(k))+ f (x(k+1))−R(x(k+1)|x(k))
≤ R(x(k)|x(k))+ f (x(k))−R(x(k)|x(k))
= f (x(k))

• The values of the objective function are non-increasing.

• This has strong similarities to an EM algorithm argument.

• The coefficient of a logarithmic barrier term decreases to zero if x(k)

approaches the boundary.

• If f is convex and has a unique minimizer x∗ then x(k) converges to x∗.

• This algorithm was introduced in K. Lange (1994).

136

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Optimization in R

Several optimization functions are available in the standard R distribution:

• optim implements a range of methods:

– Nelder-Mead simplex

– Quasi-Newton with the BFGS update

– A modified Quasi-Newton BFGS algorithm that allows box con-
straints

– A conjugate gradient algorithm

– A version of simulated annealing.

Some notes:

– A variety of iteration control options are available.

– Analytical derivatives can be supplied to methods that use them.

– Hessian matrices at the optimum can be requested.

• nlminb provides an interface to the FORTRAN PORT library devel-
oped at Bell Labs. Box constraints are supported.

• nlm implements a modified Newton algorithm as described in Dennis
and Schnabel (1983).

• constrOptim implements the adaptive barrier method of Lange (1994)
using optim for the optimizations within iterations.

The Optimization Task View on CRAN describes a number of other methods
available in contributed packages.

Simple examples illustrating optim and constrOptim are available at

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/
examples/optimpath.R

137

http://netlib.bell-labs.com/cm/cs/cstr/153.pdf
http://cran.r-project.org/web/views/Optimization.html
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/optimpath.R
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/optimpath.R

Density Estimation and
Smoothing

Density Estimation

• Suppose we have a random sample X1, . . . ,Xn from a population with
density f .

• Nonparametric density estimation is useful if we

– want to explore the data without a specific parametric model
– want to assess the fit of a parametric model
– want a compromise between a parametric and a fully non-parametric

approach

• A simple method for estimating f at a point x:

f̂n(x) =
no. of Xi in [x−h,x+h]

2hn
for some small value of h

• This estimator has bias

Bias(f̂n(x)) =
1

2h
ph(x)− f (x)

and variance

Var(f̂n(x)) =
ph(x)(1− ph(x))

4h2n
with

ph(x) =
∫ x+h

x−h
f (u)du

138

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• If f is continuous at x and f (x)> 0, then as h→ 0

– the bias tends to zero;

– the variance tends to infinity.

• Choosing a good value of h involves a variance-bias tradeoff.

139

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Kernel Density Estimation

• The estimator f̂n(x) can be written as

f̂n(x) =
1
nh

n

∑
i=1

K
(

x− xi

h

)
with

K(u) =

{
1/2 if |u|< 1
0 otherwise

• Other kernel functions K can be used; usually

– K is a density function

– K has mean zero

– K has positive, finite variance σ2
K

Often K is symmetric.

• Common choices of K:

K(u) Range Name
1/2 |u|< 1 Uniform, Boxcar

1√
2π

e−u2/2 Gaussian
1−|u| |u|< 1 Triangular

3
4(1−u2) |u|< 1 Epanechnikov

15
16(1−u2)2 |u|< 1 Biweight

140

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Mean Square Error for Kernel Density Estimators

• The bias and variance of a kernel density estimator are of the form

Bias(f̂n(x)) =
h2σ2

K f ′′(x)
2

+O(h4)

Var(f̂n(x)) =
f (x)R(K)

nh
+o
(

1
nh

)
with

R(g) =
∫

g(x)2dx

if h→ 0 and nh→ ∞ and f is reasonable.

• The pointwise asymptotic mean square error is

AMSE(f̂n(x)) =
f (x)R(K)

nh
+

h4σ4
K f ′′(x)2

4

and the asymptotic mean integrated square error is

AMISE(f̂n) =
R(K)

nh
+

h4σ4
KR(f ′′)
4

• The resulting asymptotically optimal bandwidths h are

h0(x) =
(

f (x)R(K)

σ4
K f ′′(x)2

)1/5

n−1/5

h0 =

(
R(K)

σ4
KR(f ′′)

)1/5

n−1/5

with optimal AMSE and AMISE

AMSE0(f̂n(x)) =
5
4
(σK f (x)R(K))4/5 f ′′(x)2/5n−4/5

AMISE0(f̂n) =
5
4
(σKR(K))4/5R(f ′′)1/5n−4/5

141

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Choosing a Bandwidth

• One way to chose a bandwidth is to target a particular family, such as a
Gaussian f :

– The optimal bandwidth for minimizing AMISE when f is Gaussian
and K is Gaussian

h0 = 1.059σn−1/5

– σ can be estimated using S or the interquartile range
– The default for density in R is

0.9×min(S, IQR/1.34)n−1/5

based on a suggestion of Silverman (1986, pp 45–47).

• This can often serve as a reasonable starting point.

• It does not adapt to information in the data that suggests departures from
normality.

• So-called plug-in methods estimate R(f ′′) to obtain

ĥ =

(
R(K)

σ4
KR̂(f ′′)

)1/5

n−1/5

• The Sheather-Jones method uses a different bandwidth (and kernel?) to
estimate f̂ and then estimates R(f ′′) by R(f̂ ′′).

• Specifying bw="SJ" in R’s density uses the Sheather-Jones method.
There are two variants:

– SJ-dpi: direct plug-in
– SJ-ste: solve the equation

The default for bw="SJ" is ste.

• Other approaches based on leave-one-out cross-validation are available.

• Many of these are available as options in R’s density and/or other
density estimation functions available in R packages.

• Variable bandwidth approaches can be based on pilot estimates of the
density produced with simpler fixed bandwidth rules.

142

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Durations of Eruptions of Old Faithful

• Based on an example in Venables and Ripley (2002).

• Durations, in minutes, of 299 consecutive eruptions of Old Faithful were
recorded.

• The data are available as data set geyser in package MASS.

• Some density estimates are produced by

library(MASS)
data(geyser)
truehist(geyser$duration,nbin=25,col="lightgrey")
lines(density(geyser$duration))
lines(density(geyser$duration,bw="SJ"), col="red")
lines(density(geyser$duration,bw="SJ-dpi"), col="blue")

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

geyser$duration

• Animation can be a useful way of understanding the effect of smoothing
parameter choice. See files tkdens.R, shinydens.R, and geyser.R
in

143

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

http://www.stat.uiowa.edu/˜luke/classes/
STAT7400/examples/

Also

http://www.stat.uiowa.edu/˜luke/classes/
STAT7400/examples/smoothex.Rmd

144

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/smoothex.Rmd
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/smoothex.Rmd

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Issues and Notes

• Kernel methods do not work well at boundaries of bounded regions.

• Transforming to unbounded regions is often a good alternative.

• Variability can be assessed by asymptotic methods or by bootstrapping.

• A crude MCMC bootstrap animation:

g <- geyser$duration
for (i in 1:1000) {

g[sample(299,1)] <- geyser$duration[sample(299,1)]
plot(density(g,bw="SJ"),ylim=c(0,1.2),xlim=c(0,6))
Sys.sleep(1/30)

}

• Computation is often done with equally spaced bins and fast Fourier
transforms.

• Methods that adjust bandwidth locally can be used.

• Some of these methods are based on nearest-neighbor fits and local poly-
nomial fits.

• Spline based methods can be used on the log scale; the logspline
package implements one approach.

145

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Density Estimation in Higher Dimensions

• Kernel density estimation can in principle be used in any number of di-
mensions.

• Usually a d-dimensional kernel Kd of the product form

Kd(u) =
d

∏
i=1

K1(ui)

is used.

• The kernel density estimate is then

f̂n(x) =
1

ndet(H)

n

∑
i=1

K(H−1(x− xi))

for some matrix H.

• Suppose H = hA where det(A) = 1. The asymptotic mean integrated
square error is of the form

AMISE =
R(K)

nhd +
h4

4

∫
(trace(AAT

∇
2 f (x)))2dx

and therefore the optimal bandwidth and AMISE are of the form

h0 = O(n−1/(d+4))

AMISE0 = O(n−4/(d+4))

146

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Convergence is very slow if d is more than 2 or 3 since most of higher
dimensional space will be empty—this is known as the curse of dimen-
sionality.

• Density estimates in two dimensions can be visualized using perspective
plots, surface plots, image plots, and contour plots.

• Higher dimensional estimates can often only be visualized by condition-
ing, or slicing.

• The kde2d function in package MASS provides two-dimensional kernel
density estimates; an alternative is bkde2D in package KernSmooth.

• The kde3d function in the misc3d package provides three-dimensional
kernel density estimates.

147

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Eruptions of Old Faithful

• In addition to duration times, waiting times, in minutes, until the follow-
ing eruption were recorded.

• The duration of an eruption can be used to predict the waiting time until
the next eruption.

• A modified data frame containing the previous duration is constructed by

geyser2<-data.frame(as.data.frame(geyser[-1,]),
pduration=geyser$duration[-299])

• Estimates of the joint density of previous eruption duration and waiting
time are computed by

kd1 <- with(geyser2,
kde2d(pduration,waiting,n=50,lims=c(0.5,6,40,110)))

contour(kd1,col="grey",xlab="Previous Duration", ylab="waiting")
with(geyser2, points(pduration,waiting,col="blue"))
kd2 <- with(geyser2,

kde2d(pduration,waiting,n=50,lims=c(0.5,6,40,110),
h=c(width.SJ(pduration),width.SJ(waiting))))

contour(kd2,xlab="Previous Duration", ylab="waiting")

Rounding of some durations to 2 and 4 minutes can be seen.

Previous Duration

w
ai

tin
g

1 2 3 4 5 6

40
60

80
10

0

Previous Duration

w
ai

tin
g

1 2 3 4 5 6

40
60

80
10

0

148

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Visualizing Density Estimates

Some examples are given in geyser.R and kd3.R in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/
examples/

• Animation can be a useful way of understanding the effect of smoothing
parameter choice.

• Bootstrap animation can help in visualizing uncertainty.

• For 2D estimates, options include

– perspective plots

– contour plots

– image plots, with or without contours

• For 3D estimates contour plots are the main option

• Example: Data and contours for mixture of three trivariate normals and
two bandwidths

BW = 0.2 BW = 0.5

149

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Kernel Smoothing and Local Regression

• A simple non-parametric regression model is

Yi = m(xi)+ εi

with m a smooth mean function.

• A kernel density estimator of the conditional density f (y|x) is

f̂n(y|x) =
1

nh2 ∑K
(x−xi

h

)
K
(y−yi

h

)
1
nh ∑K

(x−xi
h

) =
1
h

∑K
(x−xi

h

)
K
(y−yi

h

)
∑K

(x−xi
h

)
• Assuming K has mean zero, an estimate of the conditional mean is

m̂n(x) =
∫

y f̂n(y|x)dy =
∑K

(x−xi
h

)∫
y1

hK
(y−yi

h

)
dy

∑K
(x−xi

h

)
=

∑K
(x−xi

h

)
yi

∑K
(x−xi

h

) = ∑wi(x)yi

This is the Nadaraya-Watson estimator.

• This estimator can also be viewed as the result of a locally constant fit:
m̂n(x) is the value β0 that minimizes

∑wi(x)(yi−β0)
2

• Higher degree local polynomial estimators estimate m(x) by minimizing

∑wi(x)(yi−β0−β1(x− xi)−·· ·−βp(x− xi)
p)2

• Odd values of p have advantages, and p= 1, local linear fitting, generally
works well.

• Local cubic fits, p = 3, are also used.

• Problems exist near the boundary; these tend to be worse for higher de-
gree fits.

150

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Bandwidth can be chosen globally or locally.

• A common local choice uses a fraction of nearest neighbors in the x
direction.

• Automatic choices can use estimates of σ and function roughness and
plug in to asymptotic approximate mean square errors.

• Cross-validation can also be used; it often undersmooths.

• Autocorrelation creates an identifiability problem.

• Software available in R includes

– ksmooth for compatibility with S (but much faster).

– locpoly for fitting and dpill for bandwidth selection in package
KernSmooth.

– lowess and loess for nearest neighbor based methods; also try
to robustify.

– supsmu, Friedman’s super smoother, a very fast smoother.

– package locfit on CRAN

All of these are also available for R; some are available as stand-alone
code.

151

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Spline Smoothing

• Given data (x1,y1), . . . ,(xn,yn) with xi ∈ [a,b] one way to fit a smooth
mean function is to choose m to minimize

S(m,λ) = ∑(yi−m(xi))
2 +λ

∫ b

a
m′′(u)2du

The term λ
∫ b

a m′′(u)2du is a roughness penalty.

• Among all twice continuously differentiable functions on [a,b] this is
minimized by a natural cubic spline with knots at the xi. This minimizer
is called a smoothing spline.

• A cubic spline is a function g on an interval [a,b] such that for some
knots ti with a = t0 < t1 < · · ·< tn+1 = b

– on (ti−1, ti) the function g is a cubic polynomial

– at t1, . . . , tn the function values, first and second derivatives are con-
tinuous.

• A cubic spline is natural if the second and third derivatives are zero at a
and b.

• A natural cubic spline is linear on [a, t1] and [tn,b].

• For a given λ the smoothing spline is a linear estimator.

• The set of equations to be solved is large but banded.

• The fitted values m̂n(xi,λ) can be viewed as

m̂n(x,λ) = A(λ)y

where A(λ) is the smoothing matrix or hat matrix for the linear fit.

• The function smooth.spline implements smoothing splines in R.

152

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Old Faithful Eruptions

• A nonparametric fit of waiting time to previous duration may be useful
in predicting the time of the next eruption.

• The different smoothing methods considered produce the following:

with(geyser2, {
plot(pduration,waiting)
lines(lowess(pduration,waiting), col="red")
lines(supsmu(pduration,waiting), col="blue")
lines(ksmooth(pduration,waiting), col="green")
lines(smooth.spline(pduration,waiting), col="orange")

})

1 2 3 4 5

50
60

70
80

90
10

0
11

0

pduration

w
ai

tin
g

• An animated version of the smoothing spline (available on line) shows
the effect of varying the smoothing parameter.

153

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/geyser.R

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Degrees of Freedom of a Linear Smoother

• For a linear regression fit with hat matrix

H = X(XT X)−1XT

and full rank regressor matrix X

tr(H) = number of fitted parameters = degrees of freedom of fit

• By analogy define the degrees of freedom of a linear smoother as

dffit = tr(A(λ))

For the geyser data, the degrees of freedom of a smoothing spline fit with
the default bandwidth selection rule are

> sum(with(geyser2,smooth.spline(pduration,waiting))$lev)
[1] 4.169843
> with(geyser2,smooth.spline(pduration,waiting))$df
[1] 4.169843

• For residual degrees of freedom the definition usually used is

dfres = n−2tr(A(λ))+ tr(A(λ)A(λ)T)

• Assuming constant error variance, a possible estimate is

σ̂
2
ε =

∑(yi− m̂n(xi,λ))
2

dfres(λ)
=

RSS(λ)
dfres(λ)

• The simpler estimator

σ̂
2
ε =

RSS(λ)
tr(I−A(λ))

=
RSS(λ)
n−dffit

is also used.

• To reduce bias it may make sense to use a rougher smooth for variance
estimation than for mean function estimation.

154

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Choosing Smoothing Parameters for Linear Smoothers

• Many smoothing methods are linear for a given value of a smoothing
parameter λ .

• Choice of the smoothing parameter λ can be based on leave-one-out
cross-validation, i.e. minimizing the cross-validation score

CV(λ) =
1
n ∑(yi− m̂(−i)

n (xi,λ))
2

• If the smoother satisfies (at least approximately)

m̂(−i)
n (xi,λ) =

∑ j 6=i A(λ)i jy j

∑ j 6=i A(λ)i j

and
n

∑
j=1

A(λ)i j = 1 for all i

then the cross-validation score can be computed as

CV(λ) =
1
n ∑

(
yi− m̂n(xi,λ)

1−Aii(λ)

)2

• The generalized cross-validation criterion, or GCV, uses average lever-
age values:

GCV(λ) =
1
n ∑

(
yi− m̂n(xi,λ)

1−n−1trace(A(λ))

)2

• The original motivation for GCV was computational; with better algo-
rithms this is no longer an issue.

155

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• An alternative motivation for GCV:

– For an orthogonal transformation Q one can consider fitting yQ =
QY with AQ(λ) = QA(λ)QT .

– Coefficient estimates and SSres are the same for all Q, but the CV
score is not.

– One can choose an orthogonal transformation such that the diagonal
elements of AQ(λ) are constant.

– For any such Q we have AQ(λ)ii = n−1trace(AQ(λ))= n−1trace(A(λ))

• Despite the name, GCV does not generalize CV.

• Both CV and GCV have a tendency to undersmooth.

156

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• For the geyser data the code

with(geyser2, {
lambda <- seq(0.5,2,len=30)
f <- function(s, cv = FALSE)

smooth.spline(pduration,waiting, spar=s, cv=cv)$cv
gcv <- sapply(lambda, f)
cv <- sapply(lambda, f, TRUE)
plot(lambda, gcv, type="l")
lines(lambda, cv, col="blue")

})

extracts and plots GCV and CV values:

0.5 1.0 1.5 2.0

39
40

41
42

lambda

gc
v

• Both criteria select a value of λ close to 1.

157

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Other smoothing parameter selection criteria include

– Mallows Cp,
Cp = RSS(λ)+2σ̂

2
ε dffit(λ)

– Akaike’s information criterion (AIC)

AIC(λ) = log{RSS(λ)}+2dffit(λ)/n

– Corrected AIC of Hurvich, Simonoff, and Tsai (1998)

AICC(λ) = log{RSS(λ)}+ 2(dffit(λ)+1)
n−dffit(λ)−2

158

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Spline Representations

• Splines can be written in terms of many different bases,

– B-splines
– truncated power basis
– radial or thin plate basis

Some are more useful numerically, others have interpretational advan-
tages.

• One useful basis for a cubic spline with knots {κ1, . . . ,κK} is the radial
basis or thin plate basis

1,x, |x−κ1|3, . . . , |x−κK|3

• More generally, a basis for splines of order 2m−1 is

1,x, . . . ,xm−1, |x−κ1|2m−1, . . . , |x−κK|2m−1

for m = 1,2,3,

– m = 2 produces cubic splines
– m = 1 produces linear splines

• In terms of this basis a spline is a function of the form

f (x) =
m−1

∑
j=0

β jx j +
K

∑
k=1

δk|x−κk|2m−1

• References:

– P. J. Green and B. W. Silverman (1994). Nonparametric Regression
and Generalied Linear Models

– D. Ruppert, M. P. Wand, and R. J. Carroll (2003). Semiparametric
Regression. SemiPar is an R package implementing the methods
of this book.

– G. Wahba (1990). Spline Models for Observational Data.
– S. Wood (2017). Generalized Additive Models: An Introduction

with R, 2nd Ed.. This is related to the mgcv package.

159

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• A generic form for the fitted values is

ŷ = X0β +X1δ .

• Regression splines refers to models with a small number of knots K fit
by ordinary least squares, i.e. by choosing β ,δ to minimize

‖y−X0β −X1δ‖2

• Penalized spline smoothing fits models with a larger number of knots
subject to a quadratic constraint

δ
T Dδ ≤C

for a positive definite D and some C.

• Equivalently, by a Lagrange multiplier argument, the solution minimizes
the penalized least squares criterion

‖y−X0β −X1δ‖2 +λδ
T Dδ

for some λ > 0.

• A common form of D is

D =
[
|κi−κ j|2m−1]

1≤i, j≤K

• A variant uses
D = Ω

1/2(Ω1/2)T

with
Ω =

[
|κi−κ j|2m−1]

1≤i, j≤K

where the principal square root M1/2 of a matrix M with SVD

M =Udiag(d)V T

is defined as
M1/2 =Udiag(

√
d)V T

This form ensures that D is at least positive semi-definite.

160

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Smoothing splines are penalized splines of degree 2m−1 = 3 with knots
κi = xi and

D =
[
|κi−κ j|3

]
1≤i, j≤n

and the added natural boundary constraint

XT
0 δ = 0

• For a natural cubic spline ∫
g′′(t)2dt = δ

T Dδ

The quadratic form δ T Dδ is strictly positive definite on the subspace
defined by XT

0 δ = 0.

• Penalized splines can often approximate smoothing splines well using
far fewer knots.

• The detailed placement of knots and their number is usually not critical
as long as there are enough.

• Simple default rules that often work well (Ruppert, Wand, and Carroll
2003):

– knot locations:

κk =

(
k+1
K +2

)
th sample quantile of unique xi

– number of knots:

K = min
(

1
4
× number of unique xi, 35

)
The SemiPar package actually seems to use the default

K = max
(

1
4
× number of unique xi, 20

)
• More sophisticated methods for choosing number and location of knots

are possible but not emphasized in the penalized spline literature at this
point.

161

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

A Useful Computational Device

To minimize
‖Y −X0β −X1δ‖2 +λδ

T Dδ

for a given λ , suppose B satisties

λD = BT B

and

Y ∗ =
[
Y
0

]
X∗ =

[
X0 X1
0 B

]
β
∗ =

[
β

δ

]
Then

‖Y ∗−X∗β ∗‖2 = ‖Y −X0β −X1δ‖2 +λδ
T Dδ

So β̂ and δ̂ can be computed by finding the OLS coefficients for the regression
of Y ∗ on X∗.

162

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Penalized Splines and Mixed Models

• For strictly positive definite D and a given λ minimizing the objective
function

‖y−X0β −X1δ‖2 +λδ
T Dδ

is equivalent to maximizing the log likelihood for the mixed model

Y = X0β +X1δ + ε

with fixed effects parameters β and

ε ∼ N(0,σ2
ε I)

δ ∼ N(0,σ2
δ

D−1)

λ = σ
2
ε /σ

2
δ

with λ known.

• Some consequences:

– The penalized spline fit at x is the BLUP for the mixed model with
known mixed effects covariance structure.

– Linear mixed model software can be used to fit penalized spline
models (the R package SemiPar does this).

– The smoothing parameter λ can be estimated using ML or REML
estimates of σ2

ε and σ2
δ

from the linear mixed model.

– Interval estimation/testing formulations from mixed models can be
used.

• Additional consequences:

– The criterion has a Bayesian interpretation.

– Extension to models containing smoothing and mixed effects are
immediate.

– Extension to generalized linear models can use GLMM methodol-
ogy.

163

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Old Faithful Eruptions

• Using the function spm from SemiPar a penalized spline model can be
fit with

> library(SemiPar)
> attach(geyser2) # needed because of flaws in spm implementation
> summary(spm(waiting ˜ f(pduration)))
Summary for non-linear components:

df spar knots
f(pduration) 4.573 2.9 28

Note this includes 1 df for the intercept.

• The plot method for the spm result produces a plot with pointwise error
bars:

> plot(spm(waiting ˜ f(pduration)), ylim = range(waiting))
> points(pduration, waiting)

1 2 3 4 5

50
60

70
80

90
10

0
11

0

pduration

164

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

A fit using mgcv:

> library(mgcv)
> gam.fit <- gam(waiting ˜ s(pduration), data = geyser2)
> summary(gam.fit)

Family: gaussian
Link function: identity

Formula:
waiting ˜ s(pduration)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 72.2886 0.3594 201.1 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(pduration) 3.149 3.987 299.8 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

R-sq.(adj) = 0.801 Deviance explained = 80.3%
GCV = 39.046 Scale est. = 38.503 n = 298

A plot of the smooth component with the mean-adjusted waiting times is pro-
duced by

> plot(gam.fit)
> with(geyser2, points(pduration, waiting - mean(waiting)))

165

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Smoothing with Multiple Predictors

• Many methods have natural generalizations

• All suffer from the curse of dimensionality.

• Generalizations to two or three variables can work reasonably.

• Local polynomial fits can be generalized to p predictors.

• loess is designed to handle multiple predictors, in principle at least.

• Spline methods can be generalized in two ways:

– tensor product splines use all possible products of single variable
spline bases.

– thin plate splines generalize the radial basis representation.

• A thin plate spline of order m in d dimensions is of the form

f (x) =
M

∑
i=1

βiφi(x)+
K

∑
k=1

δkr(x−κk)

with

r(u) =

{
‖u‖2m−d for d odd
‖u‖2m−d log‖u‖ for d even

and where the φi are a basis for the space of polynomials of total degree
≤ m−1 in d variables. The dimension of this space is

M =

(
d +m−1

d

)
If d = 2,m = 2 then M = 3 and a basis is

φ1(x) = 1,φ2(x) = x1,φ3(x) = x2

166

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Penalized Thin Plate Splines

• Penalized thin plate splines usually use a penalty with

D = Ω
1/2(Ω1/2)T

where
Ω = [r(κi−κ j)]

1≤i, j≤K

This corresponds at least approximately to using a squared derivative
penalty.

• Simple knot selection rules are harder for d > 1.

• Some approaches:

– space-filling designs (Nychka and Saltzman, 1998)

– clustering algorithms, such as clara

167

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Multivariate Smoothing Splines

• The bivariate smoothing spline objective of minimizing

∑(yi−g(xi))
2 +λJ(g)

with

J(g) =
∫ ∫ (

∂ 2g
∂x2

1

)2

+2
(

∂ 2g
∂x1∂x2

)2

+

(
∂ 2g
∂x2

2

)2

dx1dx2

is minimized by a thin plate spline with knots at the xi and a constraint
on the δk analogous to the natural spline constraint.

• Scaling of variables needs to be addressed

• Thin-plate spline smoothing is closely related to kriging.

• The general smoothing spline uses

D = X1 = [r(κi−κi)]

with the constraint XT
0 δ = 0.

• Challenge: the linear system to be solved for each λ value to fit a smooth-
ing spline is large and not sparse.

168

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Thin Plate Regression Splines

• Wood (2017) advocates an approach called thin plate regression splines
that is implemented in the mgcv package.

• The approach uses the spectral decomposition of X1

X1 =UEUT

with E the diagonal matrix of eigen values, and the columns of U the
corresponding eigen vectors.

• The eigen values are ordered so that |Eii| ≥ |E j j| for i≤ j.

• The approach replaces X1 with a lower rank approximation

X1,k =UkEkUT
k

using the k largest eigen values in magnitude.

• The implementation uses an iterative algorithm (Lanczos iteration) for
computing the largest k eigenvalues/singular values and vectors.

• The k leading eigenvectors form the basis for the fit.

• The matrix X1 does not need to be formed explicitly; it is enough to be
able to compute X1v for any v.

• k could be increased until the change in estimates is small or a specified
limit is reached.

• As long as k is large enough results are not very sensitive to the particular
value of k.

• mgcv by default uses k = 10×3d−1 for a d-dimensional smooth.

169

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• This approach seems to be very effective in practice and avoids the need
to specify a set of knots.

• The main drawback is that the choice of k and its impact on the basis
used are less interpretable.

• With this approach the computational cost is reduced from O(n3) to
O(n2k).

• For large n Wood (2017) recommends using a random sample of nr rows
to reduce the computation cost to O(n2

r k). (From the help files the ap-
proach in mgcv looks more like O(n×nr× k) to me).

170

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Scallop Catches

• Data records location and size of scallop catches off Long Island.

• A bivariate penalized spline fit is computed by

> data(scallop)
> attach(scallop)
> log.catch <- log(tot.catch + 1)
> fit <- spm(log.catch ˜ f(longitude, latitude))
> summary(fit)

Summary for non-linear components:

df spar knots
f(longitude,latitude) 25.12 0.2904 37

• Default knot locations are determined using clara

• Knot locations and fit:

−73.5 −73.0 −72.5 −72.0 −71.5

39
.0

39
.5

40
.0

40
.5

longitude

la
tit

ud
e

0 2 4 6

171

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

A fit using mgcv would use

> scallop.gam <- gam(log.catch ˜ s(longitude, latitude), data = scallop)
> summary(scallop.gam)

Family: gaussian
Link function: identity

Formula:
log.catch ˜ s(longitude, latitude)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.4826 0.1096 31.77 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(longitude,latitude) 26.23 28.53 8.823 <2e-16 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

R-sq.(adj) = 0.623 Deviance explained = 69%
GCV = 2.1793 Scale est. = 1.7784 n = 148
> plot(scallop.gam)

172

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Computational Issues

• Algorithms that select the smoothing parameter typically need to com-
pute smooths for many parameter values.

• Smoothing splines require solving an n×n system.

– For a single variable the fitting system can be made tri-diagonal.

– For thin plate splines of two or more variables the equations are not
sparse.

• Penalized splines reduce the computational burden by choosing fewer
knots, but then need to select knot locations.

• Thin plate regression splines (implemented in the mgcv package) use a
rank k approximation for a user-specified k.

• As long as the number of knots or the number of terms k is large enough
results are not very sensitive to the particular value of k.

• Examples are available in

http://www.stat.uiowa.edu/˜luke/classes/
STAT7400/examples/smoothex.Rmd

173

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/smoothex.Rmd
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/smoothex.Rmd

Statistical Learning

Some Machine Learning Terminology

• Two forms of learning:

– supervised learning: features and responses are available for a train-
ing set, and a way of predicting response from features of new data
is to be learned.

– unsupervised learning: no distinguished responses are available; the
goal is to discover patterns and associations among features.

• Classification and regression are supervised learning methods.

• Clustering, multi-dimensional scaling, and principal curves are unsuper-
vised learning methods.

• Data mining involves extracting information from large (many cases
and/or many variables), messy (many missing values, many different
kinds of variables and measurement scales) data bases.

• Machine learning often emphasizes methods that are sufficiently fast and
automated for use in data mining.

• Machine learning is now often considered a branch of Artificial Intelli-
gence (AI).

174

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Tree models are popular in machine learning

– supervised: as predictors in classification and regression settings

– unsupervised: for describing clustering results.

• Some other methods often associated with machine learning:

– Bagging

– Boosting

– Random Forests

– Support Vector Machines

– Neural Networks

• References:

– T. Hastie, R. Tibshirani, and J. Friedman (2009). The Elements of
Statistical Learning, 2nd Ed..

– G. James, D. Witten, T. Hastie, and R. Tibshirani (2013). An Intro-
duction to Statistical Learning, with Applications in R.

– D. Hand, H, Mannila, and P. Smyth (2001). Principles of Data Min-
ing.

– C. M. Bishop (2006). Pattern Recognition and Machine Learning.

– M. Shu (2008). Kernels and ensembles: perspectives on statistical
learning, The American Statistician 62(2), 97–109.

Some examples are available in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/
examples/learning.Rmd

175

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/learning.Rmd
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/learning.Rmd

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Tree Models

• Tree models were popularized by a book and software named CART, for
Classification and Regression Trees.

• The name CART was trademarked and could not be used by other im-
plementations.

• Tree models partition the predictor space based on a series of binary
splits.

• Leaf nodes predict a response

– a category for classification trees

– a numerical value for regression trees

• Regression trees may also use a simple linear model within leaf nodes of
the partition.

• Using rpart a tree model for predicting union membership can be con-
structed by

library(SemiPar) # for trade union data
library(rpart)
trade.union$member.fac <-

as.factor(ifelse(trade.union$union.member, "yes", "no"))
fit <- rpart(member.fac ˜ wage + age + years.educ,

data = trade.union)
plot(fit)
text(fit, use.n = TRUE)

176

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

|
wage< 8.825

years.educ>=13.5
wage< 12.54

years.educ>=11.5

age>=42.5
age< 36.5

age>=39

no
276/29 no

99/25

no
18/3

no
21/8

yes
4/6

yes
6/8

no
11/7

yes
3/10

Left branch is TRUE, right branch is FALSE.

177

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Regression trees use a constant fit by default.

• A regression tree for the California air pollution data:

library(SemiPar) # for air pollution data
library(rpart)
fit2 <- rpart(ozone.level ˜ daggett.pressure.gradient +

inversion.base.height +
inversion.base.temp,

data = calif.air.poll)
plot(fit2)
text(fit2)

|
inversion.base.temp< 63.59

inversion.base.height>=3574

daggett.pressure.gradient< −7.5

inversion.base.temp< 58.55

daggett.pressure.gradient< −10.5

inversion.base.temp< 75.83inversion.base.temp< 72.77

inversion.base.temp< 84.92

inversion.base.height< 865.5

5.104

4.727 8.419 12.45

7.517 14.29

16.55

19.83 24.78 28.64

178

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Tree models are flexible but simple

– results are easy to explain to non-specialists

• Small changes in data

– can change tree structure substantially
– usually do not change predictive performance much

• Fitting procedures usually consist of two phases:

– growing a large tree
– pruning back the tree to reduce over-fitting

• Tree growing usually uses a greedy approach.

• Pruning usually minimizes a penalized goodness of fit measure

R(T)+λ size(T)

with R a raw measure of goodness of fit.

• The parameter λ can be chosen by some form of cross-validation.

• For regression trees, mean square prediction error is usually used for both
growing and pruning.

• For classification trees

– growing usually uses a loss function that rewards class purity, e.g. a
Gini index

Gm =
K

∑
k=1

p̂mk(1− p̂mk)

or a cross-entropy

Dm =−
K

∑
k=1

p̂mk log p̂mk

with p̂mk the proportion of training observations in region m that are
in class k.

– Pruning usually focuses on minimizing classification error rates.

• The rpart package provides one implementation; the tree and party
packages are also available, among others.

179

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Bagging, Boosting, and Random Forests

• All three are ensemble methods: They combine weaker predictors, or
learners, to form a stronger one.

• A related idea is Bayesian Model Averaging (BMA)

Bagging: Bootstrap AGGregation

• Bootstrapping in prediction models produces a sample of predictors

T ∗1 (x), . . . ,T
∗

R (x).

• Usually bootstrapping is viewed as a way of assessing the variability of
the predictor T (x) based on the original sample.

• For predictors that are not linear in the data an aggregated estimator such
as

TBAG(x) =
1
R

R

∑
i=1

T ∗i (x)

may be an improvement.

• Other aggregations are possible; for classification trees two options are

– averaging probabilities

– majority vote

• Bagging can be particularly effective for tree models.

– Less pruning, or even no pruning, is needed since variance is re-
duced by averaging.

• Each bootstrap sample will use about 2/3 of the observations; about 1/3
will be out of bag, or OOB. The OOB observations can be used to con-
struct an error estimate.

• For tree methods:

180

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

– The resulting predictors are more accurate than simple trees, but lose
the simple interpretability.

– The total reduction in RSS or the Gini index due to splits on a par-
ticular variable can be used as a measure of variable importance.

• Bumping (Bootstrap umbrella of model parameters) is another approach:

– Given a bootstrap sample of predictors T ∗1 (x), . . . ,T
∗

R (x) choose the
one that best fits the original data.

– The original sample is included in the bootstrap sample so the orig-
inal predictor can be chosen if it is best.

181

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Random Forests

• Introduced by Breiman (2001).

• Also covered by a trademark.

• Similar to bagging for regression or classification trees.

• Draws ntree bootstrap samples.

• For each sample a tree is grown without pruning.

– At each node mtry out of p available predictors are sampled at ran-
dom.

– A common choice is mtry ≈
√

p.

– The best split among the sampled predictors is used.

• Form an ensemble predictor by aggregating the trees.

• Error rates are measured by

– at each bootstrap iteration predicting data not in the sample (out-of-
bag, OOB, data).

– Combine the OOB error measures across samples.

• Bagging without pruning for tree models is equivalent to a random forest
with mtry = p.

• A motivation is to reduce correlation among the bootstrap trees and so
increase the benefit of averaging.

• The R package randomForest provides an interface to FORTRAN
code of Breiman and Cutler.

• The software provides measures of

– “importance” of each predictor variable

– similarity of observations

• Some details are available in A. Liaw and M. Wiener (2002). “Classifi-
cation and Regression by randomForest,” R News.

182

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Other packages implementing random forests are a available as well.

• A recent addition is the ranger package.

183

http://philipppro.github.io/More_complete_list/
https://www.jstatsoft.org/article/view/v077i01

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Boosting

• Boosting is a way of improving on a weak supervised learner.

• The basic learner needs to be able to work with weighted data

• The simplest version applies to binary classification with responses yi =
±1.

• A binary classifier produced from a set of weighted training data is a
function

G(x) : X →{−1,+1}

• The AdaBoost.M1 (adaptive boosting) algorithm:

1. Initialize observation weights wi = 1/n, i = 1, . . . ,n.

2. For m = 1, . . . ,M do

(a) Fit a classifier Gm(x) to the training data with weights wi.
(b) Compute the weighted error rate

errm =
∑

n
i=1 wi1{yi 6=Gm(xi)}

∑
n
i=1 wi

(c) Compute αm = log((1− errm)/errm)

(d) Set wi← wi exp(αm1{yi 6=Gm(xi)})

3. Output G(x) = sign
(
∑

M
i=1 αmGm(x)

)
• The weights are adjusted to put more weight on points that were classi-

fied incorrectly.

• These ideas extend to multiple categories and to continuous responses.

• Empirical evidence suggests boosting is successful in a range of prob-
lems.

• Theoretical investigations support this.

• The resulting classifiers are closely related to additive models constructed
from a set of elementary basis functions.

