
Some Performance Improvements for the R Engine

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

June 26, 2014

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 1 / 17



Introduction

There are a number of efforts underway to improve performance
issues in R.

This talk will focus on

reducing duplication
switching from NAMED to reference counting
duplication in complex assignment

A few other directions will be mentioned if time permits.

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 2 / 17



Introduction

Duplicating values takes time and uses memory.
Most duplication in R occurs in the context of complex
assignment/replacement operations like
> x[[i]] <- y

Duplication is needed for two reasons:
to preserve the pass by value semantics
to prevent creating cycles (except through environments)

Michael Lawrence contributed changes to reduce duplication by using
shallow copying in nested structures when possible.

This also involves using a check for when an assignment would create
a cycle.

Shallow copying increases sharing of structure; this sharing is not
preserved when serializing.

These changes were incorporated in R 3.1.0.

At the time I had started to think about using reference counting to
determine when duplication might be needed, so the changes made
kept this in mind.

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 3 / 17



Reference Counting
The NAMED Mechanism

In complex assignments/replacements like

> f(x, i) <- y

> f(g(x, j), i) <- y

the modification can be made without duplicating if the LHS values
are only accessible through one R level variable.

The NAMED mechanism counts the number of variables from which
an object is reachable.

The NAMED value is maintained in a lazy fashion — it is updated on
extraction.

Currently only the values 0, 1, 2 are allowed.

the value “2” means “2 or more.”

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 4 / 17



Reference Counting
Some Issues

The implementation is hard to understand and maintain

implementation is distributed in many places
omissions of NAMED management code are hard to detect

Decrementing NAMED values is difficult

not useful with a maximal value of 2
difficult to do automatically

Proper reference counting seems like an alternative worth
investigating.

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 5 / 17



Reference Counting
Basic Implementation

Basic implementation is straight forward:

when a new value is assigned to an SEXP field the new values’s count
in incremented and the old value’s count is decremented.
Count management happens in constructors and in updating functions.
These are already well isolated in memory.c because of the write barrier.

Using the existing 2-bit NAMED field allows a maximal reference
count of 3.

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 6 / 17



Reference Counting
Notes and Comments

Complex assignment/replacement needs to track reference counts for
all intermediate LHS values.

Some fields should not increment reference counts:

.Last.value variable
promises used internally for LHS values
other internal lists, e.g. for arguments to BULTIN calls

For now, this is addressed with a “do not track” bit.

Non-tracking objects are created with CONS NR,
R mkEVPROMISE NR

Explicit incrementing/decrementing can be useful in places.

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 7 / 17



Reference Counting
Notes and Comments

This mechanism seems much easier to maintain:

almost everything is done right by default
all non-standard uses are easy to detect and review
omitting an exception results in more duplicating but still correct
semantics

This is available in the current R-devel sources.

Defining SWITCH TO REFCNT uses reference counting with the
existing memory layout and maximal reference count of 3.
Switching to a larger maximal count is also possible but needs a small
code fix.

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 8 / 17



Reference Counting
Further Developments

All objects are reference counted, including environments.

In closure calls, environments are almost always used in a stack-like
fashion:

once a call returns the environment is no longer reachable
the values of the environments variables can have their reference
counts decremented

An example:
> x <- rnorm(1e6)

> m <- mean(x)

> x[1] <- 0

With NAMED or simple reference counting the final line has to
duplicate because the mean closure created a reference to x.

With a (not yet checked in) modification that releases environment
bindings at the end of closure calls, if possible, this does not duplicate.

No change to the implementation of mean is needed.

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 9 / 17



Complex Assignment/Replacement
The Simple Case

A frustrating example:

> d <- data.frame(x = rnorm(1e6))

> for (i in seq_len(nrow(d))) d[[i, 1]] <- d[[i, 1]] + 1

This duplicates d on every iteration.

The [[<-.data.frame function is implemented by a closure.

When that closure is called, there are two variables that reference the
value of x:

the top level variable x
the first parameter in the closure

Packages can only define closures, not primitives.

