
The R Bytecode Compiler and VM

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

July 11, 2019

Luke Tierney (U. of Iowa) R Bytecode RIOT 2019 1 / 11



Introduction

R is a language for data analysis and graphics.

Originally developed by Ross Ihaka and Robert Gentleman, R is now
maintained and developed by the R core group.

R is based on the S language developed by John Chambers and others
at Bell Labs.

R is widely used in the field of statistics and beyond, especially in
university environments.

R has become the primary framework for developing and making
available new statistical methodology.

Many (over 13,000) extension packages are available through CRAN
or similar repositories.

Luke Tierney (U. of Iowa) R Bytecode RIOT 2019 2 / 11



Background

The standard R evaluation mechanism

parses code into an abstract syntax tree (AST) when the code is read;
evaluates code by interpreting the ASTs.

Compilation to some form of bytecode reduces interpreter overhead
and allows for some other optimizations.

Bytecode compilation is used in many languages, e.g. Python and
Ruby.

The first release of the compiler occurred in R 2.13.0 (2011).

Significant improvements were released in R 3.2.0 (2015).

Just-in-time compilation was made the default in R 3.4.0 (2017).

Further improvements are in development.

Luke Tierney (U. of Iowa) R Bytecode RIOT 2019 3 / 11



Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function;
cmpfile compiles a file to be loaded by loadcmp.

It is also possible to have package code compiled when a package is
installed; this is now the default.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first or second use;
loops are compiler before they are run.

Luke Tierney (U. of Iowa) R Bytecode RIOT 2019 4 / 11



Compiler Operation and VM Design

The current compiler includes a number of optimizations, such as

constant folding;
special instructions for most SPECIALs, many BUILTINs;
inlining some simple .Internal calls;
maintaining intermediate scaler results on the stack without boxing.

The compiler is currently most effective for code used on scalar data
or short vectors where interpreter overhead is large relative to actual
computation.

The current VM design is stack-based; a register-based design may be
adopted in the future.

Luke Tierney (U. of Iowa) R Bytecode RIOT 2019 5 / 11



A Simple Example

R Code

f <- function(x) {

s <- 0.0

for (y in x)

s <- s + y

s

}

VM Assembly Code

LDCONST 0.0

SETVAR s

POP

GETVAR x

STARTFOR y L2

L1: GETVAR s

GETVAR y

ADD

SETVAR s

POP

L2: STEPFOR L1

ENDFOR

POP

GETVAR s

RETURN

Luke Tierney (U. of Iowa) R Bytecode RIOT 2019 6 / 11



A Simple Example (cont.)

R Code

f <- function(x) {

s <- 0.0

for (i in seq_along(x))

s <- s + x[i]

s

}

VM Assembly Code

...

GETVAR x

SEQALONG

STARTFOR.OP i L2

L1: GETVAR s

GETVAR x

STARTSUBSET_N <expr> L3

GETVAR_MISSOK i

VECSUBSET

L3: ADD

...

Register-based loop body

...

L1: GETVAR s R1

STARTSUBSET_N x <expr> L3

VECSUBSET x i R2

L3: ADD R1 R2 s

...

Luke Tierney (U. of Iowa) R Bytecode RIOT 2019 7 / 11



Some Performance Results

Timings for some simple benchmarks on an x86_64 Ubuntu laptop:

Benchmark AST Comp. Speedup Exper. Speedup

sum 11.91 2.10 5.7 1.68 7.1
conv 9.07 1.31 6.9 0.85 10.7
ddot 34.59 5.75 6.0 4.10 8.4
rem 8.06 1.14 7.1 1.00 8.1

AST, Comp. are for R 3.6.0

Exper. includes use of unboxed variable bindings.

Preliminary experiments:

a register-based design may provide another 2x speedup.
simple C code generation from either stack-based or register-based
code may provide another 3-5x speedup.

Luke Tierney (U. of Iowa) R Bytecode RIOT 2019 8 / 11



Notes and Future Directions

A major goal: miminize semantic changes.

Developing the compiler helped clarify some semantics.
Testing against all CRAN and BioConductor packages was also very
helpful.
In the few cases where semantic differences remain, the compiled
semantics are probably better.

Compilation was a major motivation for adding namespaces to R, and
for locking bindings in namespaces.

At default optimization level only calls to functions found through
namespaces are optimized unconditionally.
In other cases, guard instructions are sued to fall back to the AST
interpreter.

At this point only function bodies are compiled.

Default arguments will be interpreted.
Function calls use the (slow) interpreter mechanism‘.
This matches up well with (unfortunately) common one big function
approach.

Luke Tierney (U. of Iowa) R Bytecode RIOT 2019 9 / 11



Notes and Future Directions

Some useful VM strategies:

caching bindings from the innermost environment frame;
using a typed stack to allow unboxed scalars;
allowing unboxed scalar values in variable bindings;
separate instructions for one and two index subscripting.

Other directions to explore:

More efficient function calls.
Reducing/avoiding lazy evaluation overhead when possible.
Intra-procedural optimizations and inlining.
Declarations (sealing, scalars, types, strictness).
Machine code generation using LLVM or other approaches.
Incorporating ideas from Justin Talbot, Renjin, and pqR on
delaying/fusing computations.
Trace compilation?

Luke Tierney (U. of Iowa) R Bytecode RIOT 2019 10 / 11



Notes and Future Directions

Debuging/profiling issues:

Currently turning on debugging for a compiled function switches to the
interpreted version.
There is some VM level profiling support but it could be a lot better.

Maintainability is a major concern

The compiler is written in R as a literate program using noweb.
The VM is not nearly as well documented.
The VM uses threaded code when gcc is used (based on macros from
Piumarta and Riccardi, 1998).
Generating machine code might complicate it further (or not).
The AST interpreter could be simplified to serve as a cleaner language
specification.

Luke Tierney (U. of Iowa) R Bytecode RIOT 2019 11 / 11


	Introduction
	Background
	Compiler Operation
	A Simple Example
	Some Performance Results
	Notes and Future Directions