184

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• The number of steps M plays the role of a model selection parameter

– too small a value produces a poor fit

– too large a value fits the training data too well

Some form of regularization, e.g. based on a validation sample, is needed.

• Other forms of regularization, e.g. variants of shrinkage, are possible as
well.

185

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• A variant for boosting regression trees:

1. Set f̂ (x) = 0 and ri = yi for all i in the training set.

2. For m = 1, . . . ,M:

(a) Fit a tree f̂ m(x) with d splits to the training data X ,r.
(b) Update f̂ by adding a shrunken version of f̂ m(x),

f̂ (x)← f̂ (x)+λ f̂ m(x).

(c) Update the residuals

ri← ri−λ f̂ m(x)

3. Return the boosted model

f̂ (x) =
M

∑
m=1

λ f̂ m(x)

• Using a fairly small d often works well.

• With d = 1 this fits an additive model.

• Small values of λ , e.g. 0.01 or 0.001, often work well.

• M is generally chosen by cross-validation.

References on Boosting

P. Bühlmann and T. Hothorn (2007). “Boosting algorithms: regularization,
prediction and model fitting (with discussion),” Statistical Science, 22(4),477–
522.

Andreas Mayr, Harald Binder, Olaf Gefeller, Matthias Schmid (2014). “The
evolution of boosting algorithms - from machine learning to statistical mod-
elling,” Methods of Information in Medicine 53(6), arXiv:1403.1452.

186

http://arxiv.org/abs/1403.1452

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

California Air Pollution Data

• Load data and split out a training sample:

library(SemiPar)
data(calif.air.poll)
library(mgcv)
train <- sample(nrow(calif.air.poll), nrow(calif.air.poll) / 2)

• Fit the additive linear model to the training data and compute the mean
square prediction error for the test data:

fit <- gam(ozone.level ˜ s(daggett.pressure.gradient)
+ s(inversion.base.height)
+ s(inversion.base.temp),

data=calif.air.poll[train,])
mean((calif.air.poll$ozone.level[-train] -

predict(fit, calif.air.poll[-train,]))ˆ2)

• Fit a tree to the training data using all pedictors:

library(rpart)
tree.ca <- rpart(ozone.level ˜ ., data = calif.air.poll[train,])
mean((calif.air.poll$ozone.level[-train] -

predict(tree.ca, calif.air.poll[-train,]))ˆ2)

• Use bagging on the training set:

library(randomForest)
bag.ca <- randomForest(ozone.level ˜ .,

data = calif.air.poll[train,],
mtry = ncol(calif.air.poll) - 1)

mean((calif.air.poll$ozone.level[-train] -
predict(bag.ca, calif.air.poll[-train,]))ˆ2)

187

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Fit a random forest:

rf.ca <- randomForest(ozone.level ˜ .,
data = calif.air.poll[train,])

mean((calif.air.poll$ozone.level[-train] -
predict(rf.ca, calif.air.poll[-train,]))ˆ2)

• Use gbm from the gbm package to fit booted regression trees:

library(gbm)
boost.ca <- gbm(ozone.level ˜ ., data = calif.air.poll[train,],

n.trees = 5000)
mean((calif.air.poll$ozone.level[-train] -

predict(boost.ca, calif.air.poll[-train,],
n.trees = 5000))ˆ2)

boost.ca2 <- gbm(ozone.level ˜ ., data = calif.air.poll[train,],
n.trees = 10000, interaction.depth=2)

mean((calif.air.poll$ozone.level[-train] -
predict(boost.ca2, calif.air.poll[-train,],

n.trees = 5000))ˆ2)

• Results:

gam 18.34667
tree 26.94041
bagged 21.35568
randomForest 19.13683
boosted 19.90317 M = 5000

19.04439 M = 5000,d = 2

These results were obtained without first re-scaling the predictors.

188

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Support Vector Machines

• Support vector machines are a method of classification.

• The simplest form is for binary classification with training data (x1,y1), . . . ,(xn,yn)
with

xi ∈ Rp

yi ∈ {−1,+1}

• Various extensions to multiple classes are available; one uses a form of
majority vote among all pairwise classifiers.

• Extensions to continuous resposes are also available.

• An R implementation is svm in package e1071.

Support Vector Classifiers

• A linear binary classifier is of the form

G(x) = sign(xT
β +β0)

• One way to choose a classifier is to minimize a penalized measure of
misclassification

min
β ,β0

n

∑
i=1

(1− yi f (x))++λ‖β‖2

with f (x) = xT β +β0.

– The misclassification cost is zero for correctly classified points far
from the bundary

– The cost increases for misclassified points farther from the bound-
ary.

189

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• The misclassification cost is qualitatively similar to the negative log-
likelihood for a logistic regression model,

ρ(yi, f (x)) =−yi f (x)+ log
(

1+ eyi f (x)
)
= log

(
1+ e−yi f (x)

)

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

y f(x)

M
is

cl
as

si
fic

at
io

n
C

os
t

Logistic
Support Vector

• The support vector classifier loss function is sometimes called hinge loss.

• Via rewriting in terms of equivalent convex optimization problems it can
be shown that the minimizer β̂ has the form.

β̂ =
n

∑
i=1

α̂iyixi

for some values α̂i ∈ [0,1/(2λ)], and therefore

f̂ (x) = xT
β̂ + β̂0 = β̂0 +

n

∑
i=1

α̂iyixT xi = β̂0 +
n

∑
i=1

α̂iyi〈x,xi〉

• The values of α̂i are only non-zero for xi close to the plane f (x) = 0.
These xi are called support vectors.

190

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• To allow for non-linear decision boundaries, we can use an extended
feature set

h(xi) = (h1(xi), . . . ,hM(xi))

• A linear boundary in RM maps down to a nonlinear boundary in Rp.

• For example, for p = 2 and

h(x) = (x1,x2,x1x2,x2
1,x

2
2)

then M = 5 and a linear boundary in R5 maps down to a quadratic bound-
ary in R2.

• The estimated classification function will be of the form

f̂ (x) = β̂0 +
n

∑
i=1

α̂iyi〈h(x),h(xi)〉= β̂0 +
n

∑
i=1

α̂iyiK(x,xi)

where the kernel function K is

K(x,x′) = 〈h(x),h(x′)〉

• The kernel function is symmetric and positive semi-definite.

• We don’t need to specify h explicitly, only K is needed.

• Any symmetric, positive semi-definite function can be used.

• Some common choices:

dth degree polynimial:K(x,x′) = (1+ 〈x,x′〉)d

radial basis:K(x,x′) = exp(−‖x− x′‖2/c)
neural network:K(x,x′) = tanh(a〈x,x′〉+b)

• The parameter λ in the optimization criterion is a regularization param-
eter. It can be chosen by cross-validation.

• Particular kernels and their parameters also need to be chosen.

– This is analogous/equivalent to choosing sets of basis functions.

• Smoothing splines can be expressed in terms of kernels as well

– this leads to reproducing kernel Hilbert spaces
– this does not lead to the sparseness of the SVM approach

191

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

An Artificial Example

Classify random data as above or below a parabola:

x1 <- runif(100)
x2 <- runif(100)
z <- ifelse(x2 > 2 * (x1 - .5)ˆ2 + .5, 1, 0)
plot(x1,x2,col=ifelse(z, "red", "blue"))
x <- seq(0,1,len=101)
lines(x, 2* (x - .5)ˆ2 + .5, lty = 2)

Fit a support vector classifier using λ = 1
2cost :

> library(e1071)
> fit <- svm(factor(z) ˜ x1 + x2, cost = 10)
> fit

Call:
svm(formula = factor(z) ˜ x1 + x2, cost = 10)

Parameters:
SVM-Type: C-classification

SVM-Kernel: radial
cost: 10

gamma: 0.5

Number of Support Vectors: 17

plot(fit, data.frame(z=z,x1=x1,x2=x2), formula = x2 ˜ x1, grid=100)

192

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

0
1

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

x

x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

SVM classification plot

x1

x2

193

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Neural Networks

• Neural networks are flexible nonlinear models.

• They are motivated by simple models for the working of neurons.

• They connect input nodes to output nodes through one or more layers of
hidden nodes

• The simplest form is the feed-forward network with one hidden layer,
inputs x1, . . . ,xp and outputs y1, . . . ,yk

– a graphical representation:

input
layer

x1��
��

x2��
��

x3��
��

hidden
layer

z1��
��

z2��
��

z3��
��

z4��
��

output
layer

y1��
��

y2��
��

���
���

��

XXXXXXXX
c
c
c
c
c
c
cc

S
S
S
S
S
S
S
S
S
S

#
#
#
#
#
#
##

��
��

��
��

PPPPPPPP

c
c
c
c
c
c
cc

�
�
�
�
�
�
�
�
�
�

#
#
#
#
#
#
##

��
���

���

XXXXXXXX

@
@
@
@
@
@
@@

HHH
HHH

HH
H
HHH

HHHH�
��

�
��

��

��
��

�
��
�

�
�
�
�
�
�
��

– mathematical form:

zm = h(α0m + xT
αm)

tk = β0k + zT
βk

fk(x) = gk(T)

The activation function h is usually a sigmoidal function, like the
logistic CDF

h(x) = 1/(1+ e−x)

– For regression there is usually one output with g1(t) the identity
function.

194

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

– For binary classification there is usually one output with g1(t) =
1/(1+ e−t)

– For k-class classification with k > 2 usually there are k outputs, cor-
responding to binary class indicator data, with

gk(t) =
etk

∑ j et j

This is often called a softmax criterion.

195

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• By increasing the size of the hidden layer M a neural network can uni-
formly approximate any continuous function on a compact set arbitrarily
well.

• Some examples, fit to n = 101 data points using function nnet from
package nnet with a hidden layer with M = 5 nodes:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

y1

f(x) = x

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y2

f(x) = sin(2πx)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y3

f(x) = sin(4πx)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y4

f(x) = I(x ≥ 1 2)

196

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Fitting is done by maximizing a log likelihood L(α,β) assuming

– normal errors for regression

– a logistic model for classification

• The likelihood is highly multimodal and the parameters are not identified

– relabeling hidden nodes does not change the model, for example

– random starting values are usually used

– parameters are not interpretable

• If M is large enough to allow flexible fitting then over-fitting is a risk.

• Regularization is used to control overfitting: a penalized log likelihood
of the form

L(α,β)−λ (∑
m
‖αm‖2 +∑

k
‖βk‖2)

is maximized.

– For this to make sense it is important to center and scale the features
to have comparable units.

– This approach is referred to as weight decay and λ is the decay pa-
rameter.

• As long as M is large enough and regularization is used, the specific
value of M seems to matter little.

• The weight decay parameter is often determined by N-fold cross valida-
tion, often with N = 10

• Because of the random starting points, results in repeated runs can differ.

– one option is to make several runs and pick the best fit

– another is to combine results from several runs by averaging or ma-
jority voting.

197

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Fitting a neural net to the artificial data example:

nnet(z ˜ x1 + x2, size=10, entropy = TRUE, decay = .001,
maxit = 300)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

198

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Recognizing Handwritten Digits

• Data consists of scanned ZIP code digist from the U.S. postal service.
Available at http://yann.lecun.com/exdb/mnist/ as a bi-
nary file.

Training data consist of a small number of original images, around 300,
and additional images generated by random shifts. Data are 28×28 gray-
scale images, along with labels.

This has become a standard machine learning test example.

• Data can be read into R using readBin.

• The fit, using 6000 observations and M = 100 nodes in the hidden layer
took 11.5 hours on r-lnx400:

fit <- nnet(X, class.ind(lab), size = 100,
MaxNWts = 100000, softmax = TRUE)

and produced a training misclassification rate of about 8% and a test
misclassification rate of about 12%.

• Other implementations are faster and better for large problems.

199

http://yann.lecun.com/exdb/mnist/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Deep Learning

• Deep learning models are multi-level non-linear models

• A supervised model with observed responses Y and features X with M
layers would be

Y ∼ f1(y|Z1),Z1 ∼ f2(z1|Z2), . . . ,ZM ∼ fM(zM|X)

with Z1, . . . ,ZM unobserved latent values.

• An unsupervised model with observed features X would be

X ∼ f1(x|Z1),Z1 ∼ f2(z1|Z2), . . . ,ZM ∼ fM(zM)

• These need to be nonlinear so they don’t collapse into one big linear
model.

• The layers are often viewed as capturing features at different levels of
granularity.

• For image classification these might be

– X : pixel intensities

– Z1: edges

– Z2: object parts (e.g. eyes, noses)

– Z3: whole objects (e.g. faces)

• Multi-layer, or deep, neural networks are one approach, that has become
very successful.

200

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Deep learning methods have become very successful in recent years due
to a combination of increased computing power and algorithm improve-
ments.

• Some key algorithm developments include:

– Use of stochastic gradient descent for optimization.

– Backpropagation for efficient gradient evaluation.

– Using the piece-wise linear Rectified Linear Unit (ReLU) activation
function

ReLU(x) =

{
x if x≥ 0
0 otherwise.

– Specialized structures, such as convolutional and recurrent neural
networks.

– Use of dropout, regularization, and early stopping to avoid over-
fitting.

201

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Stochastic Gradient Descent

• Gradient descent for minimizing a function f tries to improve a current
guess by taking a step in the direction of the negative gradient:

x′ = x−η∇ f (x)

• The step size η is sometimes called the learning rate.

• In one dimension the best step size near the minimum is 1/ f ′′(x).

• A step size that is too small converges to slowly; a step size too large
may not converge at all.

• Line search is possible but may be expensive.

• Using a fixed step size, with monitoring to avoid divergence, or using a
slowly decreasing step size are common choices.

• For a DNN the function to be minimized with respect to parameters A is
typically of the form

n

∑
i=1

Li(yi,xi,A)

for large n.

• Computing function and gradient values for all n training cases can be
very costly.

• Stochastic gradient descent at each step chooses a random minibatch of B
of the training cases and computes a new step based on the loss function
for the minibatch.

• The minibatch size can be as small as B = 1.

• Stochastic gradient descent optimizations are usually divided into epochs,
with each epoch expected to use each training case once.

202

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Backpropagation

• Derivatives of the objective function are computed by the chain rule.

• This is done most efficiently by working backwards; this corresponds to
the reverse mode of automatic differentiation.

• A DNN with two hidden layers can be represented as

F(x;A) = G(A3H2(A2H1(A1x)))

If G is elementwise the identity, and the Hi are elementwise ReLU, then
this is a piece-wise linear function of x.

• The computation of w = F(x;A) can be broken down into intermediate
steps as

t1 = A1x z1 = H1(t1)
t2 = A2z1 z2 = H2(t2)
t3 = A3z2 w = G(t3)

• The gradient components are then computed as

B3 = ∇G(t3)
∂w
∂A3

= ∇G(t3)z2 = B3z2

B2 = B3A3∇H2(t2)
∂w
∂A2

= ∇G(t3)A3∇H2(t2)z1 = B2z1

B1 = B2A2∇H1x
∂w
∂A1

= ∇G(t3)A3∇H2(t2)A2∇H1(t1)x = B1x

• For ReLU activations the elements of ∇Hi(ti) will be 0 or 1.

• For n parameters the computation will typically be of order O(n).

• Many of the computations can be effectively parallelized.

203

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Convolutional and Recurrent Neural Networks

• In image processing features (pixel intensities) have a neighborhood struc-
ture.

• A convolutional neural network uses one or more hidden layers that are:

– only locally connected;

– use the same parameters at each location.

• A simple convolution layer might use a pixel and each of its 4 neighbors
with

t = (a1R+a2L+a3U +a4D)z

where, e.g.

Ri j =

{
1 if pixel i is immediately to the right of pixel j
0 otherwise.

• With only a small nunber of parameters per layer it is feasible to add tens
of layers.

• Similarly, a recurrent neural network can be designed to handle temporal
dependencies for time series or speech recognition.

204

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Avoiding Over-Fitting

• Both L1 and L2 regularization are used.

• Another strategy is dropout:

– In each epoch keep a node with probability p and drop with proba-
bility 1− p.

– In the final fit multiply each node’s output by p.

This simulates an ensemble method fitting many networks, but costs
much less.

• Random starts are an important component of fitting networks.

• Stopping early, combined with random starts and randomness from stochas-
tic gradient descent, is also thought to be an effective regularization.

• Cross-validation during training can be used to determine when to stop.

205

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Notes and References

• Deep learning methods have been very successful in a number of areas,
such as:

– Image classification and face recognition. AlexNet is a very success-
ful image classifier.

– Google Translate is now based on a deep neural network approach.

– Speech recognition.

– Playing Go and chess.

• Being able to effectively handle large data sets is an important consider-
ation in this research.

• Highly parallel GPU based and distributed architectures are often needed.

• Some issues:

– Very large training data sets are often needed.

– In high dimensional problems having a high signal to noise ratio
seems to be needed.

– Models can be very brittle – small data perturbations can lead to
very wrong results.

– Biases in data will lead to biases in predictions. A probably harmless
example deals with evaluating selfies in social media; there are much
more serious examples.

• Some R packages for deep learning include darch, deepnet, deepr,
domino, h2o, keras.

• Some references:

– A nice introduction was provided by Thomas Lumley in a 2019
Ihaka Lecture

– deeplearning.net web site

– Li Deng and Dong Yu (2014), Deep Learning: Methods and Appli-
cations

– Charu Aggarwal (2018), Neural Networks and Deep Learning.

206

https://en.wikipedia.org/wiki/AlexNet
https://translate.google.com/
https://ai.googleblog.com/2016/11/zero-shot-translation-with-googles.html
https://ai.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://deepmind.com/research/alphago/
https://arxiv.org/pdf/1610.08401.pdf
http://karpathy.github.io/2015/10/25/selfie/
http://karpathy.github.io/2015/10/25/selfie/
https://www.stat.auckland.ac.nz/en/about/news-and-events-5/events/events-2019/03/ihaka-lecture-series-2019-deep-learning.html
https://www.stat.auckland.ac.nz/en/about/news-and-events-5/events/events-2019/03/ihaka-lecture-series-2019-deep-learning.html
http://deeplearning.net/
http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf
http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

– A Primer on Deep Learning

– A blog post on deep learning software in R.

– A nice simulator.

Some examples are available in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/
examples/keras.Rmd

207

http://www.datarobot.com/blog/a-primer-on-deep-learning/
http://www.rblog.uni-freiburg.de/2017/02/07/deep-learning-in-r/
http://playground.tensorflow.org
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/keras.Rmd
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/keras.Rmd

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Mixture of Experts

• Mixture models for prediction of y based on fearures x produce predictive
distributions of the form

f (y|x) =
M

∑
i=1

fi(y|x)πi

with fi depending on parameters that need to be learned from training
data.

• A generalization allows the mixing probabilities to depend on the fea-
tures:

f (y|x) =
M

∑
i=1

fi(y|x)πi(x)

with fi and πi depending on parameters that need to be learned.

• The fi are referred to as experts, with different experts being better in-
formed about different ranges of x values, and f this is called a mixture
of experts.

• Tree models can be viewed as a special case of a mixture of experts with
πi(x) ∈ {0,1}.

• The mixtures πi can themselves be modeled as a mixture of experts. This
is the hierarchical mixture of experts (HME) model.

208

Symbolic Computation

• Symbolic computations include operations such as symbolic differentia-
tion or integration.

• Symbolic computation is often done using specialized systems, e.g.

– Mathematica

– Maple

– Macsyma

– Yacas

• R interfaces are available for a number of these.

• R code can be examined and constructed using R code.

• This is sometimes referred to as computing on the language.

209

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Some simple examples:

> e <- quote(x+y)
> e
x + y
> e[[1]]
‘+‘
> e[[2]]
x
> e[[3]]
y
> e[[3]] <- as.name("z")
> e
x + z
> as.call(list(as.name("log"), 2))
log(2)

• One useful application is symbolic computation of derivatives.

• R provides functions D and deriv that do this. These are implemented
in C.

• The Deriv package is another option.

210

http://cran.r-project.org/web/packages/Deriv/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• The start of a simplified symbolic differentiator implemented in R as a
function d is available in d.R.

• Some simple examples:

> source("http://www.stat.uiowa.edu/˜luke/classes/STAT7400/examples/derivs/d.R")

> d(quote(x), "x")
[1] 1
> d(quote(y), "x")
[1] 0
> d(quote(2 + x), "x")
0 + 1
> d(quote(2 * x), "x")
0 * x + 2 * 1
> d(quote(y * x), "x")
0 * x + y * 1

• The results are correct but are not ideal.

• There are many things d cannot handle yet, such as

d(quote(-x), "x")
d(quote(x/y), "x")
d(quote(x+(y+z)), "x")

• Simplifying expressions like those produced by d is a challenging task,
but the results can be made a bit more pleasing to look at by avoiding
creating some expressions that have obvious simplifications, like

– sums where one operand is zero

– products where one operand is one.

• Symbolic computation is used by all functions that support model for-
mulas.

• Symbolic computation can also be useful for identifying full conditional
distributions, e.g. for constructing Gibbs samplers.

• The byte code compiler for R also uses symbolic computation to analyze
and compile R expressions, as do the R source code analysis tools in the
codetools package.

211

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/derivs/d.R
http://www.stat.uiowa.edu/~luke/R/compiler/compiler.pdf

Simulation

Computer Simulation

• Computer simulations are experiments performed on the computer using
computer-generated random numbers.

• Simulation is used to

– study the behavior of complex systems such as

∗ biological systems
∗ ecosystems
∗ engineering systems
∗ computer networks

– compute values of otherwise intractable quantities such as integrals

– maximize or minimize the value of a complicated function

– study the behavior of statistical procedures

– implement novel methods of statistical inference

• Simulations need

– uniform random numbers

– non-uniform random numbers

– random vectors, stochastic processes, etc.

– techniques to design good simulations

– methods to analyze simulation results

212

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Uniform Random Numbers

• The most basic distribution is the uniform distribution on [0,1]

• Ideally we would like to be able to obtain a sequence of independent
draws from the uniform distribution on [0,1].

• Since we can only use finitely many digits, we can also work with

– A sequence of independent discrete uniform random numbers on
{0,1, . . . ,M−1} or {1,2, . . . ,M} for some large M.

– A sequence of independent random bits with equal probability for 0
and 1.

• Some methods are based on physical processes such as

– nuclear decay

http://www.fourmilab.ch/hotbits/

– atmospheric noise

http://www.random.org/

The R package random provides an interface.

– air turbulence over disk drives or thermal noise in a semiconductor
(Toshiba Random Master PCI device)

– event timings in a computer (Linux /dev/random)

213

http://www.fourmilab.ch/hotbits/
http://www.random.org/
http://cran.r-project.org/web/packages/random/index.html

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Using /dev/random from R

devRand <- file("/dev/random", open="rb")
U <- function()

(as.double(readBin(devRand, "integer"))+2ˆ31) / 2ˆ32
x <-numeric(1000)
for (i in seq(along=x)) x[i] <- U()
hist(x)
y <- numeric(1000)
for (i in seq(along=x)) y[i] <- U()
plot(x,y)
close(devRand)

Histogram of x

x

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0
12

0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Issues with Physical Generators

• can be very slow

• not reproducible except by storing all values

• distribution is usually not exactly uniform; can be off by enough to matter

• departures from independence may be large enough to matter

• mechanisms, defects, are hard to study

• can be improved by combining with other methods

214

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Pseudo-Random Numbers

Pseudo-random number generators produce a sequence of numbers that is

• not random

• easily reproducible

• “unpredictable;” “looks random”

• behaves in many respects like a sequence of independent draws from a
(discretized) uniform [0,1] distribution

• fast to produce

Pseudo-random generators come in various qualities

• Simple generators

– easy to implement
– run very fast
– easy to study theoretically
– usually have known, well understood flaws

• More complex

– often based on combining simpler ones
– somewhat slower but still very fast
– sometimes possible to study theoretically, often not
– guaranteed to have flaws; flaws may not be well understood (yet)

• Cryptographic strength

https://www.schneier.com/fortuna.html

– often much slower, more complex
– thought to be of higher quality
– may have legal complications
– weak generators can enable exploits, a recent issue in iOS 7

We use mostly generators in the first two categories.

215

https://www.schneier.com/fortuna.html
https://threatpost.com/weak-random-number-generator-threatens-ios-7-kernel-exploit-mitigations/104757

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

General Properties

• Most pseudo-random number generators produce a sequence of integers
x1,x2, . . . in the range {0,1, . . . ,M−1} for some M using a recursion of
the form

xn = f (xn−1,xn−2, . . . ,xn−k)

• Values u1,u2, . . . are then produced by

ui = g(xdi,xdi−1, . . . ,xdi−d+1)

• Common choices of M are

– M = 231 or M = 232

– M = 231−1, a Mersenne prime

– M = 2 for bit generators

• The value k is the order of the generator

• The set of the most recent k values is the state of the generator.

• The initial state x1, . . . ,xk is called the seed.

• Since there are only finitely many possible states, eventually these gen-
erators will repeat.

• The length of a cycle is called the period of a generator.

• The maximal possible period is on the order of Mk

• Needs change:

– As computers get faster, larger, more complex simulations are run.

– A generator with period 232 used to be good enough.

– A current computer can run through 232 pseudo-random numbers in
under one minute.

– Most generators in current use have periods 264 or more.

– Parallel computation also raises new issues.

216

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Linear Congruential Generators

• A linear congruential generator is of the form

xi = (axi−1 + c) mod M

with 0≤ xi < M.

– a is the multiplier

– c is the increment

– M is the modulus

• A multiplicative generator is of the form

xi = axi−1 mod M

with 0 < xi < M.

• A linear congruential generator has full period M if and only if three
conditions hold:

– gcd(c,M) = 1

– a≡ 1 mod p for each prime factor p of M

– a≡ 1 mod 4 if 4 divides M

• A multiplicative generator has period at most M − 1. Full period is
achieved if and only if M is prime and a is a primitive root modulo M,
i.e. a 6= 0 and a(M−1)/p 6≡ 1 mod M for each prime factor p of M−1.

217

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Examples

• Lewis, Goodman, and Miller (“minimal standard” of Park and Miller):

xi = 16807xi−1 mod (231−1) = 75xi−1 mod (231−1)

Reasonable properties, period 231−2≈ 2.15∗109 is very short for mod-
ern computers.

• RANDU:
xi = 65538xi−1 mod 231

Period is only 229 but that is the least of its problems:

ui+2−6ui+1 +9ui = an integer

so (ui,ui+1,ui+2) fall on 15 parallel planes. Using the randu data set
and the rgl package:

library(rgl)
points3d(randu)
par3d(FOV=1) ## removes perspective distortion

With a larger number of points:

seed <- as.double(1)
RANDU <- function() {

seed <<- ((2ˆ16 + 3) * seed) %% (2ˆ31)
seed/(2ˆ31)

}

U <- matrix(replicate(10000 * 3, RANDU()), ncol = 3, byrow = TRUE)
clear3d()
points3d(U)
par3d(FOV=1)

This generator used to be the default generator on IBM 360/370 and DEC
PDP11 machines.

Some examples are available in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/
examples/sim.Rmd

218

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/sim.Rmd
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/sim.Rmd

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Lattice Structure

• All linear congruential sequences have a lattice structure

• Methods are available for computing characteristics, such as maximal
distance between adjacent parallel planes

• Values of M and a can be chosen to achieve good lattice structure for
c = 0 or c = 1; other values of c are not particularly useful.

219

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Shift-Register Generators

• Shift-register generators take the form

xi = a1xi−1 +a2xi−2 + · · ·+apxi−p mod 2

for binary constants a1, . . . ,ap.

• values in [0,1] are often constructed as

ui =
L

∑
s=1

2−sxti+s = 0.xit+1xit+2 . . .xit+L

for some t and L≤ t. t is the decimation.

• The maximal possible period is 2p−1 since all zeros must be excluded.

• The maximal period is achieved if and only if the polynomial

zp +a1zp−1 + · · ·+ap−1z+ap

is irreducible over the finite field of size 2.

• Theoretical analysis is based on k-distribution: A sequence of M bit in-
tegers with period 2p−1 is k-distributed if every k-tuple of integers ap-
pears 2p−kM times, except for the zero tuple, which appears one time
fewer.

• Generators are available that have high periods and good k-distribution
properties.

220

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Lagged Fibonacci Generators

• Lagged Fibonacci generators are of the form

xi = (xi−k ◦ xi− j) mod M

for some binary operator ◦.

• Knuth recommends

xi = (xi−100− xi−37) mod 230

– There are some regularities if the full sequence is used; one recom-
mendation is to generate in batches of 1009 and use only the first
100 in each batch.

– Initialization requires some care.

221

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Combined Generators

• Combining several generators may produce a new generator with better
properties.

• Combining generators can also fail miserably.

• Theoretical properties are often hard to develop.

• Wichmann-Hill generator:

xi = 171xi−1 mod 30269
yi = 172yi−1 mod 30307
zi = 170zi−1 mod 30323

and
ui =

(xi

30269
+

yi

30307
+

zi

30232

)
mod 1

The period is around 1012.

This turns out to be equivalent to a multiplicative generator with modulus

M = 27817185604309

• Marsaglia’s Super-Duper used in S-PLUS and others combines a linear
congruential and a feedback-shift generator.

222

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Other Generators

• Mersenne twister

• Marsaglia multicarry

• Parallel generators

– SPRNG http://sprng.cs.fsu.edu.

– L’Ecuyer, Simard, Chen, and Kelton

http:
//www.iro.umontreal.ca/˜lecuyer/myftp/streams00/

223

http://sprng.cs.fsu.edu
http://www.iro.umontreal.ca/~lecuyer/myftp/streams00/
http://www.iro.umontreal.ca/~lecuyer/myftp/streams00/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Pseudo-Random Number Generators in R

R provides a number of different basic generators:

Wichmann-Hill: Period around 1012

Marsaglia-Multicarry: Period at least 1018

Super-Duper: Period around 1018 for most seeds; similar to S-PLUS

Mersenne-Twister: Period 219937−1≈ 106000; equidistributed in 623 dimen-
sions; current default in R.

Knuth-TAOCP: Version from second edition of The Art of Computer Pro-
gramming, Vol. 2; period around 1038.

Knuth-TAOCP-2002: From third edition; differs in initialization.

L’Ecuyer-CMRG: A combined multiple-recursive generator from L’Ecuyer
(1999). The period is around 2191. This provides the basis for the multi-
ple streams used in package parallel.

user-supplied: Provides a mechanism for installing your own generator; used
for parallel generation by

• rsprng package interface to SPRNG

• rlecuyer package interface to L’Ecuyer, Simard, Chen, and Kel-
ton system

• rstreams package, another interface to L’Ecuyer et al.

224

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Testing Generators

• All generators have flaws; some are known, some are not (yet).

• Tests need to look for flaws that are likely to be important in realistic
statistical applications.

• Theoretical tests look for

– bad lattice structure

– lack of k-distribution

– other tractable properties

• Statistical tests look for simple simulations where pseudo-random num-
ber streams produce results unreasonably far from known answers.

• Some batteries of tests:

– DIEHARD http://stat.fsu.edu/pub/diehard/

– DIEHARDER http://www.phy.duke.edu/˜rgb/General/
dieharder.php

– NIST Test Suite http://csrc.nist.gov/groups/ST/toolkit/
rng/

– TestU01 http://www.iro.umontreal.ca/˜lecuyer

225

http://stat.fsu.edu/pub/diehard/
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://csrc.nist.gov/groups/ST/toolkit/rng/
http://csrc.nist.gov/groups/ST/toolkit/rng/
http://www.iro.umontreal.ca/~lecuyer

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Issues and Recommendations

• Good choices of generators change with time and technology.

– Faster computers need longer periods.

– Parallel computers need different methods.

• All generators are flawed

– Bad simulation results due to poor random number generators are
very rare; coding errors in simulations are not.

– Testing a generator on a “similar” problem with known answers is a
good idea (and may be useful to make results more accurate).

– Using multiple generators is a good idea; R makes this easy to do.

– Be aware that some generators can produce uniforms equal to 0 or 1
(I believe R’s will not).

– Avoid methods that are sensitive to low order bits

226

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

frac(2^30 * x)

fra
c(

2^
30

 *
 y

)

Mersenne−Twister × 230

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

frac(2^50 * x)

fra
c(

2^
50

 *
 y

)

Wichmann−Hill U × 250mod 1

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

frac(2^50 * (1 − x))

fra
c(

2^
50

 *
 (1

 −
 y

))

Wichmann−Hill (1 − U) × 250mod 1

227

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Non-Uniform Random Variate Generation

• Starting point: Assume we can generate a sequence of independent uni-
form [0,1] random variables.

• Develop methods that generate general random variables from uniform
ones.

• Considerations:

– Simplicity, correctness

– Accuracy, numerical issues

– Speed

∗ Setup
∗ Generation

• General approaches:

– Univariate transformations

– Multivariate transformations

– Mixtures

– Accept/Reject methods

228

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Inverse CDF Method

Suppose F is a cumulative distribution function (CDF). Define the inverse
CDF as

F−(u) = min{x : F(x)≥ u}

If U ∼ U[0,1] then X = F−(U) has CDF F .

Proof. Since F is right continuous, the minimum is attained. Therefore F(F−(u))≥
u and F−(F(x)) = min{y : F(y)≥ F(x)}. So

{(u,x) : F−(u)≤ x}= {(u,x) : u≤ F(x)}

and thus P(X ≤ x) = P(F−(U)≤ x) = P(U ≤ F(x)) = F(x).

229

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Unit Exponential Distribution

The unit exponential CDF is

F(x) =

{
1− e−x for x > 0
0 otherwise

with inverse CDF
F−(u) =− log(1−u)

So X =− log(1−U) has an exponential distribution.

Since 1−U ∼ U[0,1], − logU also has a unit exponential distribution.

If the uniform generator can produce 0, then these should be rejected.

Example: Standard Cauchy Distribution

The CDF of the standard Cauchy distribution is

F(x) =
1
2
+

1
π

arctan(x)

with inverse CDF
F−(u) = tan(π(u−1/2))

So X = tan(π(U−1/2)) has a standard Cauchy distribution.

An alternative form is: Let U1,U2 be independent U[0,1] random variables
and set

X =

{
tan(π(U2/2) if U1 ≥ 1/2
− tan(π(U2/2) if U1 < 1/2

• U1 produces a random sign

• U2 produces the magnitude

• This will preserve fine structure of U2 near zero, if there is any.

230

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Standard Normal Distribution

The CDF of the standard normal distribution is

Φ(x) =
∫ x

−∞

1√
2π

e−z2/2dz

and the inverse CDF is Φ−1.

• Neither Φ nor Φ−1 are available in closed form.

• Excellent numerical routines are available for both.

• Inversion is currently the default method for generating standard normals
in R.

• The inversion approach uses two uniforms to generate one higher-precision
uniform via the code

case INVERSION:
#define BIG 134217728 /* 2ˆ27 */

/* unif_rand() alone is not of high enough precision */
u1 = unif_rand();
u1 = (int)(BIG*u1) + unif_rand();
return qnorm5(u1/BIG, 0.0, 1.0, 1, 0);

231

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Geometric Distribution

The geometric distribution with PMF f (x) = p(1− p)x for x = 0,1, . . . , has
CDF

F(x) =

{
1− (1− p)bx+1c for x≥ 0
0 for x < 0

where byc is the integer part of y. The inverse CDF is

F−(u) = dlog(1−u)/ log(1− p)e−1
= blog(1−u)/ log(1− p)c except at the jumps

for 0 < u < 1. So X = blog(1−U)/ log(1− p)c has a geometric distribution
with success probability p.

Other possibilities:
X = blog(U)/ log(1− p)c

or
X = b−Y/ log(1− p)c

where Y is a unit exponential random variable.

232

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Truncated Normal Distribution

Suppose X ∼ N(µ,1) and
y∼ X |X > 0.

The CDF of Y is

FY (y) =

{
P(0<X≤y)

P(0<X) for y≥ 0

0 for y < 0
=

{
FX (y)−FX (0)

1−FX (0)
for y≥ 0

0 for y < 0
.

The inverse CDF is

F−1
Y (u) = F−1

X (u(1−FX(0))+FX(0)) = F−1
X (u+(1−u)FX(0)).

An R function corresponding to this definition is

Q1 <- function(p, m) qnorm(p + (1 - p)* pnorm(0, m), m)

This seems to work well for positive µ but not for negative values far from
zero:

> Q1(0.5, c(1, 3, 5, 10, -10))
[1] 1.200174 3.001692 5.000000 10.000000 Inf

The reason is that pnorm(0, -10) is rounded to one.

233

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

A mathematically equivalent formulation of the inverse CDF is

F−1
Y (u) = F−1

X (1− (1−u)(1−FX(0)))

which leads to

Q2 <- function(p, m)
qnorm((1 - p)* pnorm(0, m, lower.tail = FALSE),

m, lower.tail = FALSE)

and

> Q2(0.5, c(1, 3, 5, 10, -10))
[1] 1.20017369 3.00169185 5.00000036 10.00000000 0.06841184

234

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Issues

• In principle, inversion can be used for any distribution.

• Sometimes routines are available for F− but are quite expensive:

> system.time(rbeta(1000000, 2.5, 3.5))
user system elapsed

0.206 0.000 0.211
> system.time(qbeta(runif(1000000), 2.5, 3.5))

user system elapsed
4.139 0.001 4.212

rbeta is about 20 times faster than inversion.

