
Dynamic and Interactive Graphics in Lisp-Stat

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

July 31, 2017

Luke Tierney (U. of Iowa) Lisp-Stat Graphics Baltimore: JSM 2017 1 / 12



Background

This talk describes work in the late 1980s and 1990s for

making available basic interactive and dynamic graphics;
supporting experimentation and development of new methods.

My first exposure to dynamic and interactive graphics was in work of
Becker and Cleveland on linked brushing in a scatterplot matrix

The ideas were described in “Brushing scatterplots” (Becker and
Cleveland, 1987, Technometrics)

Luke Tierney (U. of Iowa) Lisp-Stat Graphics Baltimore: JSM 2017 2 / 12



Background

The hardware used was the ATT Teletype Model 5620 (BLIT)

Other efforts at this time used Lisp Machines or high-end Unix
workstations, all out of my price range.

The Apple Macintosh had become available and was a more
cost-effective option.

My initial efforts involved developing two simple, stand-alone
Macintosh applications for scatterplot brushing and point cloud
rotation.

Stand-alone tools need external tools for data preparation.

The S language, available to a limited number of universities,
provided an excellent integrated framework for data analysis and
static graphics.

Something similar was needed to support dynamic graphics.

Luke Tierney (U. of Iowa) Lisp-Stat Graphics Baltimore: JSM 2017 3 / 12

https://en.wikipedia.org/wiki/Blit_(computer_terminal)


Background

An open source Lisp framework was a convenient choice.

I used the XLISP implementation from David Betz, with added
Common Lisp features.

Some useful features of Lisp:

Supports a functional programming style;
Macro system for adding new syntax;
Easy to modify to support vectorized operations.
Easy to develop new object systems.
A good exceptional condition handling system;

Luke Tierney (U. of Iowa) Lisp-Stat Graphics Baltimore: JSM 2017 4 / 12



Some Basic Design Features

A command line interface (CLI) for interactively expressing
computations;

Integrating the command line with interactive graphics event
processing.

Prototype-based object system for graphics and models.

Multiple inheritance to support mixin style of programming.

Plots represent views on p-dimensional space.

Support linear transformations of space.

Each plot has its own window/menu.

Luke Tierney (U. of Iowa) Lisp-Stat Graphics Baltimore: JSM 2017 5 / 12



Basic Usage

Lisp prefix function call syntax:
(log x)

(+ 1 2)

(* (log x) 2)

Defining a variable:
(def abrasion-loss (list 372 206 175 ...))

Summaries:
(mean abrasion-loss)

(median abrasion-loss)

Some plots:
(plot-points abrasion-loss tensile-strength)

(histogram hardness)

Luke Tierney (U. of Iowa) Lisp-Stat Graphics Baltimore: JSM 2017 6 / 12



Basic Dynamic Graphics

Standard plot objects:

histogram – histogram
scatterplot – plot-points
3D point cloud – spin-plot
scatterplot matrix – scatterplot-matrix

Standard interactions:

identification
selection/brushing
adjusting selection color/symbol
linking multiple plots

Interactive operations can also be done programmatically.
(send p :selection)

(send p :selection (< hardness 70))

Luke Tierney (U. of Iowa) Lisp-Stat Graphics Baltimore: JSM 2017 7 / 12



Custom Animations

Kernel density estimate with a slider control:
(let* ((s (rseq 20 80 31))

(p (plot-lines (kernel-dens abrasion-loss

:points 30 :width (first s))))

(d (sequence-slider-dialog

s

:action

#’(lambda (w)

(send p :clear :draw nil)

(send p :add-lines

(kernel-dens abrasion-loss :points 30 :width w))

(pause 2)))))

(send p :add-subordinate d))

Slider controls can also be incorporated into a plot as overlays.

Luke Tierney (U. of Iowa) Lisp-Stat Graphics Baltimore: JSM 2017 8 / 12



Customized Interaction

New interactions can be created by defining a new mouse mode.

The hand rotate mode for spin plots is defined in about 30 lines of
code.

Response to changes in linked plots can be customized by defining a
custom :adjust-screen method.

A method to fit a smooth line to the currently highlighted or selected
points in a scatterplot:
(defmeth p :adjust-screen ()

(call-next-method)

(let ((i (union (send self :points-selected)

(send self :points-hilited))))

(send self :clear-lines :draw nil)

(if (< 1 (length i))

(let ((x (select x-var i))

(y (select y-var i))

(w (send self :kernel-width)))

(send self :add-lines (kernel-smooth x y :width w)))

(send self :redraw-content))))

Luke Tierney (U. of Iowa) Lisp-Stat Graphics Baltimore: JSM 2017 9 / 12



New Plot Types

New plot types can be created as new prototypes.

A simple example is a parallel coordinates plot.

Prototypes can inherit from one or more prototypes.

This supports a mixin style of design.

A grand tour mixin can be created to change the transformation of
the p-dimensional data matrix according to a touring algorithm.

A standard tour plot can be constructed from this mixin and a spin
plot.

A parallel coordinates tour can also be built fro the tour mixin and
the parallel coordinates plot.

Luke Tierney (U. of Iowa) Lisp-Stat Graphics Baltimore: JSM 2017 10 / 12



Parallel Coordinates Tour

(defproto parallel-tour-proto ’(angle) ()

(list tour-mixin parallel-plot-proto))

(defmeth parallel-tour-proto :angle (&optional (val nil set))

(when set (setf (slot-value ’angle) val))

(slot-value ’angle))

(send parallel-tour-proto :angle .1)

(defmeth parallel-tour-proto :num-tour-variables ()

(- (send self :num-variables) 1))

(send parallel-tour-proto :slot-value ’scale-type ’variable)

(defun tour-parallel-plot (data &rest args &key point-labels)

(let ((graph (apply #’send parallel-tour-proto :new (length data) args)))

(if point-labels

(send graph :add-points data :point-labels point-labels :draw nil)

(send graph :add-points data :draw nil))

(send graph :adjust-to-data :draw nil)

graph))

Luke Tierney (U. of Iowa) Lisp-Stat Graphics Baltimore: JSM 2017 11 / 12



Discussion

Some historical constraints:
unsettled user interface conventions (mouse buttons, menus, ...);
limited color range;
speed.

Some design decisions:
new window for every plot;
one plot per window

Some lessons:
integration with a powerful language CLI is very valuable;
creating a good set of software bulding blocks is very helpful;
being able to switch between language CLI and interaction is very
useful (current limitation of shiny approaches);
programming callbacks in language is helpful (current limitation of
JavaScript approaches)

L. Tierney (1990), LISP-STAT: An Object-Oriented Environment for
Statistical Computing and Dynamic Graphics, Wiley.

http://www.stat.uiowa.edu/~luke/xls/xlispstat/current/

Luke Tierney (U. of Iowa) Lisp-Stat Graphics Baltimore: JSM 2017 12 / 12

http://www.stat.uiowa.edu/~luke/xls/xlispstat/current/

	Background
	Some Basic Design Decisions
	Basic Usage
	Basic Dynamic Graphics
	Custom Animations
	Customized Interaction
	New Plot Types
	Discussion