So all replacement functions defined in packages will require
duplicating the LHS.

Unless they cheat with C code, which could be dangerous.

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 10 / 17



Complex Assignment/Replacement
A Possible Approach

We can address this by

keeping track of the number of references that are part of the
replacement process
identifying when a closure call is in a replacement context
allowing low level primitives to modify without duplicating when this
information allows.

A mechanism to do this has been implemented.

Some further testing and cleaning is needed before committing.
(Hopefully in the next month or so.)

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 11 / 17



Complex Assignment/Replacement
A Possible Approach

With this enabled, replacement functions have to be careful not to
signal errors after partial modifications.

Many existing replacement functions are not careful about this, so
turning this on by default is not possible.

For now:

The internals keep track of whether direct modification is possible in
principle.
The closure has to take some action to authorize direct modification.
Currently this means calling .Internal(modifying(x)) — something
better is needed.

It would also be a good idea to disable user interrupts during these
closure calls.

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 12 / 17



Complex Assignment/Replacement
A Simple Example

bar <- function(x) x[[1]]

‘bar<-‘ <- function(x, value) {

.Internal(modifying(x))

x[[1]] <- value

x

}

x <- list(1)

bar(x) <- 2

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 13 / 17



Complex Assignment/Replacement
Nested Complex Assignment/Replacement Expressions

A nested complex assignment/replacement:

> f(g(x, j), i) <- y

If f<- and g<- are both primitives and both LHS values have only
one reference, then they can be destructively modified if all possible
values returned by f<- would be OK as RHS values for g<-.

One problem case (the only one I believe):

> m <- matrix(0, 2, 2)

> dim(m)[2] <- 3L

Error in dim(m)[2] <- 3L :

dims [product 6] do not match the length of object [4]

To deal with this the dim attribute is marked as immutable (i.e.
always duplicated on modify).

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 14 / 17



Complex Assignment/Replacement
Nested Complex Assignment/Replacement Expressions

If f<- is a closure and g<- is a primitive then the approach outlined
previously should still work (e.g. a list of data frames is OK).

If g<- is a closure it could

reject the value produced by f<-

want to look at the unmodified original LHS value
do any number of wild and strange things

There does not seem to be any way around this other than to
(shallow) duplicate the inner LHS whenever the outer replacement
function is a closure.

This is done when a closure is used to extract an inner LHS in the
complex assignment process.

This is based on the heuristic that the replacement function will only
be a closure if the extraction function is also.

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 15 / 17



Complex Assignment/Replacement
Nested Complex Assignment/Replacement Expressions

One possibility that might handle closures in more cases would be to
defer actual modifications until the very end when all primitive
modifications are applied.

This would be quite challenging to implement but might be possible.

This would probably require considerable rewriting of replacement
functions, which may be hard to get programmers to buy into.

It is probably worth some more investigation.

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 16 / 17



Other Areas

Byte code:

Add a typed stack to avoid boxing/unboxing of scalar results in byte
compiled code.
Add instructions for handling vector/matrix indexing efficiently in byte
compiled code.
Look into strictness analysis/declarations and inlining.

Inerpreter:

Explore releasing memory when reference count drops to zero.
Avoid allocating argument lists in BUILTIN calls, among others.
More efficient closure calling, handling of promises, etc.

Larger data sets:

More efficient representation of arithmetic sequences, default row
names, etc.
Avoid generating default row names, residuals, fitted values, full Q of
QR factorization in lm.fit and others.
Parallel vector operations (pnmath), hopefully via OpenMP.
Consider full support for 64 bit integers.

Luke Tierney (U. of Iowa) Performance Improvements DSC 2014 17 / 17


	Introduction
	Reducing Duplication
	Reference Counting
	The NAMED Mechanism
	Some Issues
	Basic Implementation
	Notes and Comments
	Further Developments

	Complex Assignment/Replacement
	The Simple Case
	A Possible Approach
	A Simple Example
	Nested Complex Assignment/Replacement Expressions

	Other Areas