• If F− is not available but F is, then one can solve the equation u = F(x)
numerically for x.

• Accuracy of F or F− may be an issue, especially when writing code for
a parametric family that is to work well over a wide parameter range.

• Even when inversion is costly,

– the cost of random variate generation may be a small fraction of the
total cost of a simulation

– using inversion creates a simple relation between the variables and
the underlying uniforms that may be useful

235

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Multivariate Transformations

Many distributions can be expressed as the marginal distribution of a function
of several variables.

Box-Muller Method for the Standard Normal Distribution

Suppose X1 and X2 are independent standard normals. The polar coordinates
θ and R are independent,

• θ is uniform on [0,2π)

• R2 is χ2
2 , which is exponential with mean 2

So if U1 and U2 are independent and uniform on [0,1], then

X1 =
√
−2logU1 cos(2πU2)

X2 =
√
−2logU1 sin(2πU2)

are independent standard normals. This is the Box-Muller method.

236

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Polar Method for the Standard Normal Distribution

The trigonometric functions are somewhat slow to compute. Suppose (V1,V2)
is uniform on the unit disk

{(v1,v2) : v2
1 + v2

2 ≤ 1}

Let R2 =V 2
1 +V 2

2 and

X1 =V1

√
−(2logR2)/R2

X2 =V2

√
−(2logR2)/R2

Then X1,X2 are independent standard normals.

This is the polar method of Marsaglia and Bray.

237

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Generating points uniformly on the unit disk can be done using rejection sam-
pling, or accept/reject sampling:

repeat
generate independent V1,V2 ∼ U(−1,1)

until V 2
1 +V 2

2 ≤ 1
return (V1,V2)

• This independently generates pairs (V1,V2) uniformly on the square (−1,1)×
(−1,1) until the result is inside the unit disk.

• The resulting pair is uniformly distributed on the unit disk.

• The number of pairs that need to be generated is a geometric variable
with success probability

p =
area of disk

area of square
=

π

4

The expected number of generations needed is 1/p = 4/π = 1.2732.

• The number of generations needed is independent of the final pair.

238

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Polar Method for the Standard Cauchy Distribution

The ratio of two standard normals has a Cauchy distribution.

Suppose two standard normals are generated by the polar method,

X1 =V1

√
−(2logR2)/R2

X2 =V2

√
−(2logR2)/R2

with R2 =V 2
1 +V 2

2 and (V1,V2) uniform on the unit disk. Then

Y =
X1

X2
=

V1

V2

is the ratio of the two coordinates of the pair that is uniformly distributed on
the unit disk.

This idea leads to a general method, the Ratio-of-Uniforms method.

Student’s t Distribution

Suppose

• Z has a standard normal distribution,

• Y has a χ2
ν distribution,

• Z and Y are independent.

Then
X =

Z√
Y/ν

has a t distribution with ν degrees of freedom.

To use this representation we will need to be able to generate from a χ2
ν distri-

bution, which is a Gamma(ν/2,2) distribution.

239

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Beta Distribution

Suppose α > 0, β > 0, and

• U ∼ Gamma(α,1)

• V ∼ Gamma(β ,1)

• U,V are independent

Then
X =

U
U +V

has a Beta(α,β) distribution.

F Distribution

Suppose a > 0, b > 0, and

• U ∼ χ2
a

• V ∼ χ2
b

• U,V are independent

Then
X =

U/a
V/b

has an F distribution with a and b degrees of freedom.

Alternatively, if Y ∼ Beta(a/2,b/2), then

X =
b
a

Y
1−Y

has an F distribution with a and b degrees of freedom.

240

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Non-Central t Distribution

Suppose

• Z ∼ N(µ,1),

• Y ∼ χ2
ν ,

• Z and Y are independent.

Then
X =

Z√
Y/ν

has non-central t distribution with ν degrees of freedom and non-centrality
parameter µ .

241

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Non-Central Chi-Square, and F Distributions

Suppose

• Z1, . . . ,Zk are independent

• Zi ∼ N(µi,1)

Then
Y = Z2

1 + · · ·+Z2
k

has a non-central chi-square distribution with k degrees of freedom and non-
centrality parameter

δ = µ
2
1 + · · ·+µ

2
k

An alternative characterization: if Z̃1, . . . , Z̃k are independent standard normals
then

Y = (Z̃1 +
√

δ)2 + Z̃2
2 · · ·+ Z̃2

k = (Z̃1 +
√

δ)2 +
k

∑
i=2

Z̃2
i

has a non-central chi-square distribution with k degrees of freedom and non-
centrality parameter δ .

The non-central F is of the form

X =
U/a
V/b

where U , V are independent, U is a non-central χ2
a and V is a central χ2

b
random variable.

242

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Bernoulli and Binomial Distributions

Suppose p ∈ [0,1], U ∼ U[0,1], and

X =

{
1 if U ≤ p
0 otherwise

Then X bas a Bernoulli(p) distribution.

If Y1, . . . ,Yn are independent Bernoulli(p) random variables, then

X = Y1 + · · ·+Yn

has a Binomial(n, p) distribution.

For small n this is an effective way to generate binomials.

243

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Mixtures and Conditioning

Many distributions can be expressed using a hierarchical structure:

X |Y ∼ fX |Y (x|y)
Y ∼ fY (y)

The marginal distribution of X is called a mixture distribution. We can gener-
ate X by

Generate Y from fY (y).
Generate X |Y = y from fX |Y (x,y).

Student’s t Distribution

Another way to think of the tν distribution is:

X |Y ∼ N(0,ν/Y)

Y ∼ χ
2
ν

The t distribution is a scale mixture of normals.

Other choices of the distribution of Y lead to other distributions for X .

244

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Negative Binomial Distribution

The negative binomial distribution with PMF

f (x) =
(

x+ r−1
r−1

)
pr(1− p)x

for x = 0,1,2, . . . , can be written as a gamma mixture of Poissons: if

X |Y ∼ Poisson(Y)
Y ∼ Gamma(r,(1− p)/p)

then X ∼ Negative Binomial(r, p).

[The notation Gamma(α,β) means that β is the scale parameter.]

This representation makes sense even when r is not an integer.

Non-Central Chi-Square

The density of the non-central χ2
ν distribution with non-centrality parameter δ

is

f (x) = e−δ/2
∞

∑
i=0

(δ/2)i

i!
fν+2i(x)

where fk(x) central χ2
k density. This is a Poisson-weighted average of χ2

densities, so if

X |Y ∼ χ
2
ν+2Y

Y ∼ Poisson(δ/2)

then X has a non-central χ2
ν distribution with non-centrality parameter δ .

245

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Composition Method

Suppose we want to sample from the density

f (x) =


x/2 0≤ x < 1
1/2 1≤ x < 2
3/2− x/2 2≤ x≤ 3
0 otherwise

We can write f as the mixture

f (x) =
1
4

f1(x)+
1
2

f2(x)+
1
4

f3(x)

with

f1(x) = 2x 0≤ x < 1
f2(x) = 1 1≤ x < 2
f3(x) = 6−2x 2≤ x≤ 3

and fi(x) = 0 for other values of x.

Generating from the fi is straight forward. So we can sample from f using:

Generate I from {1,2,3} with probabilities 1/4,1/2,1/4.
Generate X from fI(x) by inversion.

This approach can be used in conjunction with other methods.

One example: The polar method requires sampling uniformly from the unit
disk. This can be done by

• encloseing the unit disk in a regular hexagon

• using composition to sample uniformly from the hexagon until the result
is in the unit disk.

246

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Alias Method

Suppose f (x) is a probability mass function on {1,2, . . . ,k}. Then f (x) can
be written as

f (x) =
k

∑
i=1

1
k

fi(x)

where

fi(x) =


qi x = i
1−qi x = ai

0 otherwise

for some qi ∈ [0,1] and some ai ∈ {1,2, . . . ,k}.

Once values for qi and ai have been found, generation is easy:

Generate I uniform on {1, . . . ,k}
Generate U uniform on [0,1]
if U ≤ qI

return I
else

return aI

247

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

The setup process used to compute the qi and ai is called leveling the his-
togram:

This is Walker’s alias method.

A complete description is in Ripley (1987, Alg 3.13B).

The alias method is an example of trading off a setup cost for fast generation.

The alias method is used by the sample function for unequal probability
sampling with replacement when there are enough reasonably probable val-
ues.

https://svn.r-project.org/R/trunk/src/main/random.c

248

https://svn.r-project.org/R/trunk/src/main/random.c

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Accept/Reject Methods

Sampling Uniformly from the Area Under a Density

Suppose h is a function such that

• h(x)≥ 0 for all x

•
∫

h(x)dx < ∞.

Let
Gh = {(x,y) : 0 < y≤ h(x)}

The area of Gh is
|Gh|=

∫
h(x)dx < ∞

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

y

Suppose (X ,Y) is uniformly distributed on Gh. Then

• The conditional distribution of Y |X = x is uniform on (0,h(x)).

249

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• The marginal distribution of X has density fX(x) = h(x)/
∫

h(y)dy:

fX(x) =
∫ h(x)

0

1
|Gh|

dy =
h(x)∫
h(y)dy

250

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Rejection Sampling Using an Envelope Density

Suppose g is a density and M > 0 is a real number such that

h(x)≤Mg(x) for all x

or, equivalently,

sup
h(x)
g(x)

≤M for all x

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

D
en

si
ty

Normal Density with Cauchy Envelope

Mg(x) is an envelope for h(x).

251

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Suppose

• we want to sample from a density proportional to h

• we can find a density g and a constant M such that

– Mg(x) is an envelope for h(x)

– it is easy to sample from g

Then

• we can sample X from g and Y |X = x from U(0,Mg(x)) to get a pair
(X ,Y) uniformly distributed on GMg

• we can repeat until the pair (X ,Y) satisfies Y ≤ h(X)

• the resulting pair (X ,Y) is uniformly distributed on Gh

• so the marginal density of the resulting X is fX(x) = h(x)/
∫

h(y)dy.

• the number of draws from the uniform distribution on GMg needed until
we obtain a pair in Gh is independent of the final pair

• the number of draws has a geometric distribution with success probabil-
ity

p =
|Gh|
|GMg|

=

∫
h(y)dy

M
∫

g(y)dy
=

∫
h(y)dy

M

since g is a probability density. p is the acceptance probability.

• the expected number of draws needed is

E[number of draws] =
1
p
=

M
∫

g(y)dy∫
h(y)dy

=
M∫

h(y)dy

• if h is also a proper density, then p = 1/M and

E[number of draws] =
1
p
= M

252

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

The Basic Algorithm

The rejection, or accept/reject, sampling algorithm:

repeat
generate independent X ∼ g and U ∼ U[0,1]

until UMg(X)≤ h(X)
return X

Alternate forms of the test:

U ≤ h(X)

Mg(X)

log(U)≤ log(h(X))− log(M)− log(g(X))

Care may be needed to ensure numerical stability.

Example: Normal Distribution with Cauchy Envelope

Suppose

• h(x) = 1√
2π

e−x2/2 is the standard normal density

• g(x) = 1
π(1+x2)

is the standard Cauchy density

Then

h(x)
g(x)

=

√
π

2
(1+ x2)e−x2/2 ≤

√
π

2
(1+12)e−12/2 =

√
2πe−1 = 1.520347

The resulting accept/reject algorithm is

repeat
generate independent standard Cauchy X and U ∼ U[0,1]

until U ≤ e1/2

2 (1+X2)e−X2/2

return X

253

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Squeezing

Performance can be improved by squeezing:

• Accept if point is inside the triangle:

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

D
en

si
ty

Normal Density with Cauchy Envelope and Squeezing

• Squeezing can speed up generation.

• Squeezing will complicate the code (making errors more likely).

254

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Rejection Sampling for Discrete Distributions

For simplicity, just consider integer valued random variables.

• If h and g are probability mass functions on the integers and h(x)/g(x) is
bounded, then the same algorithm can be used.

• If p is a probability mass function on the integers then

h(x) = p(bxc)

is a probability density.

If X has density h, then Y = bXc has PMF p.

255

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Poisson Distribution with Cauchy Envelope

Suppose

• p is the PMF of a Poisson distribution with mean 5

• g is the Cauchy density with location 5 and scale 3.

• h(x) = p(bxc)

Then, by careful analysis or graphical examination, h(x)≤ 2g(x) for all x.

0 5 10 15 20

0.
05

0.
10

0.
15

0.
20

x

2
*

dc
au

ch
y(

x,
 5

, 3
)

Poisson PMF with Cauchy Envelope

256

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Comments

• The Cauchy density is often a useful envelope.

• More efficient choices are often possible.

• Location and scale need to be chosen appropriately.

• If the target distribution is non-negative, a truncated Cauchy can be used.

• Careful analysis is needed to produce generators for a parametric family
(e.g. all Poisson distributions).

• Graphical examination can be very helpful in guiding the analysis.

• Carefully tuned envelopes combined with squeezing can produce very
efficient samplers.

• Errors in tuning and squeezing will produce garbage.

257

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Ratio-of-Uniforms Method

Basic Method

• Introduced by Kinderman and Monahan (1977).

• Suppose

– h(x)≥ 0 for all x

–
∫

h(x)dx < ∞

• Let (V,U) be uniform on

Ch = {(v,u) : 0 < u≤
√

h(v/u)}

Then X =V/U has density f (x) = h(x)/
∫

h(y)dy.

258

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• For h(x) = e−x2/2 the region Ch looks like

−0.5 0.0 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

v

u

– The region is bounded.

– The region is convex.

259

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Properties

• The region Ch is convex if h is log concave.

• The region Ch is bounded if h(x) and x2h(x) are bounded.

• Let

u∗ = max
x

√
h(x)

v∗− = min
x

x
√

h(x)

v∗+ = max
x

x
√

h(x)

Then Ch is contained in the rectangle [v∗−,v
∗
+]× [0,u∗].

• The simple Ratio-of-Uniforms algorithm based on rejection sampling
from the enclosing rectangle is

repeat
generate U ∼ U[0,u∗]
generate V ∼ U[v∗−,v

∗
+]

until U2 ≤ h(V/U)
return X =V/U

• If h = e−x2/2 then

u∗ = 1

v∗− =−
√

2e−1

v∗+ =
√

2e−1

and the expected number of draws is

area of rectangle
area of Ch

=
u∗(v∗+− v∗−)

1
2
∫

h(x)dx
=

2
√

2e−1√
π/2

= 1.368793

• Various squeezing methods are possible.

• Other approaches to sampling from Ch are also possible.

260

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Relation to Rejection Sampling

Ratio of Uniforms with rejection sampling from the enclosing rectangle is
equivalent to ordinary rejection sampling using an envelope density

g(x) ∝


(

v∗−
x

)2
if x < v∗−/u∗

(u∗)2 if v∗−/u∗ ≤ x≤ v∗+/u∗(
v∗+
x

)2
if x > v∗+/u∗

This is sometimes called a table mountain density

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

de
ns

ity

261

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Generalizations

A more general form of the basic result: For any µ and any r > 0 let

Ch,µ,r = {(v,u) : 0 < u≤ h(v/ur +µ)1/(r+1)}

If (U,V) is uniform on Ch,µ,r, then X =V/U r+µ has density f (x)= h(x)/
∫

h(y)dy.

• µ and r can be chosen to minimize the rejection probability.

• r = 1 seems adequate for most purposes.

• Choosing µ equal to the mode of h can help.

• For the Gamma distribution with α = 30,

0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

v

u

Gamma with α=30 and µ=0

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

v

u

Gamma with α=30 and µ=29

262

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Adaptive Rejection Sampling

First introduced by Gilks and Wild (1992).

Convexity

• A set C is convex if λx+(1−λ)y ∈C for all x,y ∈C and λ ∈ [0,1].

• C can be a subset or R, or Rn, or any other set where the convex combi-
nation

λx+(1−λ)y

makes sense.

• A real-valued function f on a convex set C is convex if

f (λx+(1−λ)y)≤ λ f (x)+(1−λ) f (y)

x,y ∈C and λ ∈ [0,1].

• f (x) is concave if − f (x) is convex, i.e. if

f (λx+(1−λ)y)≥ λ f (x)+(1−λ) f (y)

x,y ∈C and λ ∈ [0,1].

• A concave function is always below its tangent.

263

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Log Concave Densities

• A density f is log concave if log f is a concave function

• Many densities are log concave:

– normal densities

– Gamma(α,β) with α ≥ 1

– Beta(α,β) with α ≥ 1 and β ≥ 1.

• Some are not but may be related to ones that are: The t densities are not,
but if

X |Y = y∼ N(0,1/y)
Y ∼ Gamma(α,β)

then

– the marginal distribution of X is t for suitable choice of β

– and the joint distribution of X and Y has density

f (x,y) ∝
√

ye−
y
2 x2

yα−1e−y/β = yα−1/2e−y(β+x2/2)

which is log concave for α ≥ 1/2

264

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Tangent Approach

Suppose

• f is log concave

• f has an interior mode

Need log density, derivative at two points, one each side of the mode

• piece-wise linear envelope of log density

• piece-wise exponential envelope of density

• if first point is not accepted, can use to make better envelope

−3 −2 −1 0 1 2 3

−2
.5

−1
.5

−0
.5

0.
5

x

lo
g

de
ns

ity

Initial Envelope

−3 −2 −1 0 1 2 3

0.
5

1.
0

1.
5

x

de
ns

ity

Initial Envelope

−3 −2 −1 0 1 2 3

−2
.5

−1
.5

−0
.5

0.
5

x

lo
g

de
ns

ity

With Additional Point at x = −1/4

−3 −2 −1 0 1 2 3

0.
5

1.
0

1.
5

x

de
ns

ity

With Additional Point at x = −1/4

265

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Secant Approach

−2 −1 0 1 2

−5
−3

−1
0

1

x

lo
g

de
ns

ity

Initial Envelope

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

x

de
ns

ity

Initial Envelope

• Need three points to start

• Do not need derivatives

• Get larger rejection rates

• Both approaches need numerical care

266

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Notes and Comments

• Many methods depend on properties of a particular distribution.

• Inversion is one general method that can often be used.

• Other general-purpose methods are

– rejection sampling

– adaptive rejection sampling

– ratio-of-uniforms

• Some references:

– Devroye, L. (1986). Non-Uniform Random Variate Generation, Springer-
Verlag, New York.

– Gentle, J. E. (2003). Random Number Generation and Monte Carlo
Methods, Springer-Verlag, New York.

– Hörmann, W., Leydold, J., and Derflinger, G. (2004).
Automatic Nonuniform Random Variate Generation, Springer-Verlag,
New York.

267

http://statistik.wu-wien.ac.at/arvag/monograph/index.html

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

A Recent Publication

Karney, C.F.F. (2016). “Sampling Exactly from the Normal Distribution.”
ACM Transactions on Mathematical Software 42 (1).

268

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Random Variate Generators in R

• Generators for most standard distributions are available

– rnorm: normal

– rgamma: gamma

– rt: t

– rpois: Poisson

– etc.

• Most use standard algorithms from the literature.

• Source code is in src/nmath/ in the source tree,

https://svn.r-project.org/R/trunk

• The normal generator can be configured by RNGkind. Options are

– Kinderman-Ramage

– Buggy Kinderman-Ramage (available for reproducing results)

– Ahrens-Dieter

– Box-Muller

– Inversion (the current default)

– user-supplied

269

https://svn.r-project.org/R/trunk

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Generating Random Vectors and Matrices

• Sometimes generating random vectors can be reduced to a series of uni-
variate generations.

• One approach is conditioning:

f (x,y,z) = fZ|X ,Y (z|x,y) fY |X(y|x) fX(x)

So we can generate

– X from fX(x)

– Y |X = x from fY |X(y|x)
– Z|X = x,Y = y from fZ|X ,Y (z|x,y)

• One example: (X1,X2,X3)∼Multinomial(n, p1, p2, p3) Then

X1 ∼ Binomial(n, p1)

X2|X1 = x1 ∼ Binomial(n− x1, p2/(p2 + p3))

X3|X1 = x1,X2 = x2 = n− x1− x2

• Another example: X ,Y bivariate normal (µX ,µY ,σ
2
X ,σ

2
Y ,ρ). Then

X ∼ N(µX ,σ
2
X)

Y |X = x∼ N
(

µY +ρ
σY

σX
(x−µX),σ

2
Y (1−ρ

2)

)
• For some distributions special methods are available.

• Some general methods extend to multiple dimensions.

270

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Multivariate Normal Distribution

• Marginal and conditional distributions are normal; conditioning can be
used in general.

• Alternative: use linear transformations.

Suppose Z1, . . . ,Zd are independent standard normals, µ1, . . .µd are con-
stants, and A is a constant d×d matrix. Let

Z =

Z1
...

Zd

 µ =

µ1
...

µd


and set

X = µ +AZ

Then X is multivariate normal with mean vector µ and covariance matrix
AAT ,

X ∼MVNd(µ,AAT)

• To generate X ∼MVNd(µ,Σ), we can

– find a matrix A such that AAT = Σ

– generate elements of Z as independent standard normals

– compute X = µ +AZ

• The Cholesky factorization is one way to choose A.

• If we are given Σ−1, then we can

– decompose Σ−1 = LLT

– solve LTY = Z

– compute X = µ +Y

271

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Spherically Symmetric Distributions

• A joint distribution with density of the form

f (x) = g(xT x) = g(x2
1 + · · ·+ x2

d)

is called spherically symmetric (about the origin).

• If the distribution of X is spherically symmetric then

R =
√

XT X
Y = X/R

are independent,

– Y is uniformly distributed on the surface of the unit sphere.

– R has density proportional to g(r)rd−1 for r > 0.

• We can generate X ∼ f by

– generating Z ∼MVNd(0, I) and setting Y = Z/
√

ZT Z

– generating R from the density proportional to g(r)rd−1 by univariate
methods.

Elliptically Contoured Distributions

• A density f is elliptically contoured if

f (x) =
1√

detΣ
g((x−µ)T

Σ
−1(x−µ))

for some vector µ and symmetric positive definite matrix Σ.

• Suppose Y has spherically symmetric density g(yT y) and AAT = Σ. Then
X = µ +AY has density f .

272

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Wishart Distribution

• Suppose X1, . . .Xn are independent and Xi ∼MVNd(µi,Σ). Let

W =
n

∑
i=1

XiXT
i

Then W has a non-central Wishart distribution W(n,Σ,∆) where ∆ =

∑ µiµ
T
i .

• If Xi ∼MVNd(µ,Σ) and

S =
1

n−1

n

∑
i=1

(Xi−X)(Xi−X)T

is the sample covariance matrix, then (n−1)S∼W(n−1,Σ,0).

• Suppose µi = 0, Σ = AAT , and Xi = AZi with Zi ∼ MVNd(0, I). Then
W = AVAT with

V =
n

∑
i=1

ZiZT
i

• Bartlett decomposition: In the Cholesky factorization of V

– all elements are independent

– the elements below the diagonal are standard normal

– the square of the i-th diagonal element is χ2
n+1−i

• If ∆ 6= 0 let ∆ = BBT be its Cholesky factorization, let bi be the columns
of B and let Z1, . . . ,Zn be independent MVNd(0, I) random vectors. Then
for n≥ d

W =
d

∑
i=1

(bi +AZi)(bi +AZi)
T +

n

∑
i=d+1

AZiZT
i AT ∼W(n,Σ,∆)

273

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Rejection Sampling

• Rejection sampling can in principle be used in any dimensions

• A general envelope that is sometimes useful is based on generating X as

X = b+AZ/Y

where

– Z and Y are independent

– Z ∼MVNd(0, I)

– Y 2 ∼ Gamma(α,1/α), a scalar

– b is a vector of constants

– A is a matrix of constants

This is a kind of multivariate t random vector.

• This often works in modest dimensions.

• Specially tailored envelopes can sometimes be used in higher dimen-
sions.

• Without special tailoring, rejection rates tend to be too high to be useful.

274

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Ratio of Uniforms

• The ratio-of-uniforms method also works in Rd: Suppose

– h(x)≥ 0 for all x

–
∫

h(x)dx < ∞

Let
Ch = {(v,u) : v ∈ Rd,0 < u≤ d+1

√
h(v/u+µ)}

for some µ . If (V,U) is uniform on Ch, then X = V/U + µ has density
f (x) = h(x)/

∫
h(y)dy.

• If h(x) and ‖x‖d+1h(x) are bounded, then Ch is bounded.

• If h(x) is log concave then Ch is convex.

• Rejection sampling from a bounding hyper rectangle works in modest
dimensions.

• It will not work for dimensions larger than 8 or so:

– The shape of Ch is vaguely spherical.

– The volume of the unit sphere in d dimensions is

Vd =
πd/2

Γ(d/2+1)

– The ratio of this volume to the volume of the enclosing hyper cube,
2d tends to zero very fast:

275

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dimension

vo
lu

m
e

ra
tio

276

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Order Statistics

• The order statistics for a random sample X1, . . . ,Xn from F are the or-
dered values

X(1) ≤ X(2) ≤ ·· · ≤ X(n)

– We can simulate them by ordering the sample.

– Faster O(n) algorithms are available for individual order statistics,
such as the median.

• If U(1) ≤ ·· · ≤U(n) are the order statistics of a random sample from the
U[0,1] distribution, then

X(1) = F−(U(1))
...

X(n) = F−(U(n))

are the order statistics of a random sample from F .

• For a sample of size n the marginal distribution of U(k) is

U(k) ∼ Beta(k,n− k+1).

• Suppose k < `.

– Then U(k)/U(`) is independent of U(`), . . . ,U(n)

– U(k)/U(`) has a Beta(k, `− k) distribution.

We can use this to generate any subset or all order statistics.

• Let V1, . . . ,Vn+1 be independent exponential random variables with the
same mean and let

Wk =
V1 + · · ·+Vk

V1 + · · ·+Vn+1

Then W1, . . . ,Wn has the same joint distribution as U(1), . . . ,U(n).

277

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Homogeneous Poisson Process

• For a homogeneous Poisson process with rate λ

– The number of points N(A) in a set A is Poisson with mean λ |A|.
– If A and B are disjoint then N(A) and N(B) are independent.

• Conditional on N(A) = n, the n points are uniformly distributed on A.

• We can generate a Poisson process on [0, t] by generating exponential
variables T1,T2, . . . with rate λ and computing

Sk = T1 + · · ·+Tk

until Sk > t. The values S1, . . . ,Sk−1 are the points in the Poisson process
realization.

278

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Inhomogeneous Poisson Processes

• For an inhomogeneous Poisson process with rate λ (x)

– The number of points N(A) in a set A is Poisson with mean
∫

A λ (x)dx.

– If A and B are disjoint then N(A) and N(B) are independent.

• Conditional on N(A) = n, the n points in A are a random sample from a
distribution with density λ (x)/

∫
A λ (y)dy.

• To generate an inhomogeneous Poisson process on [0, t] we can

– let Λ(s) =
∫ s

0 λ (x)dx

– generate arrival times S1, . . . ,SN for a homogeneous Poisson process
with rate one on [0,Λ(t)]

– Compute arrival times of the inhomogeneous process as

Λ
−1(S1), . . . ,Λ

−1(SN).

• If λ (x) ≤M for all x, then we can generate an inhomogeneous Poisson
process with rate λ (x) by thinning:

– generate a homogeneous Poisson process with rate M to obtain points
X1, . . . ,XN .

– independently delete each point Xi with probability 1−λ (Xi)/M.

The remaining points form a realization of an inhomogeneous Poisson
process with rate λ (x).

• If N1 and N2 are independent inhomogeneous Poisson processes with
rates λ1(x) and λ2(x), then their superposition N1 +N2 is an inhomoge-
neous Poisson process with rate λ1(x)+λ2(x).

279

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Other Processes

• Many other processes can be simulated from their definitions

– Cox processes (doubly stochastic Poisson process)

– Poisson cluster processes

– ARMA, ARIMA processes

– GARCH processes

• Continuous time processes, such as Brownian motion and diffusions, re-
quire discretization of time.

• Other processes may require Markov chain methods

– Ising models

– Strauss process

– interacting particle systems

280

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Variance Reduction

Most simulations involve estimating integrals or expectations:

θ =
∫

h(x) f (x)dx mean

θ =
∫

1{X∈A} f (x)dx probability

θ =
∫
(h(x)−E[h(X)])2 f (x)dx variance

...

• The crude simulation, or crude Monte Carlo, or naı̈ve Monte Carlo, ap-
proach:

– Sample X1, . . . ,XN independently from f

– Estimate θ by θ̂N = 1
N ∑h(Xi).

If σ2 = Var(h(X)), then Var(θ̂N) =
σ2

N .

• To reduce the error we can

– increase N: requires CPU time and clock time; diminishing returns.

– try to reduce σ2: requires thinking time, programming effort.

• Methods that reduce σ2 are called

– tricks

– swindles

– Monte Carlo methods

281

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Control Variates

Suppose we have a random variable Y with mean θ and a correlated random
variable W with known mean E[W]. Then for any constant b

Ỹ = Y −b(W −E[W])

has mean θ .

• W is called a control variate.

• Choosing b = 1 often works well if the correlation is positive and θ and
E[W] are close.

• The value of b that minimizes the variance of Ỹ is Cov(Y,W)/Var(W).

• We can use a guess or a pilot study to estimate b.

• We can also estimate b from the same data used to compute Y and W .

• This is related to the regression estimator in sampling.

282

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example

Suppose we want to estimate the expected value of the sample median T for a
sample of size 10 from a Gamma(3,1) population.

• Crude estimate:
Y =

1
N ∑Ti

• Using the sample mean as a control variate with b = 1:

Ŷ =
1
N ∑(Ti−X i)+E[X i] =

1
N ∑(Ti−X i)+α

> x <- matrix(rgamma(10000, 3), ncol = 10)
> md <- apply(x, 1, median)
> mn <- apply(x, 1, mean)
> mean(md)
[1] 2.711137
> mean(md - mn) + 3
[1] 2.694401
> sd(md)
[1] 0.6284996
> sd(md-mn)
[1] 0.3562479

The standard deviation is cut roughly in half. The optimal b seems close to 1.

283

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Control Variates and Probability Estimates

• Suppose T is a test statistic and we want to estimate θ = P(T ≤ t).

• Crude Monte Carlo:
θ̂ =

#{Ti ≤ t}
N

• Suppose S is “similar” to T and P(S≤ t) is known. Use

θ̂ =
#{Ti ≤ t}−#{Si ≤ t}

N
+P(S≤ t) =

1
N ∑Yi +P(S≤ t)

with Yi = 1{Ti≤t}−1{Si≤t}.

• If S mimics T , then Yi is usually zero.

• Could use this to calibrate

T =
median

interquartile range

for normal data using the t statistic.

284

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Importance Sampling

• Suppose we want to estimate

θ =
∫

h(x) f (x)dx

for some density f and some function h.

• Crude Mote Carlo samples X1, . . . ,XN from f and uses

θ̂ =
1
N ∑h(Xi)

If the region where h is large has small probability under f then this can
be inefficient.

• Alternative: Sample X1, . . .Xn from g that puts more probability near the
“important” values of x and compute

θ̃ =
1
N ∑h(Xi)

f (Xi)

g(Xi)

Then, if g(x)> 0 when h(x) f (x) 6= 0,

E[θ̃] =
∫

h(x)
f (x)
g(x)

g(x)dx =
∫

h(x) f (x)dx = θ

and

Var(θ̃)=
1
N

∫ (
h(x)

f (x)
g(x)
−θ

)2

g(x)dx=
1
N

(∫ (
h(x)

f (x)
g(x)

)2

g(x)dx−θ
2

)

The variance is minimized by g(x) ∝ |h(x) f (x)|

285

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Importance Weights

• Importance sampling is related to stratified and weighted sampling in
sampling theory.

• The function w(x) = f (x)/g(x) is called the weight function.

• Alternative estimator:

θ
∗ =

∑h(Xi)w(Xi)

∑w(Xi)

This is useful if f or g or both are unnormalized densities.

• Importance sampling can be useful for computing expectations with re-
spect to posterior distributions in Bayesian analyses.

• Importance sampling can work very well if the weight function is bounded.

• Importance sampling can work very poorly if the weight function is
unbounded—it is easy to end up with infinite variances.

286

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Computing Tail Probabilities

• Suppose θ = P(X ∈ R) for some region R.

• Suppose we can find g such that f (x)/g(x)< 1 on R. Then

θ̃ =
1
N ∑1R(Xi)

f (Xi)

g(Xi)

and

Var(θ̃) =
1
N

(∫
R

(
f (x)
g(x)

)2

g(x)dx−θ
2

)

=
1
N

(∫
R

f (x)
g(x)

f (x)dx−θ
2
)

<
1
N

(∫
R

f (x)dx−θ
2
)

=
1
N
(θ −θ

2) = Var(θ̂)

• For computing P(X > 2) where X has a standard Cauchy distribution we
can use a shifted distribution:

> y <- rcauchy(10000,3)
> tt <- ifelse(y > 2, 1, 0) * dcauchy(y) / dcauchy(y,3)
> mean(tt)
[1] 0.1490745
> sd(tt)
[1] 0.1622395

• The asymptotic standard deviation for crude Monte Carlo is approxi-
mately

> sqrt(mean(tt) * (1 - mean(tt)))
[1] 0.3561619

• A tilted density g(x) ∝ f (x)eβx can also be useful.

287

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Antithetic Variates

• Suppose S and T are two unbiased estimators of θ with the same variance
σ2 and correlation ρ , and compute

V =
1
2
(S+T)

Then

Var(V) =
σ2

4
(2+2ρ) =

σ2

2
(1+ρ)

• Choosing ρ < 0 reduces variance.

• Such negatively correlated pairs are called antithetic variates.

• Suppose we can choose between generating independent T1, . . . ,TN

θ̂ =
1
N

N

∑
i=1

Ti

or independent pairs (S1,T1), . . . ,(SN/2,TN/2) and computing

θ̃ =
1
N

N/2

∑
i=1

(Si +Ti)

If ρ < 0, then Var(θ̃)< Var(θ̂).

• If T = f (U), U ∼ U[0,1], and f is monotone, then S = f (1−U) is
negatively correlated with T and has the same marginal distribution.

• If inversion is used to generate variates, computing T from U1, . . . and S
from 1−U1, . . . often works.

• Some uniform generators provide an option in the seed to switch between
returning Ui and 1−Ui.

288

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example

For estimating the expected value of the median for samples of size 10 from
the Gamma(3,1) distribution:

> u <- matrix(runif(5000), ncol = 10)
> x1 <- qgamma(u, 3)
> x2 <- qgamma(1 - u, 3)
> md1 <- apply(x1, 1, median)
> md2 <- apply(x2, 1, median)
> sqrt(2) * sd((md1 + md2) / 2)
[1] 0.09809588

Control variates helps further a bit but need b = 0.2 or so.

> mn1 <- apply(x1, 1, mean)
> mn2 <- apply(x2, 1, mean)
> sqrt(2) * sd((md1 + md2 - 0.2 * (mn1 + mn2)) / 2)
[1] 0.09216334

289

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Latin Hypercube Sampling

• Suppose we want to compute

θ = E[f (U1, . . . ,Ud)]

with (U1, . . . ,Ud) uniform on [0,1]d.

• For each i

– independently choose permutation πi of {1, . . . ,N}

– generate U (j)
i uniformly on [πi(j)/N,(πi(j)+1)/N].

• For d = 2 and N = 5:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

This is a random Latin square design.

• In many cases this reduces variance compared to unrestricted random
sampling (Stein, 1987; Avramidis and Wilson, 1995; Owen, 1992, 1998)

290

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Common Variates and Blocking

• Suppose we want to estimate θ = E[S]−E[T]

• One approach is to chose independent samples T1, . . . ,TN and S1, . . . ,SM
and compute

θ̂ =
1
M

M

∑
i=1

Si−
1
N

N

∑
i=1

Ti

• Suppose S = S(X) and T = T (X) for some X . Instead of generating
independent X values for S and T we may be able to

– use the common X values to generate pairs (S1,T1), . . . ,(SN,TN)

– compute

θ̃ =
1
N

N

∑
i=1

(Si−Ti)

• This use of paired comparisons is a form of blocking.

• This idea extends to comparisons among more than two statistics.

• In simulations, we can often do this by using the same random variates
to generate Si and Ti. This is called using common variates.

• This is easiest to do if we are using inversion; this, and the ability to use
antithetic variates, are two strong arguments in favor of inversion.

• Using common variates may be harder when rejection-based methods are
involved.

• In importance sampling, using

θ
∗ =

∑h(Xi)w(Xi)

∑w(Xi)

can be viewed as a paired comparison; for some forms of h is can have
lower variance than the estimator that does not normalize by the sum of
the weights.

291

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Conditioning or Rao-Blackwellization

• Suppose we want to estimate θ = E[X]

• If X ,W are jointly distributed, then

θ = E[X] = E[E[X |W]]

and

Var(X) = E[Var(X |W)]+Var(E[X |W])≥ Var(E[X |W])

• Suppose we can compute E[X |W]. Then we can

– generate W1, . . . ,WN

– compute

θ̃ =
1
N ∑E[X |Wi]

• This is often useful in Gibbs sampling.

• Variance reduction is not guaranteed if W1, . . . ,WN are not independent.

• Conditioning is particularly useful for density estimation: If we can com-
pute fX |W (x|w) and generate W1, . . . ,WN , then

f̂X(x) =
1
N ∑ fX |W (x|Wi)

is much more accurate than, say, a kernel density estimate based on a
sample X1, . . . ,XN .

Example

Suppose we want to estimate θ = P(X > t) where X = Z/W with Z,W inde-
pendent, Z ∼ N(0,1) and W > 0. Then

P(X > t|W = w) = P(Z > tw) = 1−Φ(tw)

So we can estimate θ by generating W1, . . . ,WN and computing

θ̃ =
1
N ∑(1−Φ(tWi))

292

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Independence Decomposition

• Suppose X1, . . . ,Xn is a random sample from a N(0,1) distribution and

X̃ = median(X1, . . . ,Xn)

We want to estimate θ = Var(X̃) = E[X̃2].

• Crude Monte Carlo estimate: generate independent medians X̃1, . . . , X̂N
and compute

θ̂ =
1
N ∑ X̃2

i

• Alternative: Write
X̃ = (X̃−X)+X

(X̃−X) and X are independent, for example by Basu’s theorem. So

E[X̃2|X] = X2
+E[(X̃−X)2]

and
θ =

1
n
+E[(X̃−X)2]

• So we can estimate θ by generating pairs (X̃i,X i) and computing

θ̃ =
1
n
+

1
N ∑(X̃i−X i)

2

• Generating these pairs may be more costly than generating medians alone.

293

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example

> x <- matrix(rnorm(10000), ncol = 10)
> mn <- apply(x, 1, mean)
> md <- apply(x, 1, median)
> # estimates:
> mean(mdˆ2)
[1] 0.1446236
> 1 / 10 + mean((md - mn)ˆ2)
[1] 0.1363207
> # asymptotic standard errors:
> sd(mdˆ2)
[1] 0.2097043
> sd((md - mn)ˆ2)
[1] 0.0533576

294

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Princeton Robustness Study

D. F. Andrews, P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W.
Tukey, Robustness of Location Estimates, Princeton University Press, 1972.

• Suppose X1, . . . ,Xn are a random sample from a symmetric density

f (x−m).

• We want an estimator T (X1, . . . ,Xn) of m that is

– accurate

– robust (works well for a wide range of f ’s)

• Study considers many estimators, various different distributions.

• All estimators are unbiased and affine equivariant, i.e.

E[T] = m
T (aX1 +b, . . . ,aXn +b) = aT (X1, . . . ,Xn)+b

for any constants a,b. We can thus take m = 0 without loss of generality.

295

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Distributions Used in the Study

• Distributions considered were all of the form

X = Z/V

with Z ∼ N(0,1), V > 0, and Z,V independent.

• Some examples:

– V ≡ 1 gives X ∼ N(0,1).

– Contaminated normal:

V =

{
c with probability α

1 with probability 1−α

– Double exponential: V ∼ fV (v) = v−3e−v−2/2

– Cauchy: V = |Y | with Y ∼ N(0,1).

– tν : V ∼
√

χ2
ν/ν .

• The conditional distribution X |V = v is N(0,1/v2).

• Study generates Xi as Zi/Vi.

• Write Xi = X̂ + ŜCi with

X̂ =
∑XiV 2

i

∑V 2
i

Ŝ2 =
1

n−1 ∑(Xi− X̂)2V 2
i

Then
T (X) = X̂ + ŜT (C)

• Can show that X̂ , Ŝ,C are conditionally independent given V .

296

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Estimating Variances

• Suppose we want to estimate θ = Var(T) = E[T 2]. Then

θ = E[(X̂ + ŜT (C))2]

= E[X̂2 +2ŜX̂T (C)+ Ŝ2T (C)2]

= E[E[X̂2 +2ŜX̂T (C)+ Ŝ2T (C)2|V]]

and

E[X̂2|V] =
1

∑V 2
i

E[X̂ |V] = 0

E[Ŝ2|V] = 1

So

θ = E
[

1
∑V 2

i

]
+E[T (C)2]

• Strategy:

– Compute E[T (C)2] by crude Monte Carlo

– Compute E
[

1
∑V 2

i

]
the same way or analytically.

Exact calculations:

– If Vi ∼
√

χ2
ν/ν , then

E
[

1
∑V 2

i

]
= E

[
ν

χ2
nν

]
=

ν

nν−2

– Contaminated normal:

E
[

1
∑V 2

i

]
=

n

∑
r=0

(
n
r

)
α

r(1−α)n−r 1
n− r+ rc

Comparing Variances

If T1 and T2 are two estimators, then

Var(T1)−Var(T2) = E[T1(C)2]−E[T2(C)2]

We can reduce variances further by using common variates.

297

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Estimating Tail Probabilities

• Suppose we want to estimate

θ = P(T (X)> t)

= P(X̂ + ŜT (C)> t)

= E

[
P

(√
∑V 2

i
t− X̂

Ŝ
<
√

∑V 2
i T (C)

∣∣∣∣∣V,C
)]

= E
[

Ft,n−1

(√
∑V 2

i T (C)

)]
where Ft,n−1 is the CDF of a non-central t distribution (t is not the usual
non-centrality parameter).

• This CDF can be evaluated numerically, so we can estimate θ by

θ̂N =
1
N

N

∑
k=1

Ft,n−1

(
T (C(k))

√
∑V (k)

i
2
)

• An alternative is to condition on V,C, Ŝ and use the conditional normal
distribution of X̂ .

298

Markov Chain Monte Carlo

Simulation with Dependent Observations

• Suppose we want to compute

θ = E[h(X)] =
∫

h(x) f (x)dx

• Crude Monte Carlo: generate X1, . . . ,XN that are

– independent

– identically distributed from f

and compute θ̂ = 1
N ∑h(Xi).

• Then

– θ̂ → θ by the law of large numbers

– θ̂ ∼ AN(θ ,σ2/N) by the central limit theorem

– σ2 can be estimated using the sample standard deviation.

• Sometimes generating independently from f is not possible or too costly.

• Importance sampling: generate independently from g and reweight.

• Alternative: generate dependent samples in a way that

– preserves the law of large numbers

– has a central limit theorem if possible

• Variance estimation will be more complicated.

299

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

A Simple Example

Suppose X ,Y are bivariate normal with mean zero, variance 1, and correlation
ρ ,

(X ,Y)∼ BVN(0,1,0,1,ρ).

Then

Y |X = x∼ N(ρx,1−ρ
2)

X |Y = y∼ N(ρy,1−ρ
2).

Suppose we start with some initial values X0,Y0 and generate

X1 ∼ N(ρY0,1−ρ
2)

Y1 ∼ N(ρX1,1−ρ
2)

(X0 is not used), and continue for i = 1, . . . ,N−1

Xi+1 ∼ N(ρYi,1−ρ
2)

Yi+1 ∼ N(ρXi+1,1−ρ
2)

For ρ = 0.75 and Y0 = 0:

r <- 0.75
x <- numeric(10000)
y <- numeric(10000)
x[1] <- rnorm(1, 0, sqrt(1 - rˆ2))
y[1] <- rnorm(1, r * x[1], sqrt(1 - rˆ2))
for (i in 1:(length(x) - 1)) {

x[i+1] <- rnorm(1, r * y[i], sqrt(1 - rˆ2))
y[i+1] <- rnorm(1, r * x[i + 1], sqrt(1 - rˆ2))

}

300

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

−3 −2 −1 0 1 2 3

−4
−2

0
2

x

y

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
 (x

)

0.0 0.5 1.0 1.5

−0
.5

0.
0

0.
5

1.
0

x[1:10]

y[
1:

10
]

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Series x

par(mfrow = c(2, 2))
plot(x, y)
plot(dnorm, -3, 3)
lines(density(x))
z <- seq(-3, 3, len = 101)
dz <- sapply(z, function(z) mean(dnorm(z, r * x, sqrt(1 - rˆ2))))
lines(z, dz, col = "red")
plot(x[1:10], y[1:10], type = "l")
acf(x)

> cor(x,y)
[1] 0.7443691

301

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• The sequence of pairs (Xi,Yi) form a continuous state space Markov
chain.

• Suppose (X0,Y0)∼ BVN(0,1,0,1,ρ). Then

– (X1,Y0)∼ BVN(0,1,0,1,ρ)

– (X1,Y1)∼ BVN(0,1,0,1,ρ)

– (X2,Y1)∼ BVN(0,1,0,1,ρ)

– . . .

So BVN(0,1,0,1,ρ) is a stationary distribution or invariant distribution
of the Markov chain.

• BVN(0,1,0,1,ρ) is also the equilibrium distribution of the chain, i.e.
for any starting distribution the joint distribution of (Xn,Yn) converges to
the BVN(0,1,0,1,ρ) distribution.

• For this example, X1,X2, . . . is an AR(1) process

Xi = ρ
2Xi−1 + εi

with the εi independent and N(0,1−ρ4).

• Standard time series results show that the equilibrium distribution of this
chain is N(0,1).

• If

XN =
1
N

N

∑
i=1

Xi

then

Var(XN)≈
1
N

1−ρ4

(1−ρ2)2 =
1
N

1+ρ2

1−ρ2

302

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Markov Chain Monte Carlo

• Objective is to compute

θ = E[h(X)] =
∫

h(x) f (x)dx

• Basic idea:

– Construct a Markov chain with invariant distribution f .

– Make sure the chain has f as its equilibrium distribution.

– Pick a starting value X0.

– Generate X1, . . . ,XN and compute

θ̂ =
1
N ∑h(Xi)

– Possibly repeat independently several times, maybe with different
starting values.

• Some issues:

– How to construct a Markov chain with a particular invariant distri-
bution.

– How to estimate the variance of θ̂ .

– What value of N to use.

– Should an initial portion be discarded; if so, how much?

303

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some MCMC Examples

Markov chain Monte Carlo (MCMC) is used for a wide range of problems and
applications:

• generating spatial processes

• sampling from equilibrium distributions in physical chemistry

• computing likelihoods in missing data problems

• computing posterior distributions in Bayesian inference

• optimization, e.g. simulated annealing

• . . .

304

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Strauss Process

• The Strauss process is a model for random point patterns with some reg-
ularity.

• A set of n points is distributed on a region D with finite area or volume.

• The process has two parameters, c ∈ [0,1] and r > 0.

• The joint density of the points is

f (x1, . . . ,xn) ∝ cnumber of pairs within r of each other

• For c = 0 the density is zero if any two points are withing r of each other.

• Simulating independent draws from f is possible in principle but very
inefficient.

• A Markov chain algorithm:

– Start with n points X1, . . . ,Xn with f (X1, . . . ,Xn)> 0.

– choose an index i at random, remove point Xi, and replace it with a
draw from

f (x|x1, . . . ,xi−1,xi+1, . . . ,xn) ∝ cnumber of remaining n−1 points within r of x

– This can be sampled reasonably efficiently by rejection sampling.

– Repeat for a reasonable number of steps.

• Strauss in package spatial implements this algorithm. [Caution:
it used to be easy to hang R because the C code would go into an infinite
loop for some parameters. More recent versions may have modified C
code that checks for interrupts.]

• The algorithm is due to Ripley (1979); Ripley’s algorithm applies to a
general multivariate density.

305

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Strauss(20, r = 0.2)$x

S
tra

us
s(

20
, r

 =
 0

.2
)$

y
r = 0.2

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Strauss(20, r = 0)$x

S
tra

us
s(

20
, r

 =
 0

)$
y

Uniform

306

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Markov Random Fields

• A Markov random field is a spatial process in which

– each index i has a set of neighbor indices Ni

– Xi and {Xk : k 6= i and k 6∈ Ni} are conditionally independent given
{X j : j ∈ Ni}.

• In a binary random field the values of Xi are binary.

• Random fields are used as models in

– spatial statistics
– image processing
– . . .

• A simple model for an n×n image with c colors:

f (x) ∝ exp{β × (number of adjacent pixel pairs with the same color)}
– This is called a Potts model
– For a pixel i, the conditional PMF of the pixel color Xi given the

other pixel colors, is

f (xi|rest) ∝ exp{β × (number of neighbors with color xi}

Random β= 0.5, Eight Neighbors, N = 50

307

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Simple Image Reconstruction

• Suppose a binary image is contaminated with noise.

• The noise process is assumed to act independently on the pixels.

• Each pixel is left unchanged with probability p and flipped to the oppo-
site color with probability 1− p.

• The likelihood for the observed image Yi is

f (y|x) ∝ pm(1− p)n2−m

with m the number of pixels with yi = xi.

• A Markov random field is used as the prior distribution of the true image.

• The posterior distribution of the true image is

f (x|y) ∝ pm(1− p)n2−meβw

with w the number of adjacent pixel pairs in the true image x with the
same color.

• The posterior distribution is also a Markov random field, and

f (xi|y,x j for j 6= i) ∝ pmi(1− p)1−mieβwi

with mi = 1 if xi = yi and mi = 0 otherwise, and wi the number of neigh-
bors with color xi.

• Images drawn from the posterior distribution can be averaged to form a
posterior mean.

• The posterior mean can be rounded to a binary image.

• Many other variations are possible.

308

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

True Image Noisy Image, p = 0.7

Posterior Mean, β = 0.5, N=100 Rounded Posterior Mean

Another example using β = 0.5 and β = 0.35 and N = 100 will be shown in
class.

• This is a simple version of the ideas in Geman, S. and Geman D, (1984)
Stochastic relaxation, Gibbs distributions and the Bayesian restoration
of images, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 6, 721–741.

• The posterior distributions are related to Gibbs distributions in physics.

• Geman and Geman call the Markov chain algorithm Gibbs sampling.

309

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Code for the Image Sampler

simImg<-function (m, img, N, beta, p)
{

colors <- 1:2
inboff <- c(-1, -1, -1, 0, 0, 1, 1, 1)
jnboff <- c(-1, 0, 1, -1, 1, -1, 0, 1)
for (k in 1:N) {

for (i in 1:nrow(m)) {
for (j in 1:ncol(m)) {

w <- double(length(colors))
inb <- i + inboff
jnb <- j + jnboff
omit <- inb == 0 | inb == nrow(m) + 1 |

jnb == 0 | jnb == ncol(m) + 1
inb <- inb[!omit]
jnb <- jnb[!omit]
for (ii in 1:length(inb)) {

kk <- m[inb[ii], jnb[ii]]
w[kk] <- w[kk] + 1

}
if (is.null(img)) lik <- 1
else lik <- ifelse(img[i,j]==colors, p, 1-p)
prob <- lik * exp(beta * w)
m[i, j] <- sample(colors, 1, TRUE, prob = prob)

}
}

}
m

}

310

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Profiling to Improve Performance

• Rprof can be used to turn on profiling.

• During profiling a stack trace is written to a file, Rprof.out by default,
50 times per second.

• summaryRprof produces a summary of the results.

> Rprof();system.time(simImg(m,img,10,.35,.7));Rprof(NULL)
user system elapsed
1.547 0.004 1.552

> summaryRprof()
$by.self

self.time self.pct total.time total.pct
"simImg" 0.68 43.59 1.56 100.00
"ifelse" 0.30 19.23 0.36 23.08
"sample.int" 0.20 12.82 0.22 14.10
"double" 0.08 5.13 0.08 5.13
"sample" 0.06 3.85 0.28 17.95
...

$by.total
total.time total.pct self.time self.pct

"simImg" 1.56 100.00 0.68 43.59
"system.time" 1.56 100.00 0.00 0.00
"ifelse" 0.36 23.08 0.30 19.23
"sample" 0.28 17.95 0.06 3.85
"sample.int" 0.22 14.10 0.20 12.82
"double" 0.08 5.13 0.08 5.13
...

$sampling.time
[1] 1.56

311

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Replacing ifelse in

else lik <- ifelse(img[i,j]==colors, p, 1-p)

with

else if (img[i, j] == 1) lik <- c(p, 1-p)
else lik <- c(1 - p, p)

speeds things up considerably:

> Rprof();system.time(simImg1(m,img,10,.35,.7));Rprof(NULL)
user system elapsed

1.261 0.002 1.263
> summaryRprof()
$by.self

self.time self.pct total.time total.pct
"simImg1" 0.86 67.19 1.28 100.00
"sample" 0.08 6.25 0.12 9.38
"c" 0.08 6.25 0.08 6.25
"double" 0.06 4.69 0.06 4.69
"+" 0.04 3.12 0.04 3.12
"|" 0.04 3.12 0.04 3.12
"sample.int" 0.04 3.12 0.04 3.12
"!" 0.02 1.56 0.02 1.56
"*" 0.02 1.56 0.02 1.56
"==" 0.02 1.56 0.02 1.56
"ncol" 0.02 1.56 0.02 1.56

$by.total
total.time total.pct self.time self.pct

"system.time" 3.00 100.00 0.00 0.00
"simImg1" 1.28 100.00 0.86 67.19
"system.time" 1.28 100.00 0.00 0.00
"sample" 0.12 9.38 0.08 6.25
"c" 0.08 6.25 0.08 6.25
"double" 0.06 4.69 0.06 4.69
"+" 0.04 3.12 0.04 3.12
"|" 0.04 3.12 0.04 3.12
"sample.int" 0.04 3.12 0.04 3.12
"!" 0.02 1.56 0.02 1.56
"*" 0.02 1.56 0.02 1.56

312

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

"==" 0.02 1.56 0.02 1.56
"ncol" 0.02 1.56 0.02 1.56
...

313

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Starting profiling with

Rprof(line.profiling = TRUE)

will enable source profiling if our funciton is defined in a file and sourced.

Using the new version of package proftools from GitHub with

> pd <- readProfileData()
> annotateSource(pd)

produces

: simImg1 <- function (m, img, N, beta, p)
: {
: colors <- 1:2
: inboff <- c(-1, -1, -1, 0, 0, 1, 1, 1)
: jnboff <- c(-1, 0, 1, -1, 1, -1, 0, 1)
: for (k in 1:N) {
: for (i in 1:nrow(m)) {
: for (j in 1:ncol(m)) {

1.56% : w <- double(length(colors))
1.56% : inb <- i + inboff
1.56% : jnb <- j + jnboff

14.06% : omit <- inb == 0 | inb == nrow(m) + 1 | jnb ==
: 0 | jnb == ncol(m) + 1

1.56% : inb <- inb[!omit]
: jnb <- jnb[!omit]

4.69% : for (ii in 1:length(inb)) {
7.81% : kk <- m[inb[ii], jnb[ii]]

23.44% : w[kk] <- w[kk] + 1
: }

3.12% : if (is.null(img))
: lik <- 1
: else if (img[i, j] == 1) lik <- c(p, 1-p)
: else lik <- c(1 - p, p)

1.56% : prob <- lik * exp(beta * w)
35.94% : m[i, j] <- sample(colors, 1, TRUE, prob = prob)

: }
: }
: }
: m
: }

314

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

This suggests one more useful change: move the loop-invariant computations
nrow(m)+1 and ncol(m)+1 out of the loop:

simImg2 <- function (m, img, N, beta, p) {
...
nrp1 <- nrow(m) + 1
ncp1 <- ncol(m) + 1
for (k in 1:N) {

for (i in 1:nrow(m)) {
for (j in 1:ncol(m)) {

...
omit <- inb == 0 | inb == nrp1 |

jnb == 0 | jnb == ncp1
...

}
}

}
m

}

This helps as well:

> system.time(simImg2(m,img,10,.35,.7))
user system elapsed

0.692 0.000 0.690

315

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Exploiting Conditional Independence

• We are trying to sample a joint distribution of a collection of random
variables

Xi, i ∈ C

• Sometimes it is possible to divide the index set C into k groups

C1,C2, . . . ,Ck

such that for each j the indices Xi, i ∈ C j are conditionally independent
given the other values {Xi, i 6∈ C j}.

• For a 4-neighbor lattice we can use two groups,

with C1 = red and C2 = white

• For an 8-neighbor lattice four groups are needed.

• Each group can be updated as a group, either

– using vectorized arithmetic, or

– using parallel computation

316

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

A vectorized implementation based on this approach:

nn <- function(m, c) {
nr <- nrow(m)
nc <- ncol(m)
nn <- matrix(0, nr, nc)
nn[1:(nr)-1,] <- nn[1:(nr)-1,] + (m[2:nr,] == c)
nn[2:nr,] <- nn[2:nr,] + (m[1:(nr-1),] == c)
nn[,1:(nc)-1] <- nn[,1:(nc)-1] + (m[,2:nc] == c)
nn[,2:nc] <- nn[,2:nc] + (m[,1:(nc-1)] == c)
nn

}

simGroup <- function(m, l2, l1, beta, which) {
pp2 <- l2 * exp(beta * nn(m, 2))
pp1 <- l1 * exp(beta * nn(m, 1))
pp <- pp2 / (pp2 + pp1)
ifelse(runif(sum(which)) < pp[which], 2, 1)

}

simImgV <- function(m, img, N, beta, p) {
white <- outer(1:nrow(m), 1:ncol(m), FUN=‘+‘) %% 2 == 1
black <- ! white
if (is.null(img)) {

l2 <- 1
l1 <- 1

}
else {

l2 <- ifelse(img == 2, p, 1 - p)
l1 <- ifelse(img == 1, p, 1 - p)

}
for (i in 1:N) {

m[white] <- simGroup(m, l2, l1, beta, white)
m[black] <- simGroup(m, l2, l1, beta, black)

}
m

}

The results:

> system.time(simImgV(m,img,10,.35,.7))
user system elapsed

0.037 0.000 0.037

317

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

More MCMC Examples

Monte Carlo Maximum Likelihood

• Suppose we have an exponential family likelihood

h(x|θ) = c(θ)eθx−ν(x) = c(θ)h̃(x|θ)

• In many problems c(θ) is not available in closed form:

– Strauss process with θ = logc.

– MRF image model with θ = β .

• Geyer and Thompson (1992) write

log
h(x|θ)
h(x|η)

= log
h̃(x|θ)
h̃(x|η)

− logEη

[
h̃(X |θ)
h̃(X |η)

]
This follows from the fact that

c(θ)
c(η)

=
1

c(η)
∫

h̃(x|θ)dx
=

(∫ h̃(x|θ)
h̃(x|η)

c(η)h̃(x|η)dx
)−1

=

(
Eη

[
h̃(X |θ)
h̃(X |η)

])−1

• Using a sample x1, . . . ,xN from h(x|η) this can be approximated by

log
h(x|θ)
h(x|η)

≈ log
h̃(x|θ)
h̃(x|η)

− log
1
N

N

∑
i=1

h̃(xi|θ)
h̃(xi|η)

• The sample x1, . . . ,xN from h(x|η) usually needs to be generated using
MCMC methods.

318

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Data Augmentation

• Suppose we have a problem where data Y,Z have joint density f (y,z|θ)
but we only observe z.

• Suppose we have a prior density f (θ).

• The joint density of Y,Z,θ is then

f (y,z,θ) = f (y,z|θ) f (θ)

and the joint posterior density of θ ,y given z is

f (θ ,y|z) = f (y,z|θ) f (θ)
f (z)

∝ f (y,z|θ) f (θ)

• Suppose it is easy to sample from the conditional distribution of

– the missing data y, given θ and the observed data z

– the parameter θ given the complete data y,z.

Then we can start with θ (0) and for each i = 1,2, . . .

– draw y(i) from f (y|θ (i−1),z)

– draw θ (i) from f (θ |y(i),z).

This is the data augmentation algorithm of Tanner and Wong (1987)

• The result is a Markov chain with stationary distribution f (θ ,y|z)

• If we discard the y values then we have a (dependent) sample from the
marginal posterior density f (θ |z).

• In this alternating setting, the marginal sequence θ (i) is a realization of a
Markov chain with invariant distribution f (θ |z).

319

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Probit Model for Pesticide Effectiveness

• Batches of 20 tobacco budworms were subjected to different doses of a
pesticide and the number killed was recorded.

Dose 1 2 4 8 16 32
Died 1 4 9 13 18 20

• A probit model assumes that binary responses Zi depend on covariate
values xi though the relationship

Zi ∼ Bernoulli(Φ(α +β (xi− x)))

• A direct likelihood or Bayesian analysis is possible.

• An alternative is to assume that there are latent variables Yi with

Yi ∼ N(α +β (xi− x),1)

Zi =

{
1 if Yi ≥ 0
0 if Yi < 0

• For this example assume a flat, improper, prior density.

320

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• The full data posterior distribution is

f (α,β |y) ∝ exp
{
−n

2
(α− y)2− ∑(xi− x)2

2
(β − β̂)2

}
with

β̂ =
∑(xi− x)yi

∑(xi− x)2

So α , β are independent given y and x, and

α|y,z∼ N(y,1/n)

β |y,z∼ N(β̂ ,1/∑(xi− x)2)

• Given z, α , and β the Yi are conditionally independent, and

Yi|z,α,β ∼

{
N(α +β (xi− x)2,1) conditioned to be positive if zi = 1
N(α +β (xi− x)2,1) conditioned to be negative if zi = 0

The inverse CDF’s are

F−(u|zi,µi) =

{
µi +Φ−1(Φ(−µi)+u(1−Φ(−µi))) if zi = 1
µi +Φ−1(uΦ(−µi)) if zi = 0

with µi = α +β (xi− x).

321

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• A plot of the proportion killed against dose is curved, but a plot against
the logarithm is straight in the middle. So use x = log2(dose).

0 5 10 15 20 25 30

0.
2

0.
6

1.
0

dose

di
ed

/2
0

0 1 2 3 4 5

0.
2

0.
6

1.
0

log2(dose)
di

ed
/2

0

dose <- c(1, 2, 4, 8, 16, 32)
died <- c(1, 4, 9, 13, 18, 20)
x <- log2(dose)

• We need to generate data for individual cases:

xx <- rep(x - mean(x), each = 20)
z <- unlist(lapply(died,

function(x) c(rep(1, x), rep(0, 20 - x))))

• We need functions to generate from the conditional distributions:

genAlpha <- function(y)
rnorm(1, mean(y), 1 / sqrt(length(y)))

genBeta <- function(y, xx, sxx2)
rnorm(1, sum(xx * y) / sxx2, 1 / sqrt(sxx2))

genY <- function(z, mu) {
p <- pnorm(-mu)
u <- runif(length(z))
mu + qnorm(ifelse(z == 1, p + u * (1 - p), u * p))

}

322

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• A function to produce a sample of parameter values by data augmenta-
tion is then defined by

da <- function(z, alpha, beta, xx, N) {
val <- matrix(0, nrow = N, ncol = 2)
colnames(val) <- c("alpha", "beta")
sxx2 <- sum(xxˆ2)
for (i in 1 : N) {

y <- genY(z, alpha + beta * xx)
alpha <- genAlpha(y)
beta <- genBeta(y, xx, sxx2)
val[i,1] <- alpha
val[i,2] <- beta

}
val

}

• Initial values are

alpha0 <- qnorm(mean(z))
beta0 <- 0

• A run of 10000:

v <- da(z, alpha0, beta0, xx, 10000)
> apply(v,2,mean)

alpha beta
0.2030763 0.7494578
> apply(v,2,sd)

alpha beta
0.1503186 0.1132519

323

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

−0.4 0.0 0.4 0.8

0.
0

1.
0

2.
0

log dose

de
ns

ity

Alpha

0.4 0.6 0.8 1.0 1.2

0.
0

1.
0

2.
0

3.
0

log dose

de
ns

ity

Beta

324

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Some diagnostics:

0 2000 4000 6000 8000

−0
.2

0.
2

0.
4

0.
6

0.
8

Index

v[
, "

al
ph

a"
]

Alpha

0 2000 4000 6000 8000

0.
4

0.
6

0.
8

1.
0

1.
2

Index

v[
, "

be
ta

"]

Beta

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series v[, "alpha"]

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series v[, "beta"]

Using a simple AR(1) model,

SD(α)≈ SD(α|z)√
N

√
1+ρα

1−ρα

=
0.1503186

100

√
1+0.65
1−0.65

= 0.003263778

SD(β)≈ SD(β |z)√
N

√
1+ρβ

1−ρβ

=
0.1132519

100

√
1+0.8
1−0.8

= 0.003397557

Approxiamte effective sample sizes:

ESS(α)≈ N
(

1−ρα

1+ρα

)
= 10000

(
1−0.65
1+0.65

)
= 2121.212

ESS(β)≈ N
(

1−ρβ

1+ρβ

)
= 10000

(
1−0.8
1+0.8

)
= 1111.111

325

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Practical Bayesian Inference

• In Bayesian inference we have

– a prior density or PMF f (θ)

– a data density or PMF, or likelihood, f (x|θ)

• We compute the posterior density or PMF as

f (θ |x) = f (x|θ) f (θ)
f (x)

∝ f (x|θ) f (θ)

• At this point, in principle, we are done.

• In practice, if θ = (θ1, . . . ,θp) then we want to compute things like

– the posterior means E[θi|x] and variances Var(θi|x)
– the marginal posterior densities f (θi|x)
– posterior probabilities, such as P(θ1 > θ2|x)

These are all integration problems.

• For a few limited likelihood/prior combinations we can compute these
integrals analytically.

• For most reasonable likelihood/prior combinations analytic computation
is impossible.

326

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Numerical Integration

• For p = 1

– we can plot the posterior density

– we can compute means and probabilities by numerical integration

• General one dimensional numerical integration methods like

– the trapezoidal rule

– Simpson’s rule

– adaptive methods (as in integrate in R)

often use N ≈ 100 function evaluations.

• If p = 2 we can

– plot the joint posterior density

– compute marginal posterior densities by one dimensional numerical
integrations and plot them

– compute means and probabilities by iterated one dimensional nu-
merical integration

• In general, iterated numerical integration requires N p function evalua-
tions.

• If a one dimensional f looks like

f (x)≈ (low degree polynomial)× (normal density)

then Gaussian quadrature (Monahan, p. 268–271; Givens and Hoeting,
Section 5.3) may work with N = 3 or N = 4.

– This approach is used in Naylor and Smith (1984).

– Getting the location and scale of the Gaussian right is critical.

– Even 3p gets very large very fast.

327

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Large Sample Approximations

• If the sample size n is large,

θ̂ = mode of joint posterior density f (θ |x)
H =−∇

2
θ log f (θ̂ |x)

= Hessian (matrix of second partial derivatives) of − log f at θ̂

then under often reasonable conditions

f (θ |x)≈MVNp(θ̂ ,H−1)

The relative error in the density approximation is generally of order
O(n−1/2) near the mode.

• More accurate second order approximations based on Laplace’s method
are also sometimes available.

• To approximate the marginal posterior density of θ1, compute

θ̂2(θ1) = argmaxθ2
f (θ1,θ2|x)

H(θ1) =−∇
2
θ2

log f (θ1, θ̂2(θ1)|x)

Then
f̂ (θ1|x) ∝

√
detH(θ1) f (θ1, θ̂2(θ1)|x)

approximates f (θ1|x) with a relative error near the mode of order O(n−3/2).

• The component f (θ1, θ̂2(θ1)|x) is analogous to the profile likelihood.

• The term
√

detH(θ1) adjusts for differences in spread in the parameter
being maximized out.

328

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Monte Carlo Methods

• Early Monte Carlo approaches used importance sampling.

– Usually some form of multivariate t is used to get heavy tails and
bounded weights.

– Guaranteeing bounded weights in high dimensions is very hard.

– Even bounded weights may have too much variation to behave well.

• Gelfand and Smith (1989) showed that many joint posterior distributions
have simple full conditional distributions

f (θi|x,θ1, . . . ,θi−1,θi+1, . . . ,θp)

• These can be sampled using a Markov chain, called a Gibbs sampler.

329

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• The systematic scan Gibbs sampler starts with some initial values θ
(0)
1 , . . . ,θ

(0)
p

and then for each k generates

θ
(k+1)
1 ∼ f (θ1|x,θ2 = θ

(k)
2 , . . . ,θp = θ

(k)
p)

...

θ
(k+1)
i ∼ f (θi|x,θ1 = θ

(k+1)
1 , . . . ,θi−1 = θ

(k+1)
i−1 ,θi+1 = θ

(k)
i+1, . . . ,θp = θ

(k)
p)

...

θ
(k+1)
p ∼ f (θp|x,θ1 = θ

(k+1)
1 , . . . ,θp−1 = θ

(k+1)
p−1)

• The random scan Gibbs sampler picks an index i = 1, . . . , p at random
and updates that component from its full conditional distribution.

• Many other variations are possible.

• All generate a Markov chain θ (0),θ (1),θ (2), . . . , with invariant distribu-
tion f (θ |x).

330

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Pump Failure Data

Numbers of failures and times of observation for 10 pumps in a nuclear power
plant:

Pump 1 2 3 4 5 6 7 8 9 10
Failures 5 1 5 14 3 19 1 1 4 22

Time 94.32 15.72 62.88 125.76 5.24 31.44 1.05 1.05 2.10 10.48
Times are in 1000’s of hours.

• Suppose the failures follow Poisson processes with rates λi for pump i;
so the number of failures on pump i is Xi ∼ Poisson(λiti).

• The rates λi are drawn from a Gamma(α,1/β) distribution.

• Assume α = 1.8

• Assume β ∼ Gamma(γ,1/δ) with γ = 0.01 and δ = 1.

• The joint posterior distribution of λ1, . . . ,λ10,β is

f (λ1, . . . ,λ10,β |t1, . . . , t10,x1, . . . ,x10) ∝

(
10

∏
i=1

(λiti)xie−λitiλ α−1
i β

αe−βλi

)
β

γ−1e−δβ

∝

(
10

∏
i=1

λ
xi+α−1
i e−λi(ti+β)

)
β

10α+γ−1e−δβ

∝

(
10

∏
i=1

λ
xi+α−1
i e−λiti

)
β

10α+γ−1e−(δ+∑
10
i=1 λi)β

• Full conditionals:

λi|β , ti,xi ∼ Gamma(xi +α,(ti +β)−1)

β |λi, ti,xi ∼ Gamma(10α + γ,(δ +∑λi)
−1)

331

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• It is also possible to integrate out the λi analytically to get

f (β |ti,xi) ∝

(
10

∏
i=1

(ti +β)xi+α

)−1

β
10α+γ−1e−δβ

This can be simulated by rejection or RU sampling; the λi can then be
sampled conditionally given β .

• Suppose α is also unknown and given an exponential prior distribution
with mean one.

• The joint posterior distribution is then

f (λ1, . . . ,λ10,β ,α|ti,xi)∝

(
10

∏
i=1

λ
xi+α−1
i e−λi(ti+β)

)
β

10α+γ−1e−δβ e−α

Γ(α)10

• The full conditional density for α is

f (α|β ,λi, ti,xi) ∝

(
β 10e−1

∏
10
i=1 λi

)α

Γ(α)10

This is not a standard density

• This density is log-concave and can be sampled by adaptive rejection
sampling.

• Another option is to use the Metropolis-Hastings algorithm.

332

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Metropolis-Hasting Algorithm

• Introduced in N, Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller (1953), “Equations for state space calculations by
fast computing machines,” Journal of Chemical Physics.

• Extended in Hastings (1970), “Monte Carlo sampling methods using
Markov chains and their applications,” Biometrika.

• Suppose we want to sample from a density f .

• We need a family of proposal distributions Q(x,dy) with densities q(x,y).

• Suppose a Markov chain with stationary distribution f is currently at
X (i) = x. Then

– Generate a proposal Y for the new location by drawing from the
density q(x,y).

– Accept the proposal with probability

α(x,y) = min
{

f (y)q(y,x)
f (x)q(x,y)

,1
}

and set X (i+1) = Y .

– Otherwise, reject the proposal and remain at x, i.e. set X (i+1) = x.

• The resulting transition densities satisfy the detailed balance equations
for x 6= y and initial distribution f :

f (x)q(x,y)α(x,y) = f (y)q(y,x)α(y,x)

The chain is therefore reversible and has invariant distribution f .

333

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Symmetric Proposals

• Suppose q(x,y) = q(y,x). Then

α(x,y) = min
{

f (y)
f (x)

,1
}

So:

– If f (y)≥ f (x) then the proposal is accepted.

– If f (y)< f (x) then the proposal is accepted with probability

α(x,y) =
f (y)
f (x)

< 1

• Symmetric proposals are often used in the simulated annealing optimiza-
tion method.

• Symmetric random walk proposals with q(x,y) = g(y− x) where g is a
symmetric density are often used.

• Metropolis et al. (1953) considered only the symmetric proposal case.

• Hastings (1970) introduced the more general approach allowing for non-
symmetric proposals.

334

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Independence Proposals

• Suppose q(x,y) = g(y), independent of x. Then

α(x,y) = min
{

f (y)g(x)
f (x)g(y)

,1
}
= min

{
w(y)
w(x)

,1
}

with w(x) = f (x)/g(x).

• This is related to importance sampling:

– If a proposal y satisfies w(y)≥ w(x) then the proposal is accepted.

– If w(y)< w(x) then the proposal may be rejected.

– If the weight w(x) at the current location is very large, meaning g(x)
is very small compared to f (x), then the chain will remain at x for
many steps to compensate.

335

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Metropolized Rejection Sampling

• Suppose h(x) is a possible envelope for f with
∫

h(x)dx < ∞.

• Suppose we sample

– Y from h

– U uniformly on [0,h(Y)]

until U < f (Y).

• Then the resulting Y has density

g(y) ∝ min(h(x), f (x))

• Using g as a proposal distribution, the Metropolis acceptance probability
is

α(x,y) = min
{

f (y)min(h(x), f (x))
f (x)min(h(y), f (y))

,1
}

= min
{

min(h(x)/ f (x),1)
min(h(y)/ f (y),1)

,1
}

=


1 if f (x)≤ h(x)
h(x)/ f (x) if f (x)> h(x) and f (y)≤ h(y)

min
{

f (y)h(x)
f (x)h(y) ,1

}
otherwise

= min
{

h(x)
f (x)

,1
}

min
{

max
{

f (y)
h(y)

,1
}
,max

{
f (x)
h(x)

,1
}}

≥min
{

h(x)
f (x)

,1
}

• If h is in fact an envelope for f , then α(x,y) ≡ 1 and the algorithm pro-
duces independent draws from f .

• If h is not an envelope, then the algorithm occasionally rejects proposals
when the chain is at points x where the envelope fails to hold.

• The dependence can be very mild if the failure is mild; it can be very
strong if the failure is significant.

336

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Metropolis-Within-Gibbs

• Suppose f (x) = f (x1, . . . ,xp)

• The Metropolis-Hastings algorithm can be used on the entire vector x.

• The Metropolis-Hastings algorithm can also be applied to one compo-
nent of a vector using the full conditional density

f (xi|x1, . . . ,xi−1,xi+1, . . . ,xp)

as the target density.

• This approach is sometimes called Metropolis-within-Gibbs.

• This is a misnomer: this is what Metropolis et al. (1953) did to sample
from the equilibrium distribution of n gas molecules.

337

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Pump Failure Data

• Suppose α has an exponential prior distribution with mean 1.

• The full conditional density for α is

f (α|β ,λi, ti,xi) ∝

(
β 10e−1

∏
10
i=1 λi

)α

Γ(α)10

• To use a random walk proposal it is useful to make the support of the
distribution be the whole real line.

• The full conditional density of logα is

f (logα|β ,λi, ti,xi) ∝

(
β 10e−1

∏
10
i=1 λi

)α
α

Γ(α)10

• Using a normal random walk proposal requires choosing a standard de-
viation; 0.7 seems to work reasonably well.

• We can use a single Metropolis step or several.

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

beta

de
ns

ity

0 1 2 3 4

0.
5

1.
0

1.
5

2.
0

beta

al
ph

a

338

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Gibbs Sampler in R for Pump Data

fail <- c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22)
time <- c(94.32, 15.72, 62.88, 125.76, 5.24,

31.44, 1.05, 1.05, 2.10, 10.48)
alpha <- 1.8
gamma <- 0.01
delta <- 1
pump <- function(alpha, beta, N, d = 1, K = 1) {

v <- matrix(0, ncol=12, nrow=N)
for (i in 1:N) {

lambda <- rgamma(10, fail + alpha, rate = time + beta)
beta <- rgamma(1, 10 * alpha + gamma, rate = delta + sum(lambda))
b <- (10 * log(beta) + sum(log(lambda)) - 1)
for (j in 1:K) {

newAlpha <- exp(rnorm(1, log(alpha), d))
logDensRatio <-

((newAlpha - alpha) * b + log(newAlpha) - log(alpha) +
10 * (lgamma(alpha) - lgamma(newAlpha)))

if (is.finite(logDensRatio) &&
log(runif(1)) < logDensRatio)
alpha <- newAlpha

}
v[i,1:10] <- lambda
v[i,11] <- beta
v[i,12] <- alpha

}
v

}

339

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Markov Chain Theory: Discrete State Space

• A sequence of random variables X0,X1,X2, . . . with values in a finite or
countable set E is a Markov chain if for all n

P(Xn+1 = j|Xn = i,Xn−1,Xn−2, . . . ,X0) = P(Xn+1 = j|Xn = i)

i.e. given the present, the future and the past are independent.

• A Markov chain is time homogeneous if

P(i, j) = P(Xn+1 = j|Xn = i)

does not depend on n. P(i, j) is the transition matrix of the Markov chain.

• A transition matrix satisfies

∑
j∈E

P(i, j) = 1

for all i ∈ E.

• The distribution of X0 is called the initial distribution of a Markov chain.

340

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• The n step transition matrix is

Pn(i, j) = P(Xn = j|X0 = i)

The n+m step transition matrix satisfies

Pn+m = PnPm

That is,
Pn+m(i, j) = ∑

k∈E
Pn(i,k)Pm(k, j)

for all i, j ∈ E.

• A distribution π is an invariant distribution or a stationary distribution
for a Markov transition matrix P if

π(j) = ∑
i∈E

π(i)P(i, j)

for all i. These equations are sometimes called the flow balance equa-
tions

341

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Reversibility

• A transition matrix is reversible with respect to a distribution π if

π(i)P(i, j) = π(j)P(j, i)

for every pair i, j. These equations are called the detailed balance equa-
tions.

• If P is reversible with respect to π , then π is a stationary distribution for
P:

∑
i∈E

π(i)P(i, j) = ∑
i∈E

π(j)P(j, i) = π(j)∑
i∈E

P(j, i) = π(j)

• If P is reversible with respect to π and X0 has initial distribution π , then
the vectors

(X0,X1,X2, . . . ,Xn−2,Xn−1,Xn)

and
(Xn,Xn−1,Xn−2, . . . ,X2,X1,X0)

have the same joint distributions.

• Reversible transition matrices have many nice properties, including real
eigenvalues.

342

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Convergence

• A Markov chain is irreducible if for each pair of states i, j there is an
integer n such that

Pn(i, j)> 0

i.e. if each state can be reached with positive probability from any other
state.

• The time to reach state i is

τi = min{n≥ 1 : Xn = i}

with τi = ∞ if Xn 6= i for all n.

• An irreducible Markov chain falls into one of three categories:

– Transient: P(τi = ∞|X0 = j)> 0 for all i, j ∈ E.

– Null recurrent: P(τi = ∞|X0 = j) = 0 and E[τi|X0 = j] = ∞ for all
i, j ∈ E.

– Positive recurrent: P(τi = ∞|X0 = j) = 0 and E[τi|X0 = j] < ∞ for
all i, j ∈ E.

• If an irreducible Markov chain is transient or null recurrent then it does
not have a proper invariant distribution.

• If an irreducible Markov chain is positive recurrent, then

– it has a unique invariant distribution π

– for any i ∈ E
1
n

n

∑
k=1

Pk(i, j)→ π(j)

– if h is a real-valued function on E such that

∑
i∈E
|h(i)|π(i)< ∞

then almost surely

1
n

n

∑
k=1

h(Xk)→ πh = ∑
i∈E

h(i)π(i)

343

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

– if the chain is also aperiodic, then

Pn(i, j) =→ π(j)

for all i, j ∈ E. In this case π is an equilibrium distribution of the
chain.

344

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Different Points of View

• In applied probability problems we usually

– verify that a chain is irreducible

– verify that a chain is positive recurrent

– conclude that a unique stationary distribution exists

– compute the unique stationary distribution π

– verify that the chain is aperiodic

– use π to approximate the distribution of Xn

• In Markov chain Monte Carlo

– we know by construction that a proper stationary distribution π ex-
ists

– we verify that the chain is irreducible

– we conclude that the chain must be positive recurrent (since it cannot
be transient or null recurrent) and therefore π is the unique station-
ary distribution

– we approximate expectations under π by sample path averages

– aperiodicity is usually not important

345

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Markov Chain Theory: General State Spaces

• Let E be an arbitrary set and E a countably generated sigma-algebra on
E.

• A sequence of (E,E)-valued random variables is a time homogeneous
Markov chain with transition kernel P(x,dy) if

P(Xn+1 ∈ A|Xn,Xn−1, . . . ,X0) = P(Xn,A)

for all A ∈ E .

• A Markov transition kernel is a function P(·, ·) such that

– P(x, ·) is a probability on (E,E) for each x ∈ E.

– P(·,A) is a E -measurable function for each A ∈ E .

• The n-step transition kernel of a Markov chain is

Pn(x,A) = P(Xn ∈ A|X0 = x)

and satisfies
Pn+m(x,A) =

∫
Pn(x,dy)Pm(y,A)

for all x ∈ E and all A ∈A .

• A distribution π is invariant for a Markov transition kernel P if

π(A) =
∫

π(dy)P(y,A)

for all A ∈ E .

346

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Reversibility

• A transition kernel P is reversible with respect to a distribution π if

π(dx)P(x,dy) = π(dy)P(y,dx)

i.e. these two bivariate distributions must be identical.

• If P is reversible with respect to π then P is invariant with respect to π:∫
x∈E

π(dx)P(x,A) =
∫

x∈E

∫
y∈A

π(dx)P(x,dy)

=
∫

x∈E

∫
y∈A

π(dy)P(y,dx)

=
∫

y∈A
π(dy)

∫
x∈E

P(y,dx)

=
∫

y∈A
π(dy)

= π(A)

347

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Convergence

• A Markov chain with transition kernel P is irreducible with respect to a
sigma-finite measure ν if for every x ∈ E and every A ∈ E with ν(A)> 0
there exists an integer n such that Pn(x,A)> 0

• A Markov chain is irreducible if it is irreducible with respect to ν for
some sigma-finite ν .

• The standard definition of irreducibility for discrete state spaces corre-
sponds to irreducibility with respect to counting measure for general state
spaces.

• An irreducible Markov chain is either transient, null recurrent, or positive
recurrent.

• An irreducible Markov chain is positive recurrent if and only if it has a
proper stationary distribution π .

• Essentially all Markov chains used in MCMC that are recurrent are also
Harris recurrent.

• If an irreducible Markov chain is positive recurrent, then

– it has a unique stationary distribution π

– if the chain is Harris recurrent, then

sup
A∈E

∣∣∣∣∣1n n

∑
k=1

Pk(x,A)−π(A)

∣∣∣∣∣→ 0

for all x
– if the chain is Harris recurrent, h is real-valued, E -measurable, and

π|h|=
∫
|h(x)|π(dx)< ∞, then for any initial distribution

1
n

n

∑
k=1

h(Xk)→ πh =
∫

h(x)π(dx)

– if the chain is Harris recurrent and aperiodic, then

sup
A∈E
|Pn(x,A)−π(A)| → 0

for all x.

348

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Rates of Convergence

• A Markov chain is geometrically ergodic if there exists a nonnegative
function M(x) with πM < ∞ and a constant λ < 1 such that

sup
A∈E
|Pn(x,A)−π(A)| ≤M(x)λ n

for all x ∈ E and all integers n≥ 1.

• A Markov chain is uniformly ergodic if there exists a finite constant M
and a constant λ < 1 such that

sup
A∈E
|Pn(x,A)−π(A)| ≤Mλ

n

for all x ∈ E and all integers n≥ 1.

• Many MCMC samplers are geometrically ergodic; relatively few are uni-
formly ergodic.

• Restricting parameters to a compact set can often make a chain uniformly
ergodic.

349

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Central Limit Theorems

• Suppose
∫

h(x)2π(dx)< ∞ and let

hn =
1
n

n

∑
k=1

h(Xk)

Let
τn = nVarπ(hn)

and let

τ = lim
n→∞

τn = Varπ(h(X0))+2
∞

∑
k=1

Covπ(h(Xk),h(X0))

if the limit exists.

• Suppose the Markov chain is uniformly ergodic. Then the limit τ exists,
is finite, and

√
n(h−πh) converges in distribution to a N(0,τ) random

variable.

• Suppose the Markov chain is Harris recurrent and geometrically ergodic
and that

∫
|h(x)|2+επ(dx) < ∞ for some ε > 0. Then the limit τ exists,

is finite, and
√

n(h−πh) converges in distribution to a N(0,τ) random
variable.

• If the Markov chain is reversible, Harris recurrent, and geometrically
ergodic then π(h2)< ∞ is sufficient for a CLT.

• Suppose the Markov chain is reversible. Then the limit τ exists but may
be infinite. If the limit is finite, then

√
n(h−πh) converges in distribution

to a N(0,τ) random variable.

• The asymptotic variance τ can be written as

τ = Varπ(h(X0))

[
1+2

∞

∑
k=1

ρk(h)

]
with

ρk(h) = Corrπ(h(Xk),h(X0))

To use a central limit theorem we need to

– be confident that it is valid
– be able to estimate τ

350

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Summary of Markov Chain Theory

Suppose X1,X2, . . . is a Markov chain on a state space E with invariant distri-
bution π and h is a function such that∫

h(x)2
π(dx)< ∞

• Law of large numbers: If the chain is irreducible, i.e. can get from any
initial point to, or close to, any other point in E, then π is an equilibrium
distribution and

hn =
1
n

n

∑
i=1

h(Xi)→ πh =
∫

h(x)π(dx)

almost surely.

• Central limit theorem: Under reasonable conditions,
√

n(hn−πh) con-
verges in distribution to a N(0,τ) random variable with

τ = Varπ(h(X0))

[
1+2

∞

∑
k=1

ρk(h)

]

with
ρk(h) = Corrπ(h(Xk),h(X0))

and X0 ∼ π .

To use the central limit theorem we need to be able to estimate τ .

351

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Output Analysis

• Simulation output analysis deals mainly with

– estimation using simulation output

– estimating variances of simulation estimators

– assessing convergence, initialization bias, initial transients

based on data produced by simulations

• General characteristics of such data:

– Simulation run lengths are often very long.

– There is usually dependence within runs.

– Usually runs settle down to some form of stationarity

• Software:

– CODA (Best, Cowles, and Vines)

∗ Developed for S-PLUS, mainly for BUGS output
∗ R port by Martyn Plummer; available on our workstations

– BOA (B. Smith)

∗ Major revision of CODA
∗ Provides more methods
∗ Available as an R package from CRAN and on our workstations
∗ http://www.public-health.uiowa.edu/boa/

352

http://www.public-health.uiowa.edu/boa/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Simulation Estimators

Suppose a simulation produces values X1, . . . ,XN and

XN =
1
N

N

∑
i=1

Xi→ θ

• Usually we will estimate θ by X

• If the process X1,X2, . . . , is stationary then usually

θ = E[Xi]

Otherwise we usually have

E[XN]→ θ

and often also E[Xi]→ θ .

• In some cases we may be able to find a function g such that

1
N

N

∑
i=1

g(Xi)→ θ

Rao-Blackwellization is one approach that may produce such a function
g.

• Often a Rao-Blackwellized estimator will have reduced variance, but this
in not guaranteed with depended Xi,

• For the rest of this discussion, assume that Xi incorporates any such g.

353

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Variance Estimation

• We often have, or hope to have,

XN ∼ AN(θ ,τN/N)

where

τN = NVar(XN) =
1
N

N

∑
i=1

N

∑
j=1

Cov(Xi,X j)

• If the process X1, . . . ,XN is stationary, which is usually the case in the
limit, then

σ
2 = Var(Xi)

ρk = Corr(Xi,Xi+k)

do not depend on i. The value ρk is the lag k autocorrelation of X1,X2,

• For a stationary process

τN = σ
2

(
1+2

N−1

∑
k=1

(
1− k

N

)
ρk

)

• Typically,

τN → τ = σ
2

(
1+2

∞

∑
k=1

ρk

)
= σ

2
∞

∑
k=−∞

ρk

• Several methods are available for estimating τ , including

– modeling the time series and using the estimated autocorrelations

– estimating the spectral density at zero

– batching

– combinations

– regenerative simulation

– replication

354

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Time Series Models

• We can fit an ARMA(p,q) model of the form

(Xi−θ) =
p

∑
j=1

α j(Xi− j−θ)+
q

∑
j=1

β jεi− j + εi

with the εi independent N(0,σ2
ε).

• Then

τ = σ
2
ε

(
1+∑

q
j=1 β j

)2

(
1−∑

p
j=1 α j

)2

τ can be estimated by plugging in estimates of α j, β j, and σ2
ε .

• For the AR(1) model σ2 = σ2
ε /(1−α2

1) and ρ1 = α1; so

τ = σ
2
ε

1
(1−α1)2 = σ

2 1−α2
1

(1−α1)2 = σ
2 1+α1

1−α1
= σ

2 1+ρ1

1−ρ1

An estimate is
τ̂ = S2 1+ r1

1− r1

with S2 the sample variance and r1 the lag one sample autocorrelation.

355

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Spectral Density at the Origin

• The autocorrelation function satisfies

σ
2
ρk = 2

∫
π

0
cos(kω) f (ω)dω

where

f (ω) =
σ2

2π

∞

∑
k=−∞

ρk cos(kω)

is the spectral density.

• The spectral density is sometimes defined as a function on [0,1/2).

• The spectral density at zero is related to τ as

τ = 2π f (0)

• Spectral densities are usually estimated by smoothing the periodogram,
the Fourier transform of the sample autocovariance function.

• Smoothing flattens peaks, and there is typically a peak at zero.

• A number of methods are available for dealing with this.

• The CODA function spectrum0 computes τ by some of these meth-
ods.

• It is usually a good idea to make spectrum0 use batching by specifying
a value for max.length

356

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Batching and Replication

• If we replicate sampler runs independently R times then we have R inde-
pendent sample averages and can use their sample standard deviation in
computing a standard error for the overall average.

• Because of concerns about convergence we usually run only relatively
few long chains; this does not provide enough degrees of freedom by
itself.

• Batching is a form of within chain replication:

– Suppose N = KM and for i = 1, . . . ,K let

XM,i =
1
M

iM

∑
j=(i−1)M+1

Xi

Then XM,1, . . . ,XM,K are means of successive batches of size M.

– The overall mean is the mean of the batch means,

XN =
1
N

N

∑
i=1

Xi =
1
K

K

∑
i=1

XM,i

– If the batches are large enough, then the batch means will be ap-
proximately independent and normal, so t confidence intervals can
be used.

• An estimate of τ based on assuming independent batch means is

τ̂ =
M

K−1

K

∑
i=1

(XM,i−X)2

• An alternative:

– Choose a batch size so that an AR(1) model fits.

– Estimate τ assuming the batch means follow an AR(1) model.

• Batching and replication can be combined.

357

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Effective Sample Size and Sampler Efficiency

• If the sequence X1, . . . ,XN were a random sample from a distribution π ,
then we would have

Var(XN) =
σ2

N

• With dependent sampling the variance is

Var(XN)≈
τ

N
=

σ2

N

∞

∑
k=−∞

ρk

• So a sample of size N from a sampler with dependence is equivalent to a
sample of

NE = N
σ2

τ
= N

(
∞

∑
k=−∞

ρk

)−1

independent observations. NE is sometimes called the effective sample
size.

• By analogy to estimation theory the value

NE

N
=

(
∞

∑
k=−∞

ρk

)−1

is sometimes called the asymptotic relative efficiency, or just the effi-
ciency, of the sampler.

• Thinking about the equivalent number of independent observations is
often useful.

• Efficiencies need to be treated with caution: If sampler A is half as effi-
cient but ten times as fast as sampler B, then sampler A is clearly better.

• In the physics literature the quantity

Tint =
∞

∑
k=−∞

ρk

is called the integrated autocorrelation time.

358

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Pump Data

Generate a run of 20000 with

v <- pump(1.8,1,20000)
colnames(v) <- c(paste("lambda", 1:10, sep=""), "beta", "alpha")

Using CODA we can get a summary as

> summary(mcmc(v))

Iterations = 1:20000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 20000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
lambda1 0.05968 0.02535 0.0001792 0.0001997
lambda2 0.09960 0.07879 0.0005572 0.0007174
lambda3 0.08841 0.03701 0.0002617 0.0003067
lambda4 0.11537 0.03028 0.0002141 0.0002605
lambda5 0.59891 0.31644 0.0022376 0.0026431
lambda6 0.60894 0.13760 0.0009730 0.0007948
lambda7 0.91144 0.75378 0.0053300 0.0061026
lambda8 0.89653 0.74452 0.0052646 0.0065248
lambda9 1.61012 0.78779 0.0055705 0.0061624
lambda10 2.00624 0.42777 0.0030248 0.0037128
beta 0.85510 0.53960 0.0038156 0.0102915
alpha 0.65329 0.28070 0.0019848 0.0066979

2. Quantiles for each variable:
...

359

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

The function bmse computes a standard error for the sample path mean using
batching and, optionally, a time series adjustment based on an AR(1) model:

bmse <- function(x, M = 1, ts = FALSE) {
bm <- apply(matrix(x, nrow = M), 2, mean)
se <- sd(bm) / sqrt(length(bm))
if (ts) {

r <- acf(bm, plot = FALSE, lag = 1)$acf[2]
se <- se * sqrt((1 + r) / (1 - r))

}
se

}

Results for β :

> bmse(v[, 11])
[1] 0.003815577
> bmse(v[, 11], ts = TRUE)
[1] 0.007686438
> sqrt(spectrum0(v[, 11], max.length = NULL)$spec / nrow(v))
[1] 0.006172704
> sqrt(spectrum0(v[, 11])$spec / nrow(v)) # max.length = 200
[1] 0.01029148
> bmse(v[, 11], M = 100) # 200 batches of size 100
[1] 0.01092254
> bmse(v[, 11], M = 100, ts = TRUE)
[1] 0.01041768

Results for α:

> bmse(v[,12])
[1] 0.001984824
> bmse(v[, 12], ts = TRUE)
[1] 0.007143383
> sqrt(spectrum0(v[, 12], max.length = NULL)$spec / nrow(v))
[1] 0.003597932
> sqrt(spectrum0(v[, 12])$spec / nrow(v))
[1] 0.006697929
> bmse(v[, 12], M=100)
[1] 0.007033827
> bmse(v[, 12], M = 100, ts = TRUE)
[1] 0.006781224

360

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Convergence and Mixing

• There are many, many “convergence diagnostics” available in the litera-
ture. More are being developed.

• CODA and BOA provide a rich set of choices along with references.
Monahan also has some references.

• The simulation literature is less preoccupied with this; a good example
is C. Alexopoulos and D. Goldsman (2004) “To Batch or Not To Batch,”
ACM Trans. on Modeling and Simulation 14, 76–114.

• Convergence is not the issue, mixing is:

– Suppose you could, possibly at great cost, obtain one draw from the
target distribution and use it to start a chain.

– The chain would then be stationary.

– On the other hand, the conditional chain, given the value of the draw,
is not stationary.

– Mixing conditions deal with how rapidly

sup
A,B
|P(Xn ∈ A,X0 ∈ B)−P(Xn ∈ A)P(X0 ∈ B)| → 0

• If we knew the value of σ2 = Varπ(Xi) and of τ = limNVar(XN) then we
would know how well the chain mixes and how to choose N.

• For independent sampling, N = 10000 is typically sufficient (computa-
tional uncertainty about the posterior mean is 1% of the uncertainty in
the posterior distribution).

361

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Unfortunately we do not know σ2 or τ .

• We can estimate them from one or more sample paths.

• We cannot be certain, by looking at sample paths alone, that the estimates
are in the right ballpark.

• An example:

f (x,y) =
1
2

ϕ(x)ϕ(y)+
1
2

ϕ(x−µ)ϕ(y−µ)

0 5000 10000 15000 20000

−4
−2

0
2

4
6

Index

v[
, 1

]

µ = 3

0 5000 10000 15000 20000

−4
0

2
4

6
8

10

Index

v[
, 1

]

µ = 6

0 5000 10000 15000 20000

−5
0

5
10

Index

v[
, 1

]

µ = 8

0 5000 10000 15000 20000

−4
−2

0
2

4

Index

v[
, 1

]

µ = 9

362

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Outline of Diagnostic Approaches

• Plot the data

• Single chain approaches

– ANOVA on batches

– Comparing beginning batch to end batch

– Reverse chain and look for “out of control”

– Detect how much to discard as “burn in”

– Start far from center to see how quickly effect dissipates

• Multiple chain approaches

– Look for consistency within and between chains

– Use “over-dispersed” starting points

– Can be run in parallel

• Dropping the “burn in:” bias/variance trade-off.

Convergence and Mixing Again

Mixing and convergence are two sides of the same issue:

E[h(X0)g(Xn)] = E[h(X0)E[g(Xn)|X0]]

So mixing behavior such as

E[h(X0)g(Xn)]→ E[h(X0)]E[g(X0)]

is essentially equivalent to

E[g(Xn)|X0]→ E[g(X0)]

363

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Combining MCMC Samplers

• Some samplers may mix well but be very costly.

• Other samplers may be good at one kind of jump and not so good at
others

• Suppose P1 and P2 are two transition kernels with common invariant dis-
tribution π . Then

– P1P2 is a transition kernel with invariant distribution π .

– αP1 +(1−α)P2 is a transition kernel with invariant distribution π

for any α ∈ [0,1].

• For a mixture kernel P = αP1 +(1−α)P2 with 0 < α < 1

– if either P1 or P2 is irreducible, then P is irreducible

– if either P1 or P2 is uniformly ergodic then P is uniformly ergodic.

• Metropolis-Hasting kernels such as ones that

– make an independence proposal from an approximation to the pos-
terior distribution

– propose a value reflected around an axis or through a point

– propose a rotated version of the current state

can often be useful.

• Combinations can be used to improve theoretical properties, such as
make a chain reversible.

364

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Improving Mixing and Convergence

Some possible strategies:

• transforming parameters

• blocking

• auxiliary variables

• heating, alternating, and reweighting

Many basic ideas from optimization also apply:

• make sure problem is reasonably scaled

• make sure problem is well conditioned

• eliminate range constraints where possible

365

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Transformations

• For random walk MH samplers eliminating range constraints is useful.

• For variable at a time samplers, transforming to make variables nearly
uncorrelated helps mixing.

– For a hierarchical model

µi|µ ∼ independent N(µ,σ2)

µ ∼ N(0,1)

with i = 1, . . . ,K, we have

Corr(µi,µ j) = 1/(1+σ
2)

Corr(µi,µ) = 1/
√

1+σ2

These will be close to one if σ2 is small. But for

αi = µi−µ

the parameters α1, . . . ,αK,µ are independent.

• Linear transformations that cause many variables to be updated at once
often make the cost of a single update much higher.

366

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Blocking

• Sometimes several parameters can be updated together as a block.

• Exact sampling of a block is usually only possible if the joint distribution
is related to the multivariate normal distribution.

– Exact block sampling usually improves mixing.

– The cost of sampling a block often increases with the square or cube
of the block size.

• Block sampling with the Metropolis-Hastings algorithm is also possible.

– The rejection probability usually increases with block size.

– The cost of proposals often increases with the square or cube of the
block size

• At times choosing overlapping blocks may be useful

• In some cases some level of blocking may be essential to ensure irre-
ducibility.

367

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Auxiliary Variables

• Suppose we want to sample from π(x). We can expand this to a joint
distribution

π(x,y) = π(x)π(y|x)

on x,y. This may be useful

– if the joint distribution π(x,y) is simple in some way

– if the conditional distribution π(x|y) is simple in some way

• Data augmentation is one example of this.

• If π(x) = h(x)g(x) then it may be useful to take

Y |X = x∼ U[0,g(x)]

Then
π(x,y) = h(x)1[0,g(x)](y)

In particular, if h(x) is constant, then π(x,y) is uniform on

{(x,y) : 0≤ y≤ g(x)}

This is the idea used in rejection sampling.

• The conditional distribution of X |Y = y is uniform on {x : π(x)≥ y}.

• Alternately sampling X |Y and Y |X from these uniform conditionals is
called slice sampling.

• Other methods of sampling from this uniform distribution are possible:

– Random direction (hit-and-run) sampling

– Metropolis-Hastings sampling

• Ratio of uniforms sampling can also be viewed as an auxiliary variable
method.

368

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Tobacco Budworms

• We previously used a latent variable approach to a probit regression
model

Zi =

{
1 if Yi ≥ 0
0 if Yi < 0

Yi|α,β ,x∼ N(α +β (xi− x),1)
α,β ∼ flat non-informative prior distribution

• It is sometimes useful to introduce an additional non-identified parameter
to improve mixing of the sampler.

• One possibility is to add a variance parameter:

Zi =

{
1 if Yi ≥ 0
0 if Yi < 0

Yi|α̃, β̃ ,x∼ N(α̃ + β̃ (xi− x),σ2)

α̃, β̃ ∼ flat non-informative prior distribution

σ
2 ∼ TruncatedInverseGamma(ν0,a0,T)

α = α̃/σ

β = β̃/σ

• Several schemes are possible:

– Generate Y , σ , α̃ , and β̃ from their full conditional distributions.

– Generate σ from its conditional distribution given Y , i.e. integrating
out α̃ and β̃ , and the others from their full conditional distributions.

– Generate Y from it’s conditional distribution given the identifiable α

and β by generating a σ∗ value from the prior distribution; generate
the others from their full conditional distributions.

• Sample code is available in

http://www.stat.uiowa.edu/˜luke/classes/STAT7400/
examples/worms.Rmd

369

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/worms.Rmd
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/worms.Rmd

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Swendsen-Wang Algorithm

• For the Potts model with C colors

π(x) ∝ exp{β ∑
(i, j)∈N

1xi=x j}= ∏
(i, j)∈N

exp{β1xi=x j}

with β > 0. N is the set of neighboring pairs.

• Single-site updating is easy but may mix slowly if β is large.

• Taking Yi j|X = x for (i, j)∈N to be independent and uniform on [0,exp{β1xi=x j}]
makes the joint density

π(x,y) ∝ ∏
(i, j)∈N

1[0,exp{β1xi=x j}](yi j)

– The conditional distribution of X given Y = y is uniform on the pos-
sible configurations.

– If yi j > 1 then xi = x j; otherwise there are no further constraints.
– The nodes can be divided into patches that are constrained to be the

same color.
– The colors of the patches are independent and uniform on the avail-

able colors.

The algorithm that alternates generating Y |X and X |Y was introduced by
Swendsen and Wang (1987).

Y |X X |Y

• For models without an external field this approach mixes much more
rapidly than single-site updating.

• Nott and Green (2004) propose a Bayesian variable selection algorithm
based on the Swendsen-Wang approach.

370

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Hamiltonian Monte Carlo

• Hamiltonian Monte Carlo (HMC) is an auxiliary variable method for
producing a Markov chain with invariant distribution f (θ).

• HMC is also known ad Hybrid Monte Carlo.

• HMC requires that f (θ) be differentiable and that the gradient of log f (θ)
be computable.

• A motivation for the method:

– View θ as the position of an object on a surface, with potential en-
ergy − log f (θ).

– Add a random momentum vector r, with kinetic energy 1
2r · r.

– Compute where the object will be after time T by solving the differ-
ential equation of Hamiltonian dynamics.

– The numerical solution uses a discrete approximation with L steps
of size ε , with T = εL.

• The random momentum values are sampled as independent standard nor-
mals.

• The algorithm produces a Markov chain with invariant density

h(θ ,r) ∝ f (θ)exp
{
−1

2
r · r
}
.

• If the differential equation is solved exactly then the θ ,r pair moves
along contours of the energy surface − logh(θ ,r).

• With discretization this is not exactly true, and Metropolis Hasting step
is used to correct for discretization errors.

• With a good choice of T = εL the algorithm can take very large steps
and mix much better than a random walk Metropolis algorithm or simple
Gibbs sampler.

• ε has to be chosen to be large enough to move a reasonable distance
but small enough to keep the acceptance probability from becoming too
small.

371

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• The basic algorithm:

Given θ 0,ε,L,L ,M
for m = 1 to M do

Sample r ∼ N(0, I)
Set θ̃ , r̃← Leapfrog(θ m−1,r,ε,L)

With probability α = min
{

1, exp{L (θ̃)−1
2 r̃·r̃}

exp{L (θ m−1)−1
2 r0·r0}

}
set θ m← θ̃

Otherwise, set θ m← θ m−1

end for

function Leapfrog(θ ,r,ε,L)
for i = 1 to L do

Set r← (ε/2)∇θL (θ) . half step for r
Set θ ← θ + εr . full step for θ

Set r← (ε/2)∇θL (θ) . another half step for r
end for
return θ ,−r

end function

372

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• The Leapfrog step produces a deterministic proposal (θ̃ , r̃)=Leapfrog(θ ,r).

• It is reversible: (θ ,r) = Leapfrog(θ̃ , r̃)

• It is also satisfies |det∇θ ,rLeapfrog(θ ,r)|= 1.

• Without this property a Jacobian correction would be needed in the ac-
ceptance probability.

• Scaling of the distribution of θ will affect the sampler’s performance; it
is useful to scale so the variation in the ri is comparable to the variation
in the θi.

• Since L gradients are needed for each step the algorithm can be very
expensive.

• Pilot runs are usually used to tune ε and L.

• It is also possible to choose values of ε and L random, independently of
θ and r, before each Leapfrog step

• The No-U-Turn Sampler (NUTS) provides an approach to automatically
tuning ε and L.

• NUTS is the basis of the Stan framework for automate posterior sam-
pling.

• Duane S, Kennedy AD, Pendleton BJ, Roweth D (1987). ”Hybrid Monte
Carlo.” Physics Letters, B(195), 216-222.

• Neal R (2011). ”MCMC for Using Hamiltonian Dynamics.” In S Brooks,
A Gelman, G Jones, M Xiao-Li (eds.), Handbook of Markov Chain
Monte Carlo, p. 113-162. Chapman & Hall, Boca Raton, FL.

• Hoffman M, Gelman A (2012). ”The No-U-Turn Sampler: Adaptively
Setting Path Lengths in Hamiltonian Monte Carlo.” Journal of Machine
Learning Research, 1-30.

• Stan project home page.

• A simple R implementation is available on line.

373

http://mc-stan.org/
http://mc-stan.org/
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/hmc.R

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Pseudo-Marginal Metropolis-Hastings MCMC

The Metropolis-Hastings method using a proposal density q(x,x′) for sam-
pling from a target proportional to f uses the acceptance ratio

A(x,x′) =
f (x′)q(x′,x)
f (x)q(x,x′)

.

• Sometimes the target f is expensive or impossible to compute, but a non-
negative unbiased estimate is available.

• Suppose, after generating a proposal x′, such an estimate y′ of f (x′) is
produced and used in the acceptance ratio

Â(x,x′) =
y′q(x′,x)
yq(x,x′)

.

The previous estimate y for f (x) has to be retained and used.

• This produces a joint chain in in x,y.

• The marginal invariant distribution of the x component has density pro-
portional to f (x).

• To see this, denote the density of the estimate y given x as h(y|x) and
write

Â(x,x′) =
y′h(y′|x′)
yh(y|x)

q(x′,x)h(y|x)
q(x,x′)h(y′|x′)

.

• This is the acceptance ratio for a Metropolis-Hastings chain with target
density yh(y|x). Since y is unbiased, the marginal density of x is∫

yh(y|x)dx = f (x).

This is known as the pseudo-marginal method introduced by Andrieu and
Roberts (2009) extending earlier work of Beaumont (2003).

A number of extensions and generalizations are also available.

374

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Doubly-Intractable Posterior Distributions

For some problems a likelihood for data y is of the form

p(y|θ) = g(y,θ)
Z(θ)

where g(y,θ) is available but Z(θ) is expensive or impossible to evaluate.

The posterior distribution is then

p(θ |y) ∝
g(y,θ)p(θ)

Z(θ)
,

but is again not computable because of the likelihood normalizing constant
Z(θ).

• For a fixed value θ̂ of θ is is useful to write the posterior density as

p(θ |y) ∝ g(y,θ)p(θ)
Z(θ̂)
Z(θ)

,

• Suppose it is possible for a given θ to simulate a draw y∗ from p(y|θ).

• Then an unbiased importance-sampling estimate of p(θ |y) is

p̂(θ |y) = g(y,θ)p(θ)
g(y∗, θ̂)
g(y∗,θ)

since

E

[
g(y∗, θ̂)
g(y∗,θ)

]
=
∫ g(y∗, θ̂)

g(y∗,θ)
p(y∗|θ)dy∗ =

1
Z(θ)

∫
g(y∗, θ̂)dy∗ =

Z(θ̂)
Z(θ)

.

• Generating multiple y∗ samples is also possible.

• Reducing the variance of the estimate generally reduces rejection rates
and improves mixing of the sampler.

375

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Heating and Reweighting

• Let f (x) have finite integral and let fT (x) = f (x)1/T .

• If fT has finite integral then we can run a Markov Chain with invariant
distribution fT

• Increasing T flattens the target density and may lead to a faster mixing
chain—this is called heating.

• Decreasing T leads to a more peaked fT concentrated more around the
global maximum of f .

• Careful choice of a cooling schedule Tn → 0 can produce an inhomo-
geneous chain that converges to the global maximum. This is called
simulated annealing.

• Using a fixed T > 1 can produce a faster mixing chain than T = 1.

• More generally, using a similar but more dispersed, or more easily sam-
pled, density g may produce a faster mixing chain.

• If X1,X2, . . . is a Markov chain with invariant density g, then, under rea-
sonable conditions,

∑Wih(Xi)

∑Wi
→
∫

h(x) f (x)dx∫
f (x)dx

where Wi = f (Xi)/g(Xi).

• This approach can also be used for sensitivity analysis:

– Sample from the primary distribution of interest g.

– Examine how results change for various perturbations f using the
original sample from g and reweighting to f .

– Reusing the sample is a form of common variate use.

• Instead of keeping weights one can resample with probabilities propor-
tional to the weights.

376

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Switching and Parallel Chains

• Suppose f1, . . . , fk are unnormalized densities, a1, . . . ,ak are positive num-
bers, and pi j are transition probabilities on {1, . . . ,k}.

• A sampler on (X , I) can be run as:

– when I = i, run a sampler with invariant distribution fi for K steps.
– Then choose an index J ∈ {1, . . . ,k} with probabilities pi1, . . . , pik.
– With probability

min
{

pJiaJ fJ(X)

piJai fi(X)
,1
}

accept the proposal and set I = J; otherwise keep I = i

• The resulting chain has an invariant distribution with f (x|i) ∝ fi.

• Usually one distribution, say f1, is the primary target distribution and the
others are successively “hotter” alternatives.

• The hottest distribution may allow independent sampling.

• This approach is called simulated tempering.

• Care is needed in choosing ai and pi j to ensure the chain does not get
stuck

• A variant runs k chains in parallel and periodically proposes a permuta-
tion of states, which is accepted with an appropriate probability. This is
called parallel tempering.

• Parallel tempering does not require constants ai; the joint distribution of
the chains has density proportional to f1(x1) · · · fk(xk).

• Some references:

Geyer, C. (1991) “Markov chain Monte Carlo maximum likelihood,”
Computing Science and Statsitics: The 23sr Symposium on the In-
terface, Interface Foundation, 156–153.
Geyer, C. and Thompson, E (1995) “Annealing Markov chain Monte
Carlo with applications to ancestral inference,” JASA, 909–920.
Marinari, E. and Parisi, G. (1992) “Simulated tempering: a new
Monte Carlo scheme,” Europhysics letters, 451–458.

377

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Regeneration and MCM

• A process X1,X2, . . . is regenerative if there exists a sequence of random
variables T1 ≤ T2 ≤ T3 . . . such that

– The Ti form a (possibly delayed) renewal process

– The tour lengths and tours

(Ti+1−Ti,XTi+1,XTi+2, . . . ,XTi+1)

are independent and identically distributed.

• Suppose Xn is regenerative with stationary distribution π . Let T0 = 0,

Ni = Ti−Ti−1

Yi =
Ti

∑
j=Ti−1+1

h(X j)

If E[|Yi|]< ∞ and E[Ni]< ∞ then

θ̂n =
∑

n
i=1Yi

∑
n
i=1 Ni

=
Y
N
→ θ = Eπ [h(X)]

If E[Y 2
i]< ∞ and E[N2

i]< ∞ then

√
n(θ̂n−θ)→ N(0,τ)

and τ can be estimated by the variance estimation formula for a ratio
estimator:

τ̂ =
1
n ∑(Yi− θ̂nNi)

2

N2

• For a regenerative process we can simulate tours independently and in
any order.

378

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• An irreducible discrete state space Markov chain is regenerative with the
Ti corresponding to the hitting times of any chosen state.

• Irreducible general state space chains are also regenerative.

• Finding regeneration times can be hard and may involve using auxiliary
variables.

• If we have an approximate envelope h available then

– we and can use Metropolized rejection sampling for a target distri-
bution f

– every time we get f (Xi) ≤ h(Xi) then the next proposal will be ac-
cepted

– so every step with f (Xi)≤ h(Xi) is a regeneration time.

• Periodically using a Metropolized rejection step is the simplest way to
introduce regeneration in MCMC.

• How well it works depends on the quality of the envelope and the other
sampler it is used in conjunction with.

• Other methods are available for identifying regeneration points.

• Regenerative analysis does not make a sampler better: poorly mixing
samplers have tour length distributions with long tails.

379

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Transdimensional MCMC

• A number of problems have parameter spaces that are unions of spaces
of different dimensions:

– model selection problems

– finite mixture models with unknown number of components

– model-based clustering

– partitioned regression models

– spline models with unknown number of knots

• For each of these the parameter space can be viewed as taking the form

Θ =
⋃

k∈K
(Θk×{k})

• A Bayesian formulation usually involves specifying

– a prior on k

– a conditional prior, given k, on the parameters in Θk

An MCMC approach needs a way of moving between models.

• Several approaches are available

– integrating out θk (sometimes viable)

– reversible jump sampler

– birth and death sampler

– other special purpose samplers

• A useful review paper by Sisson appeared in JASA, September 2005.

380

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Reversible Jump MCMC

• In Bayesian model selection problems we have

– a set of M models with parameter spaces Θ1, . . . ,ΘM

– a set of likelihoods fi(x|θi) with θi ∈Θi

– conditional prior distributions given the model π(θi|i)
– prior probabilities π(i) on the models

• The posterior probabilities of the models are proportional to

π(i)
∫

Θi

fi(x|θi)π(θi|i)dθi

The odds of model i to model j can be written as∫
Θi

fi(x|θi)π(θi|i)dθi∫
Θ j

f j(x|θ j)π(θ j| j)dθ j

π(i)
π(j)

= Bi j(x)
π(i)
π(j)

Bi j(x) is called the Bayes factor for model i against model j.

• One computational option is to run separate samplers for each model and
estimate the normalizing constants.

• Another option is to run a single sampler that moves both within and
between models.

• To move between models we need a proposal distribution Qi j(u,dv) for
proposing a value v in model j when currently at u in model i. The
proposal is accepted with probability

αi j(u,v) = min
{

π j(dv|x)Q ji(v,du)
πi(du|x)Qi j(u,dv)

,1
}
= min

{
ri j(u,v),1

}
where πk(dψ|x) = π(k) fk(x|ψ)π(ψ|k)dψ .

• With care the proposal for going from a larger model to a smaller one
can be chosen to be deterministic.

• This is the reversible jump sampler of Green (1995).

381

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

A Simple Example: Normal Means

Suppose X1,X2 are independent.

Model 1: X1,X2 ∼ N(µ,1), µ ∼ N(0,b2).

Model 2: X1 ∼ N(µ1,1), X2 ∼ N(µ2,1), µi ∼ N(0,b2) and independent.

The two models are assumed equally likely a priori.

The jump proposals:

• To move from 1 to 2: Generate µ1 ∼ N(µ,1) and set µ2 = 2µ−µ1.

• To move from 2 to 1 set µ = (µ1 +µ2)/2.

Let ϕ(z) be the standard normal density, and let

r12(µ,µ1,µ2) =
1
2ϕ(x1−µ1)ϕ(x2−µ2)b−1ϕ(µ1/b)dµ1b−1ϕ(µ2/b)dµ2

1
2ϕ(x1−µ)ϕ(x2−µ)b−1ϕ(µ/b)dµϕ(µ1−µ)dµ1

=
ϕ(x1−µ1)ϕ(µ1/b)ϕ(x2−µ2)ϕ(µ2/b)
bϕ(x1−µ)ϕ(x2−µ)ϕ(µ/b)ϕ(µ1−µ)

dµ2

dµ

=
2
b

ϕ(x1−µ1)ϕ(µ1/b)ϕ(x2−µ2)ϕ(µ2.b)
ϕ(x1−µ)ϕ(x2−µ)ϕ(µ/b)ϕ(µ1−µ)

Then

α12(µ,µ1,µ2) = min(r12(µ,µ1,µ2),1)
α21(µ1,µ2,µ) = min(1/r12(µ,µ1,µ2),1)

382

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

R code to implement a within-model Gibbs step followed by a jump proposal:

rj <- function(m, N, x1=1, x2=-1, b=1) {
lr12 <- function(m, m1, m2)

log(2/b) - 0.5 * ((x1-m1)ˆ2 + (m1/b)ˆ2 + (x2-m2)ˆ2 + (m2/b)ˆ2) +
0.5 * ((x1-m)ˆ2 + (x2-m)ˆ2 + (m/b)ˆ2 + (m1-m)ˆ2)

xbar <- (x1 + x2) / 2
v <- matrix(nrow=N, ncol=3)
I <- 1
m <- m1 <- m2 <- 0
for (i in 1:N) {

if (I == 1) {
m <- rnorm(1, xbar * bˆ2 / (1/2 + bˆ2) , b / sqrt(1 + 2 * bˆ2))
m1 <- rnorm(1, m)
m2 <- 2 * m - m1
if (log(runif(1)) < lr12(m, m1, m2)) I <- 2

}
else {

m1 <- rnorm(1, x1 * bˆ2 / (1 + bˆ2), b / sqrt(1 + bˆ2))
m2 <- rnorm(1, x2 * bˆ2 / (1 + bˆ2), b / sqrt(1 + bˆ2))
m <- (m1 + m2)/2
if (log(runif(1)) < -lr12(m, m1, m2)) I <- 1

}
if (I == 1) v[i,] <- c(1, m, m)
else v[i,] <- c(2, m1, m2)

}
v

}

> v <- rj(0, 10000, x1 = 2, x2 = -2, b = 1)
> mean(ifelse(v[, 1] == 1, 1, 0))
[1] 0.1248
> v <- rj(0, 10000, x1 = 2, x2 = -2, b = 2)
> mean(ifelse(v[, 1] == 1, 1, 0))
[1] 0.0668
> v <- rj(0, 10000, x1 = 2, x2 = -2, b = 20)
> mean(ifelse(v[, 1] == 1, 1, 0))
[1] 0.2112
> v <- rj(0, 10000, x1 = 2, x2 = -2, b = 100)
> mean(ifelse(v[, 1] == 1, 1, 0))
[1] 0.5733
> v<-rj(0, 10000, x1 = 2,x2 = -2, b = 200)
> mean(ifelse(v[, 1] == 1, 1, 0))
[1] 0.7169

383

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

The code is available on line.

384

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/rj.R

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Alternate Approach: Mixed Distributions

• We can view this as a single model with means µ1,µ2 and a prior distri-
bution that says

– with probability 1/2 the means are equal and the common value has
a N(0,b2) distribution

– with probability 1/2 the means are unequal and drawn independently
from a N(0,b2) distribution.

• The distribution of µ2|X1,X2,µ1 is a mixed discrete-continuous distribu-
tion such that

P(µ2 = µ1|x1,x2,µ1) =
1
2ϕ(x2−µ1)

1
2ϕ(x2−µ1)+

1
2

1√
1+b2

ϕ(x2/
√

1+b2)

=

√
1+b2ϕ(x2−µ1)√

1+b2ϕ(x2−µ1)+ϕ(x2/
√

1+b2)

and
µ2|x1,x2,µ1,µ2 6= µ1 ∼ N(x2b2/(1+b2),b2/(1+b2))

• The conditional distribution of µ1|Y1,Y2,µ2 is analogous.

• The Gibbs sampler can therefore be used directly

• Metropolis-Hastings methods can also be used if care is taken in defining
densities.

• With more parameters a similar approach can be used to sample pairs of
parameters where the distribution can consist of

– a discrete component
– a one dimensional component
– a two dimensional component

• Transformations can again help: if we use

θ1 = µ1 +µ2

θ2 = µ1−µ2

then

385

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

– θ1,θ2 are independent under both prior and posterior distributions

– θ1 has a continuous posterior distribution

– θ2 has a mixed posterior distribution with P(θ2 = 0|X)> 0.

• Code is available on line.

386

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/mx.R

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Birth and Death MCMC

• A number of models have parameters that are point processes:

– support set for finite mixture models

– knot set for spline models

• Point process models can be sampled by a continuous time Markov pro-
cess, called a spatial birth and death process.

• A set of points y = {y1, . . . ,yn} changes by

– births that add a point: y→ y∪{ξ}
– deaths that remove a point: y→ y\yi

• Births occur at a rate

b(y,ξ) = β (y)b̃(y,ξ)

with β (y) =
∫

b(y,ξ)dξ

• The points in a set y= {y1, . . . ,yn} die independently with rates d(y\{yi},yi).

• The total death rate is δ (y) = ∑
n
i=1 d(y\{yi},yi)

387

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Suppose we wish to simulate a point process with density h(y) with re-
spect to an inhomogeneous Poisson process with rate λ (x).

• A spatial birth and death process will have this point process as invariant
distribution if it satisfies the detailed balance equations

h(y)b(y,ξ) = h(y∪{ξ})λ (ξ)d(y,ξ)

• Usual approach:

– pick a reasonable birth rate function

– solve for the required death rate

• The algorithm: starting with a set of points y

1. wait for an amount of time exponentially distributed with rate β (y)+
δ (y).

2. at that time, a birth occurs with probability β (y)/(β (y)+δ (y)).

3. If a birth occurs, generate the location of the new point ξ from
b̃(y,ξ).

4. If a death occurs, chose the point to die with probabilities propor-
tional to d(y\{yi},yi)

• The idea is due to Ripley (1977) and Preston (1977).

• Stephens (2001) introduced a variation for Bayesian inference for finite
mixture models.

• Continuous time data for pure jump processes can be represented as the
sequence of states and their waiting times.

• Sample path averages are time-weighted averages.

• An alternative is to sample at a discrete grid of time points.

• Some notes:

1. There are no rejections. Instead, some points die very quickly.

2. It may be useful to add move steps that pick one point to possibly
move based on, say, a Metropolis-Hastings proposal.

388

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Normal Mixture Models

• A normal mixture model assumes that X1, . . . ,Xn are independent draws
from the density

f (x|K,µ,σ , p) =
K

∑
i=1

pi
1
σi

ϕ

(
x−µi

σi

)
with ϕ the standard normal density and p1 + · · ·+ pK = 1.

• A possible prior distribution for K, p,µ,σ can be specified as

K ∼ Poisson(λ),conditioned on 1≤ K ≤ Kmax

p|K ∼ Dirichlet(α, . . . ,α)

σ
2
i |K, p ind∼ IG(a,b)

µi|K, p,σ ind∼ N(m,c)

A more elaborate formulation might put priors on some of the hyperpa-
rameters.

• If we add an auxilliary variable v, independent of K, p,σ ,µ , with

v|K, p,σ ,µ ∼ Gamma(Kα,1)

and set wi = vpi, then

wi|K,σ ,µ
ind∼ Gamma(α,1)

• The prior distribution of K,w,σ2,µ is an inhomogeneous Poisson pro-
cess on R3 with rate function

λ (µ,σ ,w) = λ ×Gamma density for w

× Inverse Gamma density for σ
2

×Normal density for µ|σ

and pi = wi/∑
K
j=1 w j, conditioned on 1≤ K ≤ Kmax.

389

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• The posterior distribution has a density

h(K,µ,σ ,w) ∝ 1[1,Kmax](K)
n

∏
j=1

f (xi|K,µ,σ , p)

with respect to the Poisson process.

• Code is available on line.

390

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/bdnmix.R

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Approximate Bayesian Computation (ABC)

• All approaches to posterior sampling so far have required computing the
likelihood function f (x|θ).

• For some problems this is not possible, but it is possible to simulate from
f (·|θ).

• A simple approach:

1. draw θ ∗ from the prior distribution

2. run the model to simulate x∗ from f (x|θ ∗)
3. if x∗ is close to the observed x then keep θ ∗; otherwise, go back to

step (1).

• An MCMC variant of this is also used and can lead to higher acceptance
rates.

• Closeness might be measured as d(x,x∗) ≤ ε for some distance d and
tolerance ε .

• It the tolerance is small enough the distribution of an accepted θ ∗ should
be close to the posterior distribution f (θ |x).

• If the tolerance is too small the acceptance probability will be too low.

• This problem increases very quickly with the dimension of x.

• If a low dimensional sufficient statistic is available then the distance can
be based on the sufficient statistic.

• Generally sufficient statistics are not available in problems where ABC
is needed.

• If a modest number of statistics can be chosen that are nearly sufficient
then the conditional distribution given these statistics may not be too far
from the full posterior distribution.

• Much recent literature has explored ways of selecting a suitable set of
conditioning statistics.

391

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Another direction of work explores the use of sequential Monte Carlo,
and adaptive sequential Monte Carlo methods, in the ABC context (Sis-
son, Fan, and Tanaka, 2007

• The Wikipedia entry provides a good introduction and references.

392

http://www.pnas.org/content/104/6/1760.full
http://www.pnas.org/content/104/6/1760.full
http://en.wikipedia.org/wiki/Approximate_Bayesian_computation

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Other MCMC and Related Approaches

• There are many other approaches and ideas.

– Particle filters

– Umbrella sampling

– Dynamic reweighting

– Adaptive MCMC (Christophe Andrieu, “Annotated Bibliography:
Adaptive Monte Carlo Methods,” The ISBA Bulletin 15(1), March
2008; http://www.bayesian.org/bulletin/0803.pdf)

– Special issue on adaptive Monte Carlo, Statistics and Computing,
December 2008.

– Sequential Importance Sampling

– . . .

• Several book length treatments are available:

– Gamerman and Lopes (2006)

– Robert and Casella (2004)

– Chen, Shao, and Ibrahim (2000)

– Liu (2001)

– Brooks, Gelman, Jones, and Meng (2011)

among a number of others.

393

http://www.bayesian.org/bulletin/0803.pdf

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Perfect Sampling and Coupling From The Past

• Suppose π is a distribution on E = {1, . . . ,M} and P is an irreducible,
aperiodic transition matrix with invariant distribution π .

• Let φ(u, i) be the inverse CDF of P(i, ·), so if U ∼ U[0,1] then φ(U, i)
has distribution P(i, ·).

• Suppose U1,U2, . . . are independent U[0,1] and suppose

Xi+1 = φ(Ui,Xi)

for i =−1,−2,

• For this chain started in the infinite past X0 ∼ π .

• Can we figure out what X0 is without going infinitely far into the past?

...

...

394

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• For T < 0 and k ∈ E define

X (T,k)
T = k

X (T,k)
i+1 = φ(Ui,X

(T,k)
i)

for i = T,T +1, . . . ,−2,−1.

– If X (T,k)
0 is the same state for all initial states k, say X (T,k)

0 = j ∈ E,
then X0 = j. The chains are said to have coupled.

– With probability one there exists a finite T < 0 such that all chains
starting at T will have coupled by time zero.

The coupling from the past (CFTP) algorithm:

– Start with an initial T and determine whether all chains have coupled
by time zero. If so, return the common value at time zero.

– If not, double T and repeat.

The CFTP algorithm was introduced by Propp and Wilson (1996).

395

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• If φ(u, i) ≤ φ(u, j) for every u and every i ≤ j then it is sufficient to
consider the minimal and maximal chains X (T,1)

i and X (T,M)
i since

X (T,1)
i ≤ X (T,k)

i ≤ X (T,M)
i

for all k ∈ E = {1, . . . ,M}. If the minimal and maximal chains have
coupled then all chains have coupled.

• This idea can be extended to partially ordered state spaces with a minimal
and maximal value.

• Extensions to some continuous state space problems have been devel-
oped.

• CFTP samplers for a number of interesting distributions in physics ap-
plications have been found.

• Progress in statistics is still limited to somewhat artificial examples.

• One issue is bias: Truncating the backward search for T will change the
distribution of X0. Variations are available to address this.

396

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Image reconstruction with Ising Prior

• States are partially ordered by pixel with “black” > “white”.

• All “white” is minimal, all “black” is maximal.

A CFTP version of the vectorized Ising model sampler:

simGroupU <- function(m, l2, l1, beta, which, u) {
pp2 <- l2 * exp(beta * nn(m, 2))
pp1 <- l1 * exp(beta * nn(m, 1))
pp <- pp2 / (pp2 + pp1)
ifelse(u[which] < pp[which], 2, 1)

}

simImgVU <- function(m, img, beta, p, u) {
white <- outer(1:nrow(m), 1:ncol(m), FUN=‘+‘) %% 2 == 1
black <- ! white
if (is.null(img)) {

l2 <- 1
l1 <- 1

}
else {

l2 <- ifelse(img == 2, p, 1 - p)
l1 <- ifelse(img == 1, p, 1 - p)

}
m[white] <- simGroupU(m, l2, l1, beta, white, u)
m[black] <- simGroupU(m, l2, l1, beta, black, u)
m

}

isingCFTP <- function(img, N, d, beta, p) {
u <- array(runif(d * d * N), c(d, d, N))
repeat {

m1 <- matrix(1, d, d)
m2 <- matrix(2, d, d)
for (i in 1:dim(u)[3]) {

m1 <- simImgU(m1, img, beta, p, u[,,i])
m2 <- simImgU(m2, img, beta, p, u[,,i])

}
if (identical(m1, m2)) return (m1)
u <- array(c(array(runif(d * d * N), c(d, d, N)), u),

c(d, d, 2 * N))

397

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

N <- 2 * N
}

}

398

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

It takes about one minute for 10 images:

> img4<-array(0,c(64,64,10))
> system.time(for (i in 1:10)

img4[,,i] <- isingCFTP(img, 10, 64, 0.9, 0.7))
user system elapsed

72.019 0.134 72.410
> image(apply(img4,c(1,2),mean), axes=FALSE)

and results seem reasonable:

Performance deteriorates as

• dimension increases

• β increases

For β = 1.2 it took about 10 minutes to generate 10 images (64×64)

399

Graphical Methods and
Visualization

• There are two kind of graphics used in data analysis:

– static graphics

– dynamic, or interactive, graphics

There is overlap:

– interactive tools for building static graphs

• Graphics is used for several purposes

– exploration and understanding

∗ of raw data
∗ of residuals
∗ of other aspects of model fit, misfit

– displaying and communicating results

• Historically, display and communication usually used static graphics

• Dynamic graphs were used mostly for exploration

• With digital publishing, dynamic graphics are also used for communica-
tion:

– 2014 as hottest year on record on Bloomberg

– Subway crime on New York Daily News

– Who was helped by Obamacare on New York Times’ Upshot

400

http://www.bloomberg.com/graphics/2014-hottest-year-on-record/
http://www.nydailynews.com/new-york/nyc-crime/daily-news-analysis-reveals-crime-rankings-city-subway-system-article-1.1836918
http://www.nytimes.com/interactive/2014/10/29/upshot/obamacare-who-was-helped-most.html?_r=0&abt=0002&abg=0

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

– Paths to the White House on Upshot

– LA Times years in graphics: 2014 and 2015

401

http://www.nytimes.com/interactive/2012/11/02/us/politics/paths-to-the-white-house.html?_r=2&
http://graphics.latimes.com/2014-in-graphics/
http://graphics.latimes.com/2015-in-graphics/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Historical Graphics

• Easy construction of graphics is highly computational, but a computer
isn’t necessary.

• Many graphical ideas and elaborate statistical graphs were creates in the
1800s.

• Some classical examples:

– Playfair’s The Commercial and Political Atlas and Statistical Bre-
viary introduced a number of new graphs including

∗ a bar graph
∗ a pie chart

– Minard developed many elaborate graphs, some available as thumb-
nail images, including an illustration of Napoleon’s Russia cam-
paign

– Florence Nightingale uses a polar area diagram to illustrate causes
of death among British troops in the Crimean war.

– John Snow used a map (higher resolution) to identify the source of
the 1854 London cholera epidemic. An enhanced version is avail-
able on http://www.datavis.ca/. A short movie has re-
cently been produced.

– Statistical Atlas of the US from the late 1800s shows a number of
nice examples. The complete atlases are also available.

– Project to show modern data in a similar style.

• Some references:

– Edward Tufte (1983), The Visual Display of Quantitative Informa-
tion.

– Michael Friendly (2008), “The Golden Age of Statistical Graphics,”
Statistical Science 8(4), 502-535

– Michael Friendly’s Historical Milestones on http://www.datavis.
ca/

– A Wikipedia entry

402

http://en.wikipedia.org/wiki/File:Playfair_Barchart.gif
http://en.wikipedia.org/wiki/File:Playfair-piechart.jpg
http://www.datavis.ca/gallery/minbib.php
http://www.datavis.ca/gallery/minbib/
http://www.datavis.ca/gallery/minbib/
http://en.wikipedia.org/wiki/File:Minard.png
http://en.wikipedia.org/wiki/File:Minard.png
http://en.wikipedia.org/wiki/File:Nightingale-mortality.jpg
http://www.ph.ucla.edu/epi/snow/snowmap1.pdf
http://www.ph.ucla.edu/epi/snow/snowmap1_1854_lge.htm
http://www.datavis.ca/gallery/historical.php#snow
http://www.datavis.ca/
http://www.snowthemovie.com/
http://www.handsomeatlas.com/
http://memory.loc.gov/ammem/gmdhtml/census.html
http://projects.flowingdata.com/atlas/
http://www.datavis.ca/gallery/historical.php
http://www.datavis.ca/
http://www.datavis.ca/
http://en.wikipedia.org/wiki/Information_graphics#History

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Graphics Software

• Most statistical systems provide software for producing static graphics

• Statistical static graphics software typically provides

– a variety of standard plots with reasonable default configurations for

∗ bin widths
∗ axis scaling
∗ aspect ratio

– ability to customize plot attributes

– ability to add information to plots

∗ legends
∗ additional points, lines
∗ superimposed plots

– ability to produce new kinds of plots

Some software is more flexible than others.

• Dynamic graphical software should provide similar flexibility but often
does not.

• Non-statistical graph or chart software often emphasizes “chart junk”
over content

– results may look pretty

– but content is hard to extract

– graphics in newspapers and magazines and advertising

– Some newspapers and magazines usually have very good informa-
tion graphics

∗ New York Times
∗ Economist
∗ Guardian
∗ LA Times

403

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Chart drawing packages can be used to produce good statistical graphs
but they may not make it easy.

• They may be useful for editing graphics produced by statistical software.
NY Times graphics creators often

– create initial graphs in R

– enhance in Adobe Illustrator

404

http://blog.revolutionanalytics.com/2010/12/data-visualization-practices-at-the-new-york-times.html

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Graphics in R and S-PLUS

• Graphics in R almost exclusively static.

• S-PLUS has some minimal dynamic graphics

• R can work with ggobi

• Dynamic graphics packages available for R include

– rgl for 3D rendering and viewing

– iplots Java-based dynamic graphics

– a number of others in various stages of development

• Three mostly static graphics systems are widely used in R:

– standard graphics (graphics base package)

– lattice graphics (trellis in S-PLUS) (a standard recommended
package)

– ggplot graphics (available as ggplot2 from CRAN)

Minimal interaction is possible via the locator command

• Lattice is more structured, designed for managing multiple related graphs

• ggplot represents a different approach based on Wilkinson’s Grammar
of Graphics.

405

http://ggplot2.org/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some References

• Deepayan Sarkar (2008), Lattice: Multivariate Data Visualization with
R, Springer; has a supporting web page.

• Hadley Wickham (2009), ggplot: Elegant Graphics for Data Analy-
sis, Springer; has a supporting wep page.

• Paul Murrell (2011), R Graphics, 2nd ed., CRC Press; has a supporting
web page.

• Josef Fruehwald’s introduction to ggplot.

• Vincent Zoonekynd’s Statistics with R web book; Chapter 3 and Chapter
4 are on graphics.

• Winston Chang (2013), R Graphics Cookbook, O’Reilly Media.

• The Graphics task view lists R packages related to graphics.

406

http://www.springerlink.com.proxy.lib.uiowa.edu/content/978-0-387-75968-5/#section=159855&page=1
http://www.springerlink.com.proxy.lib.uiowa.edu/content/978-0-387-75968-5/#section=159855&page=1
http://lmdvr.r-forge.r-project.org/
http://www.springerlink.com.proxy.lib.uiowa.edu/content/978-0-387-98140-6/#section=439699&page=1
http://www.springerlink.com.proxy.lib.uiowa.edu/content/978-0-387-98140-6/#section=439699&page=1
http://had.co.nz/ggplot2/
http://www.stat.auckland.ac.nz/~paul/RG2e/
http://www.ling.upenn.edu/~joseff/rstudy/summer2010_ggplot2_intro.html
http://zoonek2.free.fr/UNIX/48_R/all.html
http://zoonek2.free.fr/UNIX/48_R/03.html
http://zoonek2.free.fr/UNIX/48_R/04.html
http://zoonek2.free.fr/UNIX/48_R/04.html
http://cran.r-project.org/web/views/Graphics.html

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some Courses

• Graphics lecture in Thomas Lumley’s introductory computing for bio-
statistics course.

• Ross Ihaka’s graduate course on computational data analysis and graph-
ics.

• Ross Ihaka’s undergraduate course on information visualization.

• Deborah Nolan’s undergraduate course Concepts in Computing with
Data.

• Hadley Wickham’s Data Visualization course

407

http://faculty.washington.edu/tlumley/b514/b514l2.pdf
http://faculty.washington.edu/tlumley/b514/lectures.html
http://faculty.washington.edu/tlumley/b514/lectures.html
http://www.stat.auckland.ac.nz/~ihaka/courses/787/
http://www.stat.auckland.ac.nz/~ihaka/courses/787/
http://www.stat.auckland.ac.nz/~ihaka/courses/120/
http://www.stat.berkeley.edu/~nolan/stat133/Fall05/indexF05.html
http://www.stat.berkeley.edu/~nolan/stat133/Fall05/indexF05.html
http://had.co.nz/stat645/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

A View of R Graphics

postscript pdf tikzDevice X11 Windows Quartz

grDevices

graphics grid

lattice ggplot2

408

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Graphics Examples

• Code for Examples in the remainder of this section is available on line

• Many examples will be from W. S. Cleveland (1993), Visualizing Data
and N. S. Robbins (2004), Creating More Effective Graphs.

409

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/graphex.R

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Plots for Single Numeric Variables

Dot Plots

This uses Playfair’s city population data available in the data from Cleveland’s
Visualizing Data book:

Playfair <-
read.table("http://www.stat.uiowa.edu/˜luke/classes/STAT7400/examples/Playfair")

• Useful for modest amounts of data

• Particularly useful for named values.

• Different sorting orders can be useful.

• Standard graphics:

dotchart(structure(Playfair[,1],names=rownames(Playfair)))
title("Populations (thousands) of European Cities, ca. 1800")

Edinburgh
Stockholm
Florence
Genoa
Turin
Warsaw
Copenhagen
Lisbon
Palermo
Madrid
Berlin
Rome
Petersburgh
Venice
Dublin
Amsterdam
Moscow
Vienna
Naples
Paris
Constantinople
London

200 400 600 800 1000

Populations (thousands) of European Cities, ca. 1800

410

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Lattice uses dotplot.

library(lattice)
dotplot(rownames(Playfair) ˜ Playfair[,1],

main = "Populations (thousands) of European Cities, ca. 1800",
xlab = "")

Populations (thousands) of European Cities, ca. 1800

Amsterdam

Berlin

Constantinople

Copenhagen

Dublin

Edinburgh

Florence

Genoa

Lisbon

London

Madrid

Moscow

Naples

Palermo

Paris

Petersburgh

Rome

Stockholm

Turin

Venice

Vienna

Warsaw

200 400 600 800 1000

411

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

To prevent sorting on names need to convert names to an ordered factor.

dotplot(reorder(rownames(Playfair), Playfair[,1]) ˜ Playfair[,1],
main = "Populations (thousands) of European Cities, ca. 1800",
xlab = "")

Populations (thousands) of European Cities, ca. 1800

Edinburgh

Stockholm

Florence

Genoa

Turin

Warsaw

Copenhagen

Lisbon

Palermo

Madrid

Berlin

Rome

Petersburgh

Venice

Dublin

Amsterdam

Moscow

Vienna

Naples

Paris

Constantinople

London

200 400 600 800 1000

412

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• ggplot graphics

library(ggplot2)
qplot(Playfair[,1], reorder(rownames(Playfair), Playfair[,1]),

main = "Populations (thousands) of European Cities, ca. 1800",
xlab = "", ylab = "")

Populations (thousands) of European Cities, ca. 1800

Edinburgh

Stockholm

Florence

Genoa

Turin

Warsaw

Copenhagen

Lisbon

Palermo

Madrid

Berlin

Rome

Petersburgh

Venice

Dublin

Amsterdam

Moscow

Vienna

Naples

Paris

Constantinople

London

200 400 600 800 1000

413

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

More Plots for Single Numeric Variables

Bar Charts

An alternative to a dot chart is a bar chart.

• These are more commonly used for categorical data

• They use more “ink” for the same amount of data

• Standard graphics provide barplot:

barplot(Playfair[,1],names = rownames(Playfair),horiz=TRUE)

This doesn’t seem to handle the names very well.

• Lattice graphics use barchart:

barchart(reorder(rownames(Playfair), Playfair[,1]) ˜ Playfair[,1],
main = "Populations (thousands) of European Cities, ca. 1800",
xlab = "")

• ggplot graphics:

p <- qplot(weight = Playfair[,1],
x = reorder(rownames(Playfair), Playfair[,1]),
geom="bar")

p + coord_flip()

414

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Density Plots

A data set on eruptions of the Old Faithful geyser in Yellowstone:

library(MASS)
geyser2 <- data.frame(as.data.frame(geyser[-1,]),

pduration=geyser$duration[-299])

• Standard graphics:

plot(density(geyser2$waiting))
rug(jitter(geyser2$waiting, amount = 1))

40 60 80 100 120

0.
00

0
0.

01
0

0.
02

0
0.

03
0

density(x = geyser2$waiting)

N = 298 Bandwidth = 4.005

D
en

si
ty

415

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Lattice graphics:

densityplot(geyser2$waiting)

geyser2$waiting

D
en

si
ty

0.00

0.01

0.02

0.03

40 60 80 100 120

416

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• ggplot2 graphics:

qplot(waiting,data=geyser2,geom="density") + geom_rug()

waiting

..d
en

si
ty

..

0.000

0.005

0.010

0.015

0.020

0.025

0.030

50 60 70 80 90 100

417

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Quantile Plots

• Standard graphics

data(precip)
qqnorm(precip, ylab = "Precipitation [in/yr] for 70 US cities")

• Lattice graphics

qqmath(˜precip, ylab = "Precipitation [in/yr] for 70 US cities")

• ggplot graphics

qplot(sample = precip, stat="qq")

418

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Other Plots

Other options include

• Histograms

• Box plots

• Strip plots; use jittering for larger data sets

419

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Plots for Single Categorical Variables

• Categorical data are usually summarized as a contingency table, e.g. us-
ing the table function.

• A little artificial data set:

pie.sales <- c(0.26, 0.125, 0.3, 0.16, 0.115, 0.04)
names(pie.sales) <- c("Apple", "Blueberry", "Cherry",

"Boston Cream", "Vanilla Cream",
"Other")

Pie Charts

• Standard graphics provides the pie function:

pie(pie.sales)

Apple

Blueberry

Cherry

Boston Cream

Vanilla Cream

Other

• Lattice does not provide a pie chart, but the Lattice book shows how to
define one.

• ggplot can create pie charts as stacked bar charts in polar coordinates:

420

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

qplot(x = "", y = pie.sales, fill = names(pie.sales)) +
geom_bar(width = 1, stat = "identity") + coord_polar(theta = "y")

df <- data.frame(sales = as.numeric(pie.sales), pies = names(pie.sales))
ggplot(df, aes(x = "", y = sales, fill = pies)) +

geom_bar(width = 1, stat = "identity") +
coord_polar(theta = "y")

This could use some cleaning up of labels.

421

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Bar Charts

• Standard graphics:

barplot(pie.sales)

Apple Blueberry Cherry Vanilla Cream Other

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

– One label is skipped to avoid over-printing

– vertical or rotated text might help.

• Lattice:

barchart(pie.sales)

• ggplot:

qplot(x = names(pie.sales), y = pie.sales,
geom = "bar", stat = "identity")

This orders the categories alphabetically.

422

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Plotting Two Numeric Variables

Scatter Plots

• The most important form of plot.

• Not as easy to use as one might think.

• Ability to extract information can depend on aspect ratio.

• Research suggests aspect ratio should be chosen to center absolute slopes
of important line segments around 45 degrees.

• A simple example: river flow measurements.

river <-
scan("http://www.stat.uiowa.edu/˜luke/classes/STAT7400/examples/river")

plot(river)
xyplot(river˜seq_along(river),panel=function(x,y,...) {

panel.xyplot(x,y,...)
panel.loess(x,y,...)})

plot(river,asp=4)
plot(river)
lines(seq_along(river),river)
plot(river, type = "b")

• Some more Lattice variations

xyplot(river˜seq_along(river), type=c("p","r"))
xyplot(river˜seq_along(river), type=c("p","smooth"))

• Some ggplot variations

qplot(seq_along(river), river)
qplot(seq_along(river), river) + geom_line()
qplot(seq_along(river), river) + geom_line() + stat_smooth()

• There is not always a single best aspect ratio.

data(co2)
plot(co2)
title("Monthly average CO2 concentrations (ppm) at Mauna Loa Observatory")

423

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Handling Larger Data Sets

An artificial data set:

x <- rnorm(10000)
y <- rnorm(10000) + x * (x + 1) / 4
plot(x,y)

• Overplotting makes the plot less useful.

• Reducing the size of the plotting symbol can help:

plot(x,y, pch=".")

• Another option is to use translucent colors with alpha blending:

plot(x,y, col = rgb(0, 0, 1, 0.1, max=1))

• Hexagonal binning can also be useful:

plot(hexbin(x,y)) # standard graphics
hexbinplot(y ˜ x) # lattice
qplot(x, y, geom = "hex") # ggplot

424

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Plotting a Numeric and a Categorical Variable

Strip Charts

• Strip charts can be useful for modest size data sets.

stripchart(yield ˜ site, data = barley, met) # standard
stripplot(yield ˜ site, data = barley) # Lattice
qplot(site, yield, data = barley) # ggplot

• Jittering can help reduce overplotting.

stripchart(yield ˜ site, data = barley, method="jitter")
stripplot(yield ˜ site, data = barley, jitter.data = TRUE)
qplot(site, yield, data = barley, position = position_jitter(w = 0.1))

Box Plots

Box plots are useful for larger data sets:

boxplot(yield ˜ site, data = barley) # standard
bwplot(yield ˜ site, data = barley) # Lattice
qplot(site, yield, data = barley, geom = "boxplot") # ggplot

425

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Density Plots

• One approach is to show multiple densities in a single plot.

• We would want

– a separate density for each site

– different colors for the sites

– a legend linking site names to colors

– all densities to fit in the plot

• This can be done with standard graphics but is tedious:

with(barley, plot(density(yield[site == "Waseca"])))
with(barley, lines(density(yield[site == "Crookston"]), col = "red"))
...

• Lattice makes this easy using the group argument:

densityplot(˜yield, group = site, data = barley)

A legend can be added with auto.key=TRUE:

densityplot(˜yield, group = site, data = barley, auto.key=TRUE)

• ggplot also makes this easy by mapping the site to the col aesthetic.

qplot(yield, data = barley, geom="density", col = site)

• Another approach is to plot each density in a separate plot.

• To allow comparisons these plots should use common axes.

• This is a key feature of Lattice/Trellis graphics:

densityplot(˜yield | site, data = barley)

• ggplot supports this as faceting:

qplot(yield, data = barley, geom="density") + facet_wrap(˜ site)

426

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Categorical Response Variable

Conditional density plots estimate the conditional probabilities of the response
categories given the continuous predictor:

library(vcd)
data("Arthritis")
cd_plot(Improved ˜ Age, data = Arthritis)

30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

N
on

e
S

om
e

M
ar

ke
d

Age

Im
pr

ov
ed

427

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Plotting Two Categorical Variables

Bar Charts

• Standard graphics:

tab <- prop.table(xtabs(˜Treatment + Improved, data = Arthritis))
barplot(t(tab))
barplot(t(tab),beside=TRUE)

• Lattice:

barchart(tab, auto.key = TRUE)
barchart(tab, stack = FALSE, auto.key = TRUE)

Lattice seems to also require using a frequency table.

• ggplot:

qplot(Treatment, geom = "bar", fill = Improved, data = Arthritis)
qplot(Treatment, geom = "bar", fill = Improved,

position="dodge", data = Arthritis)
qplot(Treatment, geom = "bar", fill = Improved,

position="dodge", weight = 1/nrow(Arthritis),
ylab="", data = Arthritis)

428

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Plotting Two Categorical Variables

Spine Plots

Spine plots are a variant of stacked bar charts where the relative widths of the
bars correspond to the relative frequencies of the categories.

spineplot(Improved ˜ Sex,
data = subset(Arthritis, Treatment == "Treated"),
main = "Response to Arthritis Treatment")

spine(Improved ˜ Sex,
data = subset(Arthritis, Treatment == "Treated"),
main = "Response to Arthritis Treatment")

Response to Arthritis Treatment

Sex

Im
pr

ov
ed

Female Male

N
on

e
S

om
e

M
ar

ke
d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

429

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Mosaic Plots

Mosaic plots for two variables are similar to spine plots:

mosaicplot(˜ Sex + Improved,
data = subset(Arthritis, Treatment == "Treated"))

mosaic(˜ Sex + Improved,
data = subset(Arthritis, Treatment == "Treated"))

subset(Arthritis, Treatment == "Treated")

Sex

Im
pr

ov
ed

Female Male

N
on

e
S

om
e

M
ar

ke
d

430

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Mosaic plots extend to three or more variables:

mosaicplot(˜ Treatment + Sex + Improved, data = Arthritis)

mosaic(˜ Treatment + Sex + Improved, data = Arthritis)

Arthritis

Treatment

S
ex

Placebo Treated

F
em

al
e

M
al

e

None Some Marked None Some Marked

431

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Three or More Variables

• Paper and screens are two-dimensional; viewing more than two dimen-
sions requires some trickery

• For three continuous variables we can use intuition about space together
with

– motion

– perspective

– shading and lighting

– stereo

• For categorical variables we can use forms of conditioning

• Some of these ideas carry over to higher dimensions

• For most viewers intuition does not go beyond three dimensions

432

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some Examples

Soil Resistivity

• Soil resistivity measurements taken on a tract of land.

library(lattice)
soilfile <-

"http://www.stat.uiowa.edu/˜luke/classes/STAT7400/examples/soil"
soil <- read.table(soilfile)

p <- cloud(resistivity ˜ easting * northing, pch = ".", data = soil)
s <- xyplot(northing ˜ easting, pch = ".", aspect = 2.44, data = soil)
print(s, split = c(1, 1, 2, 1), more = TRUE)
print(p, split = c(2, 1, 2, 1))

• A loess surface fitted to soil resistivity measurements.

eastseq <- seq(.15, 1.410, by = .015)
northseq <- seq(.150, 3.645, by = .015)
soi.grid <- expand.grid(easting = eastseq, northing = northseq)
m <- loess(resistivity ˜ easting * northing, span = 0.25,

degree = 2, data = soil)
soi.fit <- predict(m, soi.grid)

• A level/image plot is made with

levelplot(soi.fit ˜ soi.grid$easting * soi.grid$northing,
cuts = 9,
aspect = diff(range(soi.grid$n)) / diff(range(soi.grid$e)),
xlab = "Easting (km)",
ylab = "Northing (km)")

• An interactive 3D rendered version of the surface:

library(rgl)
bg3d(color = "white")
clear3d()
par3d(mouseMode="trackball")
surface3d(eastseq, northseq,

soi.fit / 100, color = rep("red", length(soi.fit)))

• Partially transparent rendered surface with raw data:

433

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

clear3d()
points3d(soil$easting, soil$northing, soil$resistivity / 100,

col = rep("black", nrow(soil)))
surface3d(eastseq, northseq,

soi.fit / 100, col = rep("red", length(soi.fit)),
alpha=0.9, front="fill", back="fill")

434

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Barley Yields

• Yields of different barley varieties were recorded at several experimental
stations in Minnesota in 1931 and 1932

• A dotplot can group on one factor and condition on others:

data(barley)
n <- length(levels(barley$year))
dotplot(variety ˜ yield | site,

data = barley,
groups = year,
layout = c(1, 6),
aspect = .5,
xlab = "Barley Yield (bushels/acre)",
key = list(points = Rows(trellis.par.get("superpose.symbol"), 1 : n),

text = list(levels(barley$year)),
columns = n))

Barley Yield (bushels/acre)

SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

20 30 40 50 60

Grand Rapids
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Duluth
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

University Farm
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Morris
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Crookston
SvansotaNo. 462ManchuriaNo. 475VelvetPeatlandGlabronNo. 457Wisconsin No. 38Trebi

Waseca

1932 1931

• Cleveland suggests that years for Morris may have been switched.

• A recent article offers another view.

435

http://blog.revolutionanalytics.com/2014/07/theres-no-mistake-in-the-barley-data.html

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

NOx Emissions from Ethanol-Burning Engine

• An experiment examined the relation between nitrous oxide concentra-
tion in emissions NOx and

– compression ratio C

– equivalence ratio E (richness of air/fuel mixture)

• A scatterplot matrix shows the results

data(ethanol)
pairs(ethanol)
splom(ethanol)

• Conditioning plots (coplots) can help:

with(ethanol, xyplot(NOx ˜ E | C))
with(ethanol, {

Equivalence.Ratio <- equal.count(E, number = 9, overlap = 0.25)
xyplot(NOx ˜ C | Equivalence.Ratio,

panel = function(x, y) {
panel.xyplot(x, y)
panel.loess(x, y, span = 1)

},
aspect = 2.5,
layout = c(5, 2),
xlab = "Compression Ratio",
ylab = "NOx (micrograms/J)")

})

436

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Three or More Variables

Earth Quakes

• Some measurements on earthquakes recorded near Fiji since 1964

• A scatterplot matrix shows all pairwise distributions:

data(quakes)
splom(quakes)

• The locations can be related to geographic map data:

library(maps)
map("world2",c("Fiji","Tonga","New Zealand"))
with(quakes,points(long,lat,col="red"))

• Color can be used to encode depth or magnitude

with(quakes,
points(long,lat,col=heat.colors(nrow(quakes))[rank(depth)]))

• Color scale choice has many issues; see www.colorbrewer.org

• Conditioning plots can also be used to explore depth:

with(quakes,xyplot(lat˜long|equal.count(depth)))

• Perspective plots are useful in principle but getting the right view can be
hard

with(quakes,cloud(-depth˜long*lat))
library(scatterplot3d)
with(quakes,scatterplot3d(long,lat,-depth))

• Interaction with rgl can make this easier:

library(rgl)
clear3d()
par3d(mouseMode="trackball")
with(quakes, points3d(long, lat, -depth/50,size=2))
clear3d()
par3d(mouseMode="trackball")
with(quakes, points3d(long, lat, -depth/50,size=2,

col=heat.colors(nrow(quakes))[rank(mag)]))

437

www.colorbrewer.org

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Other 3D Options

• Stereograms, stereoscopy.

• Anaglyph 3D using red/cyan glasses.

• Polarized 3D.

438

http://en.wikipedia.org/wiki/Stereoscopy
http://en.wikipedia.org/wiki/Anaglyph_3D
http://en.wikipedia.org/wiki/Polarized_3D_system

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Design Notes

• Standard graphics

– provides a number of basic plots

– modify plots by drawing explicit elements

• Lattice graphics

– create an expression that describes the plot

– basic arguments specify layout vie group and conditioning argu-
ments

– drawing is done by a panel function

– modify plots by defining new panel functions (usually)

• ggplot and Grammar of Graphics

– create an expression that describes the plot

– aesthetic elements are associated with specific variables

– modify plots by adding layers to the specification

439

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Dynamic Graphs

• Some interaction modes:

– identification/querying of points

– conditioning by selection and highlighting

– manual rotation

– programmatic rotation

• Some systems with dynamic graphics support:

– S-PLUS, JMP, SAS Insight, ...

– ggobi, http://www.ggobi.org

– Xmdv, http://davis.wpi.edu/˜xmdv/

– Various, http://stats.math.uni-augsburg.de/software/

– xlispstat

440

http://www.ggobi.org
http://davis.wpi.edu/~xmdv/
http://stats.math.uni-augsburg.de/software/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Color Issues

Some Issues

• different types of scales, palettes:

– qualitative

– sequential

– diverging

• colors should ideally work in a range of situations

– CRT display

– LCD display

– projection

– color print

– gray scale print

– for color blind viewers

• obvious choices like simple interpolation in RGB space do not work well

Some References

• Harrower, M. A. and Brewer, C. M. (2003). ColorBrewer.org: An online
tool for selecting color schemes for maps. The Cartographic Journal,
40, 27–37. Available on line. The RColopBrewer package provides
an R interface.

• Ihaka, R. (2003). Colour for presentation graphics,” in K. Hornik, F.
Leisch, and A. Zeileis (eds.), Proceedings of the 3rd International Work-
shop on Distributed Statistical Computing, Vienna, Austria. Available
on line. See also the R package colorspace.

• Lumley, T. (2006). Color coding and color blindness in statistical graph-
ics. ASA Statistical Computing & Graphics Newsletter, 17(2), 4–7. Avaiv-
able on line.

441

http://ColorBrewer.org
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
http://stat-computing.org/newsletter/issues/scgn-17-2.pdf
http://stat-computing.org/newsletter/issues/scgn-17-2.pdf

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Zeileis, A., Meyer, D. and Hornik, K. (2007). Residual-based shadings
for visualizing (conditional) independence. Journal of Computational
and Graphical Statistics, 16(3), 507–525. See also the R package vcd.

• Zeileis, A., Murrell, P. and Hornik, K. (2009). Escaping RGBland: Se-
lecting colors for statistical graphics, Computational Statistics & Data
Analysis, 53(9), 3259-3270 Available on line.

442

http://epub.wu-wien.ac.at/dyn/virlib/wp/showentry?ID=epub-wu-01_c87&style=blank

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Perception Issues

• A classic paper:

William S. Cleveland and Robert McGill (1984), “Graphical Percep-
tion: Theory, Experimentation, and Application to the Development
of Graphical Methods,” Journal of the American Statistical Associ-
ation 79, 531–554.

• The paper shows that accuracy of judgements decreases down this scale:

– position along a common scale

– position along non-aligned scales

– length, direction, angle,

– area

– shading, color saturation

• A simple example:

x <- seq(0, 2*pi, len = 100)
y <- sin(x)
d <- 0.2 - sin(x+pi/2) * 0.1
plot(x,y,type="l", ylim = c(-1,1.2))
lines(x, y + d, col = "red")
lines(x, d, col = "blue", lty = 2)

443

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Bubble plots

– An example from Bloomberg.

– An improved version of the lower row:
library(ggplot2)
bankName <- c("Credit Suisse", "Goldman Sachs", "Santander",

"Citygroup", "JP Morgan", "HSBC")
before <- c(75, 100, 116, 255, 165, 215)
after <- c(27, 35, 64, 19, 85, 92)

d <- data.frame(cap = c(before, after),
year = factor(rep(c(2007,2009), each=6)),
bank = rep(reorder(bankName, 1:6), 2))

ggplot(d, aes(x = year, y = bank, size = cap, col = year)) +
geom_point() +
scale_size_area(max_size = 20) +
scale_color_discrete(guide="none")

– A bar chart:
ggplot(d, aes(x = bank, y = cap, fill = year)) +

geom_bar(stat = "identity", position = "dodge") + coord_flip()

– Some dot plots:
qplot(cap, bank, col = year, data = d)
qplot(cap, bank, col = year, data = d) + geom_point(size = 4)
do <- transform(d, bank = reorder(bank,rep(cap[1:6],2)))
qplot(cap, bank, col = year, data = do) +

geom_point(size = 4)
qplot(cap, bank, col = year, data = do) +

geom_point(size = 4) + theme_bw()
library(ggthemes)
qplot(cap, bank, col = year, data = do) +

geom_point(size = 4) + theme_economist()
qplot(cap, bank, col = year, data = do) +

geom_point(size = 4) + theme_wsj()

• Our perception can also play tricks, leading to optical illusions.

– Some examples, some created in R.

– Some implications for circle and bubble charts.

– The sine illusion.

444

http://homepage.stat.uiowa.edu/~luke/classes/STAT7400/examples/shrinking-banks.pdf
http://blog.revolutionanalytics.com/2012/12/create-optical-illusions-with-r.html
http://junkcharts.typepad.com/junk_charts/2012/09/insufficiency-and-illusions.html
http://www.michaelbach.de/ot/sze_sineIllusion/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some References

• Cleveland, W. S. (1994), The Elements of Graphing Data, Hobart Press.

• Cleveland, W. S. (1993), Visualizing Data, Hobart Press.

• Robbins, Naomi S. (2004), Creating More Effective Graphs, Wiley; Ef-
fective Graphs blog.

• Tufte, Edward (2001), The Visual Display of Quantitative Information,
2nd Edition, Graphics Press.

• Wilkinson, Leland (2005), The Grammar of Graphics, 2nd Edition, Springer.

• Bertin, Jaques (2010), Semiology of Graphics: Diagrams, Networks,
Maps, ESRI Press.

• Cairo, Alberto (2012), The Functional Art: An introduction to informa-
tion graphics and visualization, New Riders; The Functional Art blog.

• Few, Stephen (2012), Show Me the Numbers: Designing Tables and
Graphs to Enlighten, 2nd Edition, Analytics Press; Perceptual Edge blog.

445

http://blogs.forbes.com/naomirobbins
http://blogs.forbes.com/naomirobbins
http://proxy.lib.uiowa.edu/login?url=http://springerlink.metapress.com/content/r1w881/?p=0a50ea61349a4945b92889db8826f165&pi=0
http://www.thefunctionalart.com/
http://perceptualedge.com/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some Web and Related Technologies

• Google Maps and Earth

– Mapping earthquakes.

– Baltimore homicides.

– Mapping twitter trends.

• SVG/JavaSctipt examples

– SVG device driver.

– JavaScript D3 and some R experiments:

∗ Contour plots
∗ rCharts

• Grammar of Graphics for interactive plots

– animint package

– ggvis package; source on github

• Flash, Gapminder, and Google Charts

– Gapminder: http://www.gapminder.org/

– An example showing wealth and health of nations over time.‘

– Popularized in a video by Hans Rosling.

– Google Chart Tools: https://developers.google.com/
chart/

– googleVis package.

• Plotly

– A blog post about an R interface.

• Gif animations

– Bird migration patterns

• Embedding animations and interactive views in PDF files

446

http://earthquakes.tafoni.net/
http://essentials.baltimoresun.com/micro_sun/homicides/
http://trendsmap.com/
http://blog.revolutionanalytics.com/2011/07/r-svg-graphics.html
http://d3js.org/
http://vis.supstat.com/2012/11/contour-plots-with-d3-and-r/
http://rcharts.io/
https://github.com/tdhock/animint
http://ggvis.rstudio.com/
https://github.com/rstudio/ggvis
http://www.gapminder.org/
http://www.gapminder.org/world/#;example=75
http://www.gapminder.org/videos/200-years-that-changed-the-world/
https://developers.google.com/chart/
https://developers.google.com/chart/
https://github.com/mages/googleVis
https://plot.ly
http://bayesianbiologist.com/2014/02/06/online-r-and-plotly-graphs-canadian-and-u-s-maps-old-faithful-with-multiple-axes-overlaid-histograms/
http://www.fastcodesign.com/1669151/animated-gifs-map-the-wonders-of-bird-migration

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

– Supplemental material to JCGS editorial. (This seems not to be
complete; another example is available from my web site.)

• Animations in R

– animation package; has a supporting web site.

– A simple example is available at the class web site.

– Rstudio’s shiny package.

• Tableau software

– Tableau Public.

447

http://pubs.amstat.org/doi/suppl/10.1198/jcgs.2010.191ed/suppl_file/supplement.pdf
http://www.stat.uiowa.edu/~luke/R/misc3d/misc3d-pdf/misc3d-pdf.pdf
http://vis.supstat.com/categories.html#Animation-ref
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/anim
http://www.rstudio.com/
http://www.rstudio.com/shiny/
http://www.tableausoftware.com/public/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Further References

• Colin Ware (2004), Information Visualization, Second Edition: Percep-
tion for Design, Morgan Kaufmann.

• Steele, Julie and Iliinsky, Noah (Editors) (2010), Beautiful Visualization:
Looking at Data through the Eyes of Experts.

• Tufte, Edward (2001), The Visual Display of Quantitative Information,
2nd Edition, Graphics Press.

• Tufte, Edward (1990), Envisioning Information, Graphics Press.

• Cairo, Alberto (2012), The Functional Art: An introduction to informa-
tion graphics and visualization, New Riders.

• Gelman, Andrew and Unwin, Antony (2013), “Infovis and Statistical
Graphics: Different Goals, Different Looks,” JCGS; links to discussions
and rejoinder; slides for a related talk.

• Stephen Few (2011), The Chartjunk Debate A Close Examination of Re-
cent Findings.

• An article in The Guardian.

• Robert Kosara’s Eagereyes blog.

• Data Journalism Awards for 2012.

• The Information is Beautiful Awards.

A classic example:

448

http://www.stat.columbia.edu/~gelman/research/published/vis14.pdf
http://www.stat.columbia.edu/~gelman/research/published/vis14.pdf
http://eagereyes.org/blog/2012/responses-gelman-unwin-convenient-posting
http://eagereyes.org/blog/2012/responses-gelman-unwin-convenient-posting
http://www.stat.columbia.edu/~gelman/presentations/vistalk_meetup_new_handout.pdf
http://www.perceptualedge.com/articles/visual_business_intelligence/the_chartjunk_debate.pdf
http://www.perceptualedge.com/articles/visual_business_intelligence/the_chartjunk_debate.pdf
http://www.guardian.co.uk/news/datablog/2012/mar/16/infographics-data-vivsualisation-history
http://eagereyes.com
http://www.theguardian.com/news/datablog/2012/may/31/data-journalism-awards-winners
http://www.informationisbeautifulawards.com/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

●
●

●

●

●

1978 1979 1980 1981 1982

20
30

40
50

60

year

pr
ic

e

Average Price of a One−Carat D Flawless Diamond

An alternate representation.

449

http://www.jstreasures.net/~jim/1004/1029f4.jpg

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some More References and Links

• Kaiser Fung’s Numbers Rule Your World and Junk Charts blogs.

• Nathan Yao’s FlowingData blog.

• JSS Special Volume on Spatial Statistics, February 2015.

• An unemployment visualization from the Wall Street Journal.

• A WebGL example from rgl

450

http://junkcharts.typepad.com/numbersruleyourworld/
http://junkcharts.typepad.com/junk_charts/
http://flowingdata.com/
http://www.jstatsoft.org/v63
http://graphics.wsj.com/job-market-tracker/
http://homepage.stat.uiowa.edu/~luke/classes/STAT7400/webGL/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some Data Technologies

• Data is key to all statistical analyses.

• Data comes in various forms:

– text files

– data bases

– spreadsheets

– special binary formats

– embedded in web pages

– special web formats (XML, JSON, ...)

• Data often need to be cleaned.

• Data sets often need to be reformatted or merged or partitioned.

• Some useful R tools:

– read.table, read.csv, and read.delim functions.

– merge function for merging columns of two tables based on com-
mon keys (data base join operation).

– The reshape function and the melt and cast functions from
the reshape or reshape2 packages for conversion between long
and wide formats.

– tapply and the plyr and dplyr packages for

∗ partitioning data into groups
∗ applying statistical operations to the groups
∗ assembling the results

– The XML package for reading XML and HTML files.

– The scrapeR and rvest packages.

– Web Technologies Task View.

– Regular expressions for extracting data from text.

• Some references:

451

http://cran.r-project.org/web/views/WebTechnologies.html

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

– Paul Murrell (2009), Introduction to Data Technologies, CRC Press;
available online at the supporting website,

– Phil Spector (2008), Data Manipulation with R, Springer; available
through Springer Link.

– Deborah Nolan and Duncan Temple Lang (2014), XML and Web
Technologies for Data Sciences with R, Springer.

452

http://www.stat.auckland.ac.nz/~paul/ItDT/
http://www.springerlink.com.proxy.lib.uiowa.edu/content/978-0-387-74730-9/
http://www.springerlink.com.proxy.lib.uiowa.edu/content/978-0-387-74730-9/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Finding the Current Temperature

• A number of web sites provide weather information.

• Some provide web pages intended to be read by humans:

– Weather Underground.

– Weather Channel

– National Weather Service.

• Others provide a web service intended to be accessed by programs:

– Open Weather Map API.

– A similar service from Google was shut down in 2012.

– National Weather Service SOAP API.

– National Weather Service REST API.

• Historical data is also available, for example from Weather Underground.

• You computer of smart phone uses services like these to display current
weather.

• The R package RWeather provides access to a number of weather
APIs.

453

http://www.wunderground.com/US/IA/Iowa_City.html
http://www.weather.com/weather/hourbyhour/52240
http://forecast.weather.gov/MapClick.php?CityName=Iowa+City&state=IA
http://api.openweathermap.org/data/2.5/weather?q=Iowa+City,IA&mode=xml&appid=44db6a862fba0b067b1930da0d769e98
http://graphical.weather.gov/xml/
http://graphical.weather.gov/xml/rest.php
http://www.wunderground.com/history/airport/KIOW/2015/1/31/DailyHistory.html

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Open Weather Map provides an API for returning weather information
in XML format using a URL of the form

http://api.openweathermap.org/data/2.5/weather?q=Iowa+
City,IA&mode=xml&appid=44db6a862fba0b067b1930da0d769e98

or

http:
//api.openweathermap.org/data/2.5/weather?lat=41.66&lon=
-91.53&mode=xml&appid=44db6a862fba0b067b1930da0d769e98

• Here is a simple function to obtain the current temperature for from Open
Weather Map based on latitude and longitude:

library(xml2)
findTempOWM <- function(lat, lon) {

base <- "http://api.openweathermap.org/data/2.5/weather"
key <- "44db6a862fba0b067b1930da0d769e98"
url <- sprintf("%s?lat=%f&lon=%f&mode=xml&units=Imperial&appid=%s",

base, lat, lon, key)
page <- read_xml(url)
as.numeric(xml_text(xml_find_one(page, "//temperature/@value")))

}

• For Iowa City you would use

findTempOWM(41.7, -91.5)

• This function should be robust since the format of the response is docu-
mented and should not change.

• Using commercial web services should be done with care as there are
typically limitations and license terms to be considered.

• They may also come and go: Google’s API was shut down in 2012.

454

http://api.openweathermap.org/data/2.5/weather?q=Iowa+City,IA&mode=xml&appid=44db6a862fba0b067b1930da0d769e98
http://api.openweathermap.org/data/2.5/weather?q=Iowa+City,IA&mode=xml&appid=44db6a862fba0b067b1930da0d769e98
http://api.openweathermap.org/data/2.5/weather?lat=41.66&lon=-91.53&mode=xml&appid=44db6a862fba0b067b1930da0d769e98
http://api.openweathermap.org/data/2.5/weather?lat=41.66&lon=-91.53&mode=xml&appid=44db6a862fba0b067b1930da0d769e98
http://api.openweathermap.org/data/2.5/weather?lat=41.66&lon=-91.53&mode=xml&appid=44db6a862fba0b067b1930da0d769e98

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Creating a Temperature Map

• The National Weather Service provides a site that produces forecasts in
a web page for a URL like this:

http://forecast.weather.gov/zipcity.php?inputstring=
IowaCity,IA

• This function uses the National Weather Service site to find the current
temperature:

library(xml2)
findTempGov <- function(citystate) {

url <- paste("http://forecast.weather.gov/zipcity.php?inputstring",
url_escape(citystate),
sep = "=")

page <- read_html(url)
xpath <- "//p[@class=\"myforecast-current-lrg\"]"
tempNode <- xml_find_one(page, xpath)
as.numeric(sub("([-+]?[[:digit:]]+).*", "\\1", xml_text(tempNode)))

}

• This will need to be revised whenever the format of the page changes, as
happened sometime in 2012.

• Murrell’s Data Technologies book discusses XML, XPATH queries, reg-
ular expressions, and how to work with these in R.

• Some other resources for regular expressions:

– Wikipedia

– Regular-Expressions.info

455

http://forecast.weather.gov/zipcity.php?inputstring=Iowa City,IA
http://forecast.weather.gov/zipcity.php?inputstring=Iowa City,IA
http://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• A small selection of Iowa cities

places <- c("Ames", "Burlington", "Cedar Rapids", "Clinton",
"Council Bluffs", "Des Moines", "Dubuque", "Fort Dodge",
"Iowa City", "Keokuk", "Marshalltown", "Mason City",
"Newton", "Ottumwa", "Sioux City", "Waterloo")

• We can find their current temperatures with

temp <- sapply(paste(places, "IA", sep = ", "),
findTempGov, USE.NAMES = FALSE)

temp

• To show these on a map we need their locations. We can optain a file of
geocoded cities and read it into R:

download.file("http://www.sujee.net/tech/articles/geocoded/cities.csv.zip",
"cities.csv.zip")
download.file("http://www.stat.uiowa.edu/˜luke/classes/STAT7400/data/cities.csv.zip",

"cities.csv.zip")
unzip("cities.csv.zip")
cities <- read.csv("cities.csv", stringsAsFactors=FALSE, header=FALSE)
names(cities) <- c("City", "State", "Lat", "Lon")
head(cities)

• Form the temperature data into a data frame and use merge to merge in
the locations from the cities data frame (a JOIN operation in data base
terminology):

tframe <- data.frame(City = toupper(places), State = "IA", Temp = temp)
tframe

temploc <- merge(tframe, cities,
by.x = c("City", "State"), by.y = c("City", "State"))

temploc

456

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Now use the map function from the maps package along with the text
function to show the results:

library(maps)
map("state", "iowa")
with(temploc, text(Lon, Lat, Temp, col = "blue"))

• To add contours we can use interp from the akima package and the
contour function:

library(akima)
map("state", "iowa")
surface <- with(temploc, interp(Lon, Lat, Temp, linear = FALSE))
contour(surface, add = TRUE)
with(temploc, text(Lon, Lat, Temp, col = "blue"))

• A version using ggmap:

library(ggmap)
p <- qmplot(Lon, Lat, label = Temp, data = temploc,

zoom = 7, source = "google") +
geom_text(color="blue", vjust = -0.5, hjust = -0.3, size = 7)

p

• Add contour lines:

s <- expand.grid(Lon = surface$x, Lat = surface$y)
s$Temp <- as.vector(surface$z)
s <- s[! is.na(s$Temp),]
p + geom_contour(aes(x = Lon, y = Lat, z = Temp), data = s)

457

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: 2008 Presidential Election Results

• The New York Times website provides extensive material on the 2008
elections. County by county vote totels and percentages are available,
including results for Iowa

• This example shows how to recreate the choropleth map shown on the
Iowa retults web page.

• The table of results can be extracted using the XML package with

library(XML)
url <- "http://elections.nytimes.com/2008/results/states/president/iowa.html"
tab <- readHTMLTable(url, stringsAsFactors = FALSE)[[1]]

Alternatively, using packages xml2 and rvest,

library(xml2)
library(rvest)
tab <- html_table(read_html(url))[[1]]

These results can be formed into a usable data frame with

iowa <- data.frame(county = tab[[1]],
ObamaPCT = as.numeric(sub("%.*", "", tab[[2]])),
ObamaTOT = as.numeric(gsub("votes|,", "", tab[[3]])),
McCainPCT = as.numeric(sub("%.*", "", tab[[4]])),
McCainTOT = as.numeric(gsub("votes|,", "", tab[[5]])),
stringsAsFactors = FALSE)

head(iowa)

• We need to match the county data to the county regions. The region
names are

library(maps)
cnames <- map("county", "iowa", namesonly = TRUE, plot = FALSE)
head(cnames)

• Compare them to the names in the table:

which(! paste("iowa", tolower(iowa$county), sep = ",") == cnames)
cnames[71]
iowa$county[71]

458

http://elections.nytimes.com/2008/index.html
http://elections.nytimes.com/2008/results/states/president/iowa.html

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• There is one polygon for each county and they are in alphabetical order,
so no elaborate matching is needed.

• An example on the maps help page shows how matching on FIPS codes
can be done if needed.

• Next, choose cutoffs for the percentage differences and assign codes:

cuts <- c(-100, -15, -10, -5, 0, 5, 10, 15, 100)
buckets <- with(iowa, as.numeric(cut(ObamaPCT - McCainPCT, cuts)))

• Create a diverging color palette and assign the colors:

palette <- colorRampPalette(c("red", "white", "blue"),
space = "Lab")(8)

colors <- palette[buckets]

• Create the map:

map("county", "iowa", col = colors, fill = TRUE)

• Versions with no county lines and with the county lines in white:

map("county", "iowa", col = colors, fill = TRUE, lty = 0, resolution=0)
map("county", "iowa", col = "white", add = TRUE)

• A better pallette:

myred <- rgb(0.8, 0.4, 0.4)
myblue <- rgb(0.4, 0.4, 0.8)
palette <- colorRampPalette(c(myred, "white", myblue),

space = "Lab")(8)
colors <- palette[buckets]
map("county", "iowa", col = colors, fill = TRUE, lty = 0, resolution=0)
map("county", "iowa", col = "white", add = TRUE)

459

https://en.wikipedia.org/wiki/FIPS_county_code

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Some counties have many more total votes than others.

• Cartograms are one way to attempt to adjust for this; these have been
used to show 2008 and 2012 presidential election results.

• Tile Grid Maps are another variation currently in use.

• The New York Times also provides data for 2012 but it seems more dif-
ficult to scrape.

• Politoco.com provides results for 2012 that are easier to scrape; the Iowa
results are available at

http:
//www.politico.com/2012-election/results/president/iowa/

460

http://en.wikipedia.org/wiki/Cartogram
http://www-personal.umich.edu/~mejn/election/2008/
http://www-personal.umich.edu/~mejn/election/2012/
http://flowingdata.com/2015/05/12/the-great-grid-map-debate-of-2015/
http://www.politico.com/2012-election/results/president/iowa/
http://www.politico.com/2012-election/results/president/iowa/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

ITBS Results for Iowa City Elementary Schools

• The Iowa City Press-Citizen provides data from ITBS results for Iowa
City shools.

• Code to read these data is available.

• This code arranges the Standard and Percentile results into a single data
frame with additional columns for Test and School.

• CSV files for the Percentile and Standard results for the elementary schools
(except Regina) are also available.

• Read in the Standard results:

url <- paste("http://www.stat.uiowa.edu/˜luke/classes/STAT7400",
"examples/ITBS/ICPC-ITBS-Standard.csv", sep = "/")

Standard <- read.csv(url, stringsAsFactors = FALSE, row.names = 1)
names(Standard) <- sub("X", "", names(Standard))
head(Standard)

461

http://www.press-citizen.com/interactive/article/99999999/DATA/304220034/Iowa-Tests-Basic-Skills-school-by-school-scores
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/ITBS/itbs.R
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/ITBS/ICPC-ITBS-Percentile.csv
http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/ITBS/ICPC-ITBS-Standard.csv

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• These data are in wide format. To use Lattice or ggplot to examine
these data we need to convert to long format.

• This can be done with the reshape function or the function melt in
the reshape2 package:

library(reshape2)
mS <- melt(Standard, id=c("Grade", "Test", "School"),

value.name = "Score", variable.name = "Year")
head(mS)

• Some Lattice plots:

library(lattice)
xyplot(Score ˜ Grade | Year, group = Test, type = "l", data = mS,

auto.key = TRUE)
xyplot(Score ˜ Grade | Year, group = Test, type = "l", data = mS,

subset = School == "Lincoln", auto.key = TRUE)
xyplot(Score ˜ Grade | Year, group = Test, type = "l", data = mS,

subset = Test %in% c("SocialScience", "Composite"),
auto.key = TRUE)

462

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Studying the Web

• Many popular web sites provide information about their use.

• This kind of information is now being actively mined for all sorts of
purposes.

• Twitter provides an API for collecting information about “tweets.”

– The R package twitteR provides an interface to this API.

– A simple introduction (deprecated but may still be useful).

– One example of its use involves mining twitter for airline consumer
sentiment.

– Another example is using twitter activity to detect earthquakes.

• Facebook is another popular framework that provides some program-
matic access to its information.

– The R package Rfacebook is available.

– One blog post shows how to access the data.

– Another provides a simple illustration.

• Google provides access to a number of services, including

– Google Maps

– Google Earth

– Google Visualization

– Google Correlate

– Google Trends

R packages to connect to some of these and others are available.

463

https://sites.google.com/site/miningtwitter/
http://www.inside-r.org/howto/mining-twitter-airline-consumer-sentiment
http://www.inside-r.org/howto/mining-twitter-airline-consumer-sentiment
https://blog.twitter.com/2015/usgs-twitter-data-earthquake-detection
http://romainfrancois.blog.free.fr/index.php?post/2012/01/15/Crawling-facebook-with-R
http://blog.revolutionanalytics.com/2012/01/visualize-your-facebook-friends-network-with-r.html
https://www.google.com/work/mapsearth/products/mapsapi.html
https://developers.google.com/earth/
https://developers.google.com/chart/interactive/docs/reference
http://www.google.com/trends/correlate/
http://www.google.com/trends/

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Some other data sites:

– Iowa Government Data

– New York Times Data

– Guardian Data

• Nice summary of a paper on deceptive visualizations.

464

https://data.iowa.gov/
http://developer.nytimes.com/
http://open-platform.theguardian.com/
http://fellinlovewithdata.com/research/deceptive-visualizations

Bootstrap and Resampling
Methods

• Often we have an estimator T of a parameter θ and want to know its
sampling properties

– to informally assess the quality of the estimate
– for formal confidence intervals
– for formal hypothesis tests

• In some cases we can obtain exact results; usually this requires

– particularly convenient statistics (e.g. linear)
– particularly convenient data models (e.g. normal)

• For more complex problems we can use approximations

– based on large samples
– use central limit theorem
– use Taylor series approximations

• Alternative: use simulation in place of central limit theorem and approx-
imations

• References:

– Givens and Hoeting, Chapter 9.
– Davison, A. C. and Hinkley, D. V. (1997) “Bootstrap Methods and

their Application,” Cambridge University Press.
– Package boot; R port of S-Plus code written to support Davison

and Hinkley.

465

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: A Parametric Bootstrap

• Ordered times between failures of air conditioning unit on one aircraft:

3 5 7 18 43 85 91 98 100 130 230 487

• Suppose the data are exponentially distributed with mean µ and we want
to estimate the failure rate θ = 1/µ .

• The MLE of µ is µ̂ = X = 108.0833.

• The MLE of θ is T = 1/X .

• The exact sampling distribution is inverse gamma with mean µ , which
we do not know.

• We could compute the exact bias and variance of T ,

b(µ) = Eµ [T]−θ = Eµ [T]−1/µ =
1

n−1
1
µ
=

1
n−1

θ

v(µ) = Varµ(T) =
1

µ2
n2

(n−1)2(n−2)
= θ

2 n2

(n−1)2(n−2)

and obtain plug-in estimates

B = b(µ̂)
V = v(µ̂)

466

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• One alternative to exact computation of the sampling distribution is the
delta method.

• The first order delta method approximates T by

T = 1/X ≈ 1/µ− (X−µ)/µ
2

So

b(µ)≈ 0

v(µ)≈ Var(X)/µ
4 =

1
n

µ2

µ4 =
θ 2

n

• A second order delta method for the bias uses

T = 1/X ≈ 1/µ− (X−µ)/µ
2 +(X−µ)2/µ

3

So
b(µ)≈ Var(X)/µ

3 =
θ

n

• Instead of working out b(·) and v(·) analytically, we can estimate B and
V by simulation:

– Draw a sample X∗1 , . . . ,X
∗
12 from an exponential distribution with

mean µ = µ̂ = 108.0833.

– Compute T ∗ from this sample.

– Repeat R times to obtain T ∗1 , . . . ,T
∗

R

– Estimate the bias and variance of T by

B∗ = T ∗−T

V ∗ =
1

R−1

R

∑
i=1

(T ∗i −T ∗)2

• The full sampling distribution can be examined using a histogram or
other density estimate.

467

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Bootstrap and Resampling Methods

Example: A Nonparametric Bootstrap

• Instead of assuming an exponential population in assessing the perfor-
mance of T we can make the weaker assumption that X1, . . . ,Xn is a ran-
dom sample from an arbitrary distribution F .

• A delta method approximation to the variance is

Var(T)≈ S2
X

nX4

• A non-parametric bootstrap approach takes the empirical distribution F̂
with

F̂(t) =
#{Xi ≤ t}

n
as an approximation to F , and

– draws a sample X∗1 , . . . ,X
∗
12 from F̂ ,

– computes T ∗ from this sample,

– repeats R times to obtain T ∗1 , . . . ,T
∗

R ,

– estimate the bias and variance of T by

B∗ = T ∗−T

V ∗ =
1

R−1

R

∑
i=1

(T ∗i −T ∗)2

• Drawing a random sample from F̂ is the same as sampling with replace-
ment from {X1, . . . ,Xn}

468

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some Results

Method Bias Stand. Dev.
Exact 0.000841 0.003192
Param. Delta (1st order) 0.0 0.002671
Param. Delta (2nd order) 0.0007710
Nonparam. Delta (1st order) 0.0 0.003366
Nonparam. Delta (2nd order) 0.001225
Parametric Bootstrap (R = 10000) 0.000857 0.003185
Nonparametric Bootstrap (R = 10000) 0.001244 0.004170

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0
50

10
0

15
0

x

de
ns

ity

Approximate Sampling Densities of T

Exact
Param. Boot.
Nonparam. Boot.

469

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Notes

• There are two kinds of errors in the bootstrap approaches (Davison and
Hinkley’s terminology):

– The statistical error due to using µ̂ or F̂ instead of µ or F .

– The simulation error.

• The simulation error can be reduced by

– increasing R

– using variance reduction methods if applicable

• The statistical error is reduced as the sample size n gets large.

• In some settings the statistical error can be reduced by working with a
transformed parameter.

• For the parametric bootstrap, as R→ ∞

B∗→ b(µ̂)
V ∗→ v(µ̂)

and

b(µ̂) =
1

n−1
1
µ̂
= b(µ)+OP(n−3/2)

v(µ̂) =
1
µ̂

n2

(n−1)2(n−2)
= v(µ)+OP(n−3/2)

470

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Similar results hold, under suitable regularity conditions, for the non-
parametric bootstrap.

• Suppose X1, . . . ,Xn are a random sample from F with mean µF and vari-
ance σ2

F . Let

θF = µ
2
F

T = X2

• The bias of T is

b(F) = EF [T]−θ(F) = EF [X
2
]−µ

2
F = VarF(X) =

1
n

σ
2
F

• The bootstrap bias (R = ∞) is

b(F̂) =
1
n

σ
2
F̂
=

1
n

n−1
n

S2

• If the population has finite fourth moments, then

b(F̂) = b(F)+OP(n−3/2)

• Except in some special cases the theoretical justification for the bootstrap
is asymptotic in sample size.

• The motivation for the nonparametric bootstrap is often similar to the
motivation for using the sandwich estimator of variance:

– use a model to suggest an estimator T

– do not assume the model in assessing the estimator’s performance

471

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

A Simple Implementation

• The basic operation of bootstrapping is to generate samples and collect
statistics:

b <- function(stat, gen, R)
sapply(1:R, function(i) stat(gen()))

• A generator for an exponential model can be constructed by

makeExpGen <- function(data) {
rate <- 1 / mean(data)
n <- length(data)
function() rexp(n, rate)

}

This uses lexical scope to capture the variables rate and n.

• A parametric bootstrap sample of T is produced by

v <- b(function(data) 1 / mean(data),
makeExpGen(aircondit$hours), 10000)

• A generator for a nonparametric bootstrap sample drawn from the em-
pirical distribution is constructed by

makeEmpGen <- function(data) {
if (is.vector(data)) {

n <- length(data)
function() data[sample(n, n, replace = TRUE)]

}
else {

n <- nrow(data)
function() data[sample(n, n, replace = TRUE), , drop = FALSE]

}
}

– The variables data and n are captured by lexical scope.

– The data can be a vector, a matrix, or a data frame.

• A nonparametric bootstrap sample of T is produced by

vv <- b(function(data) 1 / mean(data),
makeEmpGen(aircondit$hours), 10000)

472

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

A Cautionary Example

• In many elementary bootstrap applications we have, at least approxi-
mately,

T = T (F̂)

θ = T (F)

• For the basic nonparametric bootstrap to work, some level of smoothness
of θ as a function of F is needed.

• Suppose we are interested in examining the sampling distribution of the
median for the air conditioner data.

• Parametric and nonparametric bootstrap samples are produced by

medpb <- b(median, makeExpGen(aircondit$hours),10000)
mednpb <- b(median, makeEmpGen(aircondit$hours),10000)

• The resulting histograms are

Parametric

Sample Median

Fr
eq

ue
nc

y

0 50 100 150 200

0
10

00
20

00

Nonarametric

Sample Median

Fr
eq

ue
nc

y

0 50 150 250

0
20

00
40

00

• A more complex smoothed bootstrap can be used to address this issue.

473

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• Suppose

– vn(T) = Var(T) for a sample of size n

– V ∗n is the boostrap estimate for R = ∞ for a sample of size n.

Then, under suitable conditions,

nvn(T)→
1

4 f (θ)2

nV ∗n (T)→
1

4 f (θ)2

In this sense the boostrap is valid.

• The mean square error E[(nV ∗n (T)−nvn(T))2] tends to zero slower than
for smooth functionals (O(n−1/2) instead of O(n−1)).

• The mean square error for a suitable smooth bootstrap converges faster
than for an unsmoothed one, but not as fast as for smooth functionals
(O(n−4/5) can be achieved).

474

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Bootstrapping Regression Models

• Suppose we have independent observations (x1,y1), . . . ,(xn,yn).

• Regression models model the conditional distribution y|x.

• Linear regression models assume E[Yi|xi] = xiβ .

• Often we assume Var(Yi|xi) is constant.

• Parametric bootstrapping can be used for a parametric model.

• Two forms of non-parametric bootstrap are used:

– Case-based bootstrapping: pairs (x∗,y∗) are selected with replace-
ment from (x1,y1), . . . ,(xn,yn). This is also called a pairs bootstrap.

– Model-based bootstrapping: Residuals are formed using the model,
and bootstrap samples are constructed by sampling the residuals.

475

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Case-Based Bootstrap

• Assumes the (Xi,Yi) are sampled from a multivariate population.

• Advantages:

– Simplicity.

– Does not depend on an assumed mean model.

– Does not depend on a constant variance assumption.

– Does not depend on the notion of a residual.

– Similar in spirit to the sandwich estimator.

• Disadvantages:

– Not appropriate for designed experiments.

– Does not reproduce standard results conditional on xi

– For bivariate normal data the bootstrap distribution of β̂1 is estimat-
ing a mixture over the xi of

N(β ,σ2/∑(xi− x)2)

distributions, i.e. a non-central tn−1 distribution.

– Does reproduce standard results for studentized quantities where the
conditional distribution does not depend on the xi.

– Can lead with high probability to design matrices that are not of full
rank.

476

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Model-Based Bootstrap

• This is a semi-parametric approach.

• It assumes

– Yi = µ(xi)+ εi

– the εi have a common distribution G with mean zero

– µ(xi) has a parametric form (usually).

• The raw residuals are of the form ei = yi− µ̂(xi).

• For generalized linear models one can use various definitions of raw
residuals (original scale, linear predictor scale, deviance residuals, e.g.).

• The raw residuals usually do not have constant variance; for linear mod-
els

Var(ei) = σ
2(1−hi)

where hi is the leverage of the i-th case, the i-th diagonal element of the
hat matrix H = X(XT X)−1XT .

• The modified residuals are

ri =
yi− µ̂(xi)

(1−hi)1/2 =
ei

(1−hi)1/2

Approximate leverages are used for generalized linear and nonlinear mod-
els.

• The modified residuals usually do not have mean zero, so need to be
adjusted.

• The model-based resampling algorithm:

– randomly resample ε∗i with replacement from r1− r, . . . ,rn− r.

– set y∗i = µ̂(xi)+ ε∗i

– fit a model to the (xi,y∗i).

477

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Leukemia Survival

• For the leukemia survival data of Feigl and Zelen we can fit a model

logTimei = β0 +β1 log(WBCi/10000)+β2AGi + εi

where the εi are assumed to have zero mean and constant variance.

• We can compute the fit and some diagnostics with

library(boot)
fz <-

read.table(
"http://www.stat.uiowa.edu/˜luke/classes/STAT7400/feigzel2.dat",
head = TRUE)

fz.lm <- glm(log(fz$Time) ˜ log(fz$WBC / 10000) + fz$AG)
fz.diag <- glm.diag(fz.lm)

• A case-based bootstrap is computed by

fz.fit <- function(d)
coef(glm(log(d$Time) ˜ log(d$WBC / 10000) + d$AG))

fz.case <- function(data, i)
fz.fit(data[i,])

fz.boot1 <- boot(fz, fz.case, R=499)

• A model-based bootstrap is computed by

fz.res <- residuals(fz.lm) / sqrt(1 - fz.diag$h)
fz.res <- fz.res - mean(fz.res)
fz.df <- data.frame(fz, res = fz.res, fit = fitted(fz.lm))
fz.model <- function(data, i) {

d <- data
d$Time <- exp(d$fit + d$res[i])
fz.fit(d)

}
fz.boot2 <- boot(fz.df, fz.model, R=499)

478

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

A comparison of the bootstrap distributions for β̂2:

plot(density(fz.boot2$t[,3]))
lines(density(fz.boot1$t[,3]),col="blue")

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

density(x = fz.boot2$t[, 3])

N = 499 Bandwidth = 0.1097

D
en

si
ty

Method β̂2 or β̂

∗
2 Stand. Error

Least Squares 0.9883 0.4361
Case-based Bootstrap 1.0187 0.4389
Model-based Bootstrap 0.9686 0.4353

479

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Bootstrap Confidence Intervals

Simple Intervals

• A simple interval can be based on T − θ being approximately normal
with mean B∗ and variance V ∗:

[θL,θU] = T −B∗±
√

V ∗z1−α/2

• With the variance stabilizing logarithm transformation this becomes

[θL,θU] = exp{logT −B∗L±
√

V ∗L z1−α/2}

with B∗L and V ∗L the bootstrap estimates of bias and variance for logT .

• Results for the air conditioner data and α = 0.05:

Parametric Log Scale θL θU
yes no 0.002152 0.01464
no no -0.000165 0.01618
yes yes 0.004954 0.01585
no yes 0.004238 0.01783

480

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Basic Bootstrap Intervals

• If P(T −θ ≤ a) = α/2 and P(T −θ ≥ b) = α/2 then

P(a≤ T −θ ≤ b) = P(T −b≤ θ ≤ T −a) = 1−α

• We can estimate a, b by T ∗((R+1)α/2)−T and T ∗((R+1)(1−α/2))−T to get the
interval

[θL,θU] = [T − (T ∗((R+1)(1−α/2))−T),T − (T ∗((R+1)α/2)−T)]

= [2T −T ∗((R+1)(1−α/2)),2T −T ∗((R+1)α/2)]

• This can be done on a variance stabilizing scale as well; for the loga-
rithm:

[θL,θU] = [T 2/T ∗((R+1)(1−α/2)),T
2/T ∗((R+1)α/2)]

• Results for the air conditioner data and α = 0.05:

Parametric Log Scale θL θU
yes no 0.0006166 0.01286
no no -0.0026972 0.01325
yes yes 0.0047855 0.01516
no yes 0.0040375 0.01628

481

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Studentized Bootstrap Intervals

• Suppose we have

– an estimator T of θ

– an estimator U of the variance of T , e.g. from the delta method

• From the bootstrap samples compute

– estimates T ∗1 , . . . ,T
∗

R

– variance estimates U∗1 , . . . ,U
∗
R

• Compute and rank studentized values

Z∗i =
T ∗i −T√

U∗i

• The studentized interval is then

[θL,θU] = [T −
√

UZ∗((R+1)(1−α/2)),T −
√

UZ∗((R+1)α/2)]

• For the air conditioner data the delta method variance estimate for T is

U =
1
n

S2

X4

For logT the variance estimate is

UL =
1
n

S2

X2

482

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Other Bootstrap Confidence Intervals

• Percentile Methods

– Basic: [T ∗((R+1)α/2),T
∗
((R+1)(1−α/2))]

– Does not work very well with a nonparametric bootstrap

– Modified: BCa method

• ABC method.

• Double bootstrap.

• ...

483

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Bootstrap and Monte Carlo Tests

• Simulation can be used to compute null distributions or p-values.

• If the distribution of the test statistic under H0 has no unknown parame-
ters, then the p-value

P(T ≥ t|H0)

can be computed by simulation with no statistical error.

• If the distribution of the test statistic under H0 does have unknown pa-
rameters but a sufficient statistic S for the model under H0 is available,
then it may be possible to compute the conditional p-value

P(T ≥ t|S = s,H0)

by simulation with no statistical error.

• In other cases, an approximate p-value

P(T ≥ t|F̂0)

is needed.

• Transformations and reparameterizations can help reduce the statistical
error in these cases.

484

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Parametric Tests: Logistic Regression

• Suppose Y1, . . . ,Yn are independent binary responses with scalar covariate
values x1, . . . ,xn.

• A logistic regression model specifies

log
P(Yi = 1|xi)

P(Yi = 0|xi)
= β0 +β1xi

• Under H0 : β1 = 0, S = ∑Yi is sufficient for β0.

• A natural test statistic for H1 : β1 6= 0 is

T = ∑xiYi

• Conditional on S = s and H0 the distribution of the Yi is uniform on the(n
s

)
possible arrangements of s ones and n− s zeros.

• We can simulate from this distribution by generating random permuta-
tions.

• Another (in this case silly) option is to use MCMC in which each step
switches a random yi,y j pair.

485

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Parametric Bootstrap Tests: Separate Families

• For the air conditioner data we might consider testing

H0 : data have a Gamma(α,β) distribution

H1 : data have a Log Normal(µ,σ2) distribution

• A test can be based on

T =
1
n ∑ log

f1(xi|µ̂, σ̂2)

f0(xi|α̂, β̂)

• A normal approximation for the null distribution of T exists but may be
inaccurate.

• The bootstrap null distribution of T is computed by:

– Generate R random samples from the fitted null model, Gamma(α̂, β̂).

– For each sample calculate the MLE’s α̂∗, β̂ ∗, µ̂∗, and σ̂∗2.

– Using these MLE’s compute T ∗ for each sample

• For small samples this sort of test may not be useful:

– For the air conditioner data there is no significant evidence for re-
jecting a Gamma model in favor of a log normal model.

– There is also no significant evidence for rejecting a log normal model
in favor of a Gamma model.

Both p values are quite large.

486

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Nonparametric Permutation Tests: Correlation

• A test for independence of bivariate data (X1,Y1), . . . ,(Xn,Yn) can be
based on the sample correlation

T = ρ(F̂)

• Under the null hypothesis of independence the two sets of order statistics
are sufficient.

• The conditional null distribution of T , given the order statistics, is the
distribution of

T ∗ = ρ((X(1),Y
∗
1), . . .(X(n),Y

∗
n))

where Y ∗1 , . . . ,Y
∗
n is drawn uniformly from all permutations of Y1, . . . ,Yn.

• The null distribution of T can be simulated by randomly selecting per-
mutations and computing T ∗ values.

• Any other measure of dependence can be used as well, for example a
rank correlation.

487

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Semi-Parametric Bootstrap Test: Equality of Means

• Suppose we have data

Yi j = µi +σiεi j, j = 1, . . . ,ni; i = 1, . . . ,k

and we assume the εi j are independent from a common distribution G.

• To test H0 : µi = · · ·= µk against a general alternative we can use

T =
k

∑
i=1

wi(Y i− µ̂0)
2

with

µ̂0 = ∑wiY i/∑wi

wi = ni/S2
i

• The null distribution would be approximately χ2
k−1 for large sample sizes.

• The null model studentized residuals are

ei j =
Yi j− µ̂0√

σ̂2
i0− (∑wi)−1

with
σ̂

2
i0 = (ni−1)S2

i /ni +(Y i− µ̂0)
2

• The bootstrap simulates data sets

Y ∗i j = µ̂0 + σ̂i0ε
∗
i j

with the ε∗i j sampled with replacement from the pooled null studentized
residuals.

488

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Fully Nonparametric Bootstrap Tests: Comparing Two Means

• Suppose Yi j, i = 1,2, j = 1, . . . ,ni, are independent with Yi j ∼ Fi and
means µi.

• We want to test H0 : µ1 = µ2.

• Nonparametric maximum likelihood estimates F1 and F2 by discrete dis-
tributions concentrated on the observed data values.

• A certain nonparametric maximum likelihood argument suggests that the
maximum likelihood probabilities, under the constraint of equal means,
are of the form

p̂1 j,0 =
exp(λy1 j)

∑
n1
k=1 exp(λy1k)

p̂2 j,0 =
exp(−λy2 j)

∑
n2
k=1 exp(−λy2k)

with λ chosen numerically to satisfy

∑y1 j exp(λy1 j)

∑exp(λy1 j)
=

∑y2 j exp(−λy2 j)

∑exp(−λy2 j)

These are called exponential tilts of the empirical distribution.

• The tilted bootstrap two-sample comparison:

– Generate Y ∗1 j, j = 1, . . . ,n1 by sampling from y1 j with weights p̂1 j,0

– Generate Y ∗2 j, j = 2, . . . ,n2 by sampling from y2 j with weights p̂2 j,0

– Compute T ∗ = Y ∗2−Y ∗1
– Repeat R times

Then compute a bootstrap p-value, say

p =
1+#{T ∗i ≥ T}

R+1

• It is a good idea to look at the two tilted distributions to make sure they
are not too silly.

489

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Graphical Tests

• Bootstrapping and resampling ideas can be used to help calibrate graph-
ical procedures.

• As an example, a plot of X(i)/X against the quantiles of a unit exponential
distribution can be used to asses the appropriateness of the exponential
model for the airconditioner data:

0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4

Exponential Quantiles

O
rd

er
 S

ta
tis

tic
s

• The dashed line is the theoretical line for large samples.

• Is the departure more than might be expected by chance for a sample of
this size from an exponential distribution?

490

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

• A bootstrap approach:

– Generate a sample Y ∗1 , . . . ,Y
∗
n from an exponential distribution (the

mean does not matter)
– plot Y ∗(i)/Y ∗ against the unit exponential quantiles − log(1− i/(n+

1))
– Repeat and add to the plot

• For the air conditioner data with R = 50 replications this produces

0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4

Exponential Quantiles

O
rd

er
 S

ta
tis

tic
s

• Some references on similar ideas:

– Andreas Buja (1999) Talk given at the Joint Statistics Meetings 1999,
on the possibility of valid inference in exploratory data analysis,
with Di Cook: Inference for Data Visualization

– Andrew Gelman (2004) “Exploratory data analysis for complex mod-
els.” Journal of Computational and Graphical Statistics.

– Hadley Wickham, Dianne Cook, Heike Hofmann, and Andreas Buja
(2010) “Graphical inference for infovis.” IEEE Transactions on Vi-
sualization and Computer Graphics

491

Parallel Computing

• Many computations are virtually instantaneous.

• Some would take hours, days, or months.

• Often multiple processors are available

– multiple workstations

– dedicated cluster

• Ideally, p processors should be p times faster than one processor.

• Usually not quite achievable because of uneven granularity, communica-
tion overhead.

• Sophisticated parallel algorithms are hard.

– can be programmed using PVM, MPI

– R interfaces are packages rpvm, Rmpi

• Some problems are embarrassingly parallel.

• Running embarrassingly parallel programs in parallel should be simple.

492

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Package snow (Simple Network of Workstations)

• uses PVM, MPI or sockets for communication.

• manages a cluster of R worker processes from a master process.

• some simple examples:

– Create a cluster of 10 R worker processes:
library(snow)
cl <- makeCluster(10)

– Call function on all nodes:
clusterCall(cl, exp, 1)

– Evaluate an expression on all nodes:
clusterEvalQ(cl, library(boot))

– Apply function to list, one element per node:
clusterApply(cl, 1:5, get("+"), 2)

– Parallel lapply
> unlist(parLapply(cl, 1:15, get("+"), 2))
[1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

– Parallel sapply
> parSapply(cl, 1:15, get("+"), 2)
[1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

– Stop the cluster:
stopCluster(cl)

493

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Parallel Random Numbers

• Random number generation needs help:

> clusterCall(cl, runif, 3)
[[1]]
[1] 0.4351672 0.7394578 0.2008757
[[2]]
[1] 0.4351672 0.7394578 0.2008757
...
[[10]]
[1] 0.4351672 0.7394578 0.2008757

• Identical streams are likely, not guaranteed.

• R interfaces to several libraries are available: rsprng, rlecuyer,
rstream.

• snow provides a convenient interface:

> clusterSetupRNG(cl)
> clusterCall(cl, runif, 3)
[[1]]
[1] 0.014266542 0.749391854 0.007316102
[[2]]
[1] 0.8390032 0.8424790 0.8896625
...
[[10]]
[1] 0.591217470 0.121211511 0.002844222

rlecuyer is currently the default package used.

494

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Example: Parallel Bootstrap

• Bootstrapping is embarrassingly parallel.

• Replications can be split onto a cluster.

• Random number streams on nodes need to be independent.

• boot package allows bootstrapping of any R function.

• Help page shows example of bootstrapping glm fit for data on the cost
of constructing nuclear power plants.

• 1000 replicates on a single processor:

> wallTime(nuke.boot <-
+ boot(nuke.data, nuke.fun, R=1000, m=1,
+ fit.pred=new.fit, x.pred=new.data))
[1] 27.44

• Parallel version: 100 replicates on each of 10 cluster nodes:

> clusterSetupRNG(cl)
> clusterEvalQ(cl,library(boot))
> wallTime(cl.nuke.boot <-
+ clusterCall(cl,boot,nuke.data, nuke.fun, R=100, m=1,
+ fit.pred=new.fit, x.pred=new.data))
[1] 3.03

• More details are available at

http://www.stat.uiowa.edu/˜luke/R/cluster/
cluster.html

495

http://www.stat.uiowa.edu/~luke/R/cluster/cluster.html
http://www.stat.uiowa.edu/~luke/R/cluster/cluster.html

Final Notes

Topics We Covered

• computer basics

• numerical linear algebra

• optimization

• smoothing

• a little machine learning

• simulation

• MCMC

• a (very) little parallel computing

496

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Some Topics We Did Not Cover

• bootstrap

• graphics and visualization

• data technologies

• numerical integration

• symbolic computation

• data mining

• pattern recognition

• functional data analysis

• Parallel computing for big data

– Distributed arrays, pbd packages.

– MapReduce, distributed file systems, and Hadoop.

– Distributed data frames and Spark. Some examples on line.

• Cloud computing

497

http://www.stat.uiowa.edu/~luke/classes/STAT7400/examples/spark.Rmd

Computer Intensive Statistics STAT:7400, Spring 2019 Tierney

Homework and Projects

Some of the things you got from these:

• practice writing non-trivial programs that work

• appreciation of basic numerical issues

• experience using the computer to explore ideas

• a better understanding of R

• experience in understanding and extending a statistical analysis frame-
work

• practice in conducting simulation experiments

• a deeper understanding of some topic of your choice

498

	Introduction
	Syllabus and Background
	Basics
	Homework
	Project
	Ask Questions

	Computational Tools
	 Computers and Operating Systems
	Git and GitHub
	What You Will Need
	Class Web Pages
	Computing Account Setup: Do This Today!

	Computational Statistics, Statistical Computing, and Data Science
	Course Topics
	Thumbnail Sketch of R
	Thumbnail Sketch of C
	Speed Comparisons

	Basic Computer Architecture
	Typical Machine Layout
	Structure of Lab Workstations
	Processor and Cache
	Memory and Swap Space
	Disk Space
	Performance Monitoring

	Processors
	Basics
	Pipelining
	Superscalar Processors, Hyper-Threading, and Multiple Cores
	Implications

	Memory
	Basics
	Memory Layout
	Processes and Shells

	Computer Arithmetic
	Computer Arithmetic in Hardware
	Overflow
	Underflow
	A Simple Example

	Arithmetic in R
	Bignum and Arbitrary Precision Arithmetic
	Rounding Errors
	Example: Sample Standard Deviations
	Example: Truncated Normal Distribution
	Interger Arithmetic
	Floating Point Arithmetic
	Machine Characteristics
	Machine Characteristics in R

	Machine Epsilon and Machine Unit
	Machine Unit
	Machine Epsilon
	Computing Machine Constants
	Some Notes

	Floating Point Equality

	Numerical Linear Algebra
	Preliminaries
	Conditioning and Stability
	Error Analysis

	Solving Linear Systems
	Triangular Systems
	Gaussian Elimination
	Partial Pivoting
	PLU Decomposition
	Condition Number
	Some Properties of Condition Numbers
	Sensitivity of Linear Systems
	Stability of Gaussian Elimination with Partial Pivoting
	General Linear Systems in R

	Cholesky Factorization
	Properties of the Cholesky Factorization Algorithm
	Some Applications of the Cholesky Factorization
	Cholesky Factorization in R

	QR Factorization
	Householder Transformations
	Givens Rotations
	Applications
	QR with Column Pivoting
	Some Regression Diagnostics
	QR Decomposition and Least Squares in R

	Singular Value Decomposition
	Some Properties of the SVD
	Moore-Penrose Generalized Inverse
	SVD and Least Squares
	SVD and Principal Components Analysis
	SVD and Numerical Rank
	Other Applications
	SVD in R

	Eigenvalues and Eigenvectors
	Determinants
	Non-Negative Matrix Factorization
	Other Factorizations
	Exploiting Special Structure
	Toeplitz Systems
	Circulant Systems
	Sparse Systems
	Sparse and Structured Systems in R
	Update Formulas

	Iterative Methods
	Gauss-Seidel Iteration
	Splitting Methods
	Convergence
	Successive Over-Relaxation

	Conjugate Gradient Method
	Convergence
	A Simple Implementation

	Linear Algebra Software
	Some Standard Packages
	BLAS: Basic Linear Algebra Subroutines
	Cholesky Factorization in LAPACK
	ATLAS: Automatically Tuned Linear Algebra Software
	OpenBLAS
	Vendor Libraries
	Using a High-Performance BLAS with R

	Final Notes

	Optimization
	Preliminaries
	One-Dimensional Optimization
	Choosing Search Directions
	Newton's Method
	Quasi-Newton Methods
	Fisher Scoring
	Example: Logistic Regression
	Gauss-Newton Method
	Termination and Scaling
	Nelder-Mead Simplex Method
	Simulated Annealing
	EM and MCEM Algorithms
	Example: Normal Mixture Models
	Theoretical Properties of the EM Algorithm

	MM Algorithms
	Example: Bradley Terry Model

	Constrained Optimization
	Example: L1 Regression
	Some Approaches and Algorithms
	An Adaptive Barrier Algorithm

	Optimization in R

	Density Estimation and Smoothing
	Density Estimation
	Kernel Density Estimation
	Mean Square Error for Kernel Density Estimators
	Choosing a Bandwidth
	Example: Durations of Eruptions of Old Faithful
	Issues and Notes
	Density Estimation in Higher Dimensions
	Example: Eruptions of Old Faithful
	Visualizing Density Estimates
	Kernel Smoothing and Local Regression
	Spline Smoothing
	Example: Old Faithful Eruptions
	Degrees of Freedom of a Linear Smoother
	Choosing Smoothing Parameters for Linear Smoothers
	Spline Representations
	A Useful Computational Device
	Penalized Splines and Mixed Models
	Example: Old Faithful Eruptions
	Smoothing with Multiple Predictors
	Penalized Thin Plate Splines
	Multivariate Smoothing Splines
	Thin Plate Regression Splines
	Example: Scallop Catches
	Computational Issues

	Statistical Learning
	Some Machine Learning Terminology
	Tree Models
	Bagging, Boosting, and Random Forests
	Bagging: Bootstrap AGGregation
	Random Forests

	Boosting
	References on Boosting
	California Air Pollution Data

	Support Vector Machines
	Support Vector Classifiers
	An Artificial Example

	Neural Networks
	Example: Recognizing Handwritten Digits

	Deep Learning
	Stochastic Gradient Descent
	Backpropagation
	Convolutional and Recurrent Neural Networks
	Avoiding Over-Fitting
	Notes and References

	Mixture of Experts

	Symbolic Computation
	Simulation
	Computer Simulation
	Uniform Random Numbers
	Using /dev/random from R
	Issues with Physical Generators

	Pseudo-Random Numbers
	General Properties

	Linear Congruential Generators
	Examples
	Lattice Structure

	Shift-Register Generators
	Lagged Fibonacci Generators
	Combined Generators
	Other Generators
	Pseudo-Random Number Generators in R
	Testing Generators
	Issues and Recommendations
	Non-Uniform Random Variate Generation
	Inverse CDF Method
	Example: Unit Exponential Distribution
	Example: Standard Cauchy Distribution
	Example: Standard Normal Distribution
	Example: Geometric Distribution
	Example: Truncated Normal Distribution
	Issues

	Multivariate Transformations
	Box-Muller Method for the Standard Normal Distribution
	Polar Method for the Standard Normal Distribution
	Polar Method for the Standard Cauchy Distribution
	Student's t Distribution
	Beta Distribution
	F Distribution
	Non-Central t Distribution
	Non-Central Chi-Square, and F Distributions
	Bernoulli and Binomial Distributions

	Mixtures and Conditioning
	Student's t Distribution
	Negative Binomial Distribution
	Non-Central Chi-Square

	Composition Method
	Alias Method
	Accept/Reject Methods
	Sampling Uniformly from the Area Under a Density
	Rejection Sampling Using an Envelope Density
	The Basic Algorithm
	Example: Normal Distribution with Cauchy Envelope
	Squeezing
	Rejection Sampling for Discrete Distributions
	Example: Poisson Distribution with Cauchy Envelope
	Comments

	Ratio-of-Uniforms Method
	Basic Method
	Properties
	Relation to Rejection Sampling
	Generalizations

	Adaptive Rejection Sampling
	Convexity
	Log Concave Densities
	Tangent Approach
	Secant Approach

	Notes and Comments
	A Recent Publication
	Random Variate Generators in R
	Generating Random Vectors and Matrices
	Multivariate Normal Distribution
	Spherically Symmetric Distributions
	Elliptically Contoured Distributions
	Wishart Distribution

	Rejection Sampling
	Ratio of Uniforms
	Order Statistics
	Homogeneous Poisson Process
	Inhomogeneous Poisson Processes
	Other Processes
	Variance Reduction
	Control Variates
	Example
	Control Variates and Probability Estimates

	Importance Sampling
	Importance Weights
	Computing Tail Probabilities

	Antithetic Variates
	Example

	Latin Hypercube Sampling
	Common Variates and Blocking
	Conditioning or Rao-Blackwellization
	Example

	Independence Decomposition
	Example

	Princeton Robustness Study
	Distributions Used in the Study
	Estimating Variances
	Comparing Variances
	Estimating Tail Probabilities

	Markov Chain Monte Carlo
	Simulation with Dependent Observations
	A Simple Example
	Markov Chain Monte Carlo
	Some MCMC Examples
	Strauss Process
	Markov Random Fields
	Simple Image Reconstruction
	Code for the Image Sampler
	Profiling to Improve Performance
	Exploiting Conditional Independence

	More MCMC Examples
	Monte Carlo Maximum Likelihood
	Data Augmentation
	Probit Model for Pesticide Effectiveness

	Practical Bayesian Inference
	Numerical Integration
	Large Sample Approximations
	Monte Carlo Methods
	Example: Pump Failure Data

	Metropolis-Hasting Algorithm
	Symmetric Proposals
	Independence Proposals
	Metropolized Rejection Sampling
	Metropolis-Within-Gibbs
	Example: Pump Failure Data
	Gibbs Sampler in R for Pump Data

	Markov Chain Theory: Discrete State Space
	Reversibility
	Convergence
	Different Points of View

	Markov Chain Theory: General State Spaces
	Reversibility
	Convergence
	Rates of Convergence
	Central Limit Theorems
	Summary of Markov Chain Theory

	Output Analysis
	Simulation Estimators
	Variance Estimation
	Time Series Models
	Spectral Density at the Origin
	Batching and Replication
	Effective Sample Size and Sampler Efficiency
	Example: Pump Data
	Convergence and Mixing
	Outline of Diagnostic Approaches
	Convergence and Mixing Again

	Combining MCMC Samplers
	Improving Mixing and Convergence
	Transformations
	Blocking
	Auxiliary Variables
	Example: Tobacco Budworms
	Swendsen-Wang Algorithm
	Hamiltonian Monte Carlo
	Pseudo-Marginal Metropolis-Hastings MCMC
	Heating and Reweighting
	Switching and Parallel Chains

	Regeneration and MCM
	Transdimensional MCMC
	Reversible Jump MCMC
	A Simple Example: Normal Means
	Alternate Approach: Mixed Distributions
	Birth and Death MCMC
	Example: Normal Mixture Models

	Approximate Bayesian Computation (ABC)
	Other MCMC and Related Approaches
	Perfect Sampling and Coupling From The Past
	Example: Image reconstruction with Ising Prior

	Graphical Methods and Visualization
	Historical Graphics
	Graphics Software
	Graphics in R and S-PLUS
	Some References
	Some Courses
	A View of R Graphics
	Graphics Examples
	Plots for Single Numeric Variables
	Dot Plots

	More Plots for Single Numeric Variables
	Bar Charts
	Density Plots
	Quantile Plots

	Other Plots
	Plots for Single Categorical Variables
	Pie Charts

	Bar Charts
	Plotting Two Numeric Variables
	Scatter Plots
	Handling Larger Data Sets

	Plotting a Numeric and a Categorical Variable
	Strip Charts
	Box Plots
	Density Plots
	Categorical Response Variable

	Plotting Two Categorical Variables
	Bar Charts

	Plotting Two Categorical Variables
	Spine Plots
	Mosaic Plots

	Three or More Variables
	Some Examples
	Soil Resistivity
	Barley Yields
	NOx Emissions from Ethanol-Burning Engine

	Three or More Variables
	Earth Quakes

	Other 3D Options
	Design Notes
	Dynamic Graphs
	Color Issues
	Some Issues
	Some References

	Perception Issues
	Some References

	Some Web and Related Technologies
	Further References
	Some More References and Links
	Some Data Technologies
	Example: Finding the Current Temperature
	Example: Creating a Temperature Map
	Example: 2008 Presidential Election Results
	ITBS Results for Iowa City Elementary Schools
	Studying the Web

	Bootstrap and Resampling Methods
	Example: A Parametric Bootstrap
	Bootstrap and Resampling Methods
	Example: A Nonparametric Bootstrap
	A Simple Implementation
	A Cautionary Example
	Bootstrapping Regression Models
	Case-Based Bootstrap
	Model-Based Bootstrap
	Example: Leukemia Survival
	Bootstrap Confidence Intervals
	Bootstrap and Monte Carlo Tests
	Graphical Tests

	Parallel Computing
	Package snow (Simple Network of Workstations)
	Parallel Random Numbers
	Example: Parallel Bootstrap

	Final Notes
	Topics We Covered
	Some Topics We Did Not Cover
	Homework and Projects

