
Some new developments for the R engine

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

June 24, 2012

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 1 / 24



Introduction

R is a language for data analysis and graphics.

Originally developed by Ross Ihaka and Robert Gentleman at
University of Auckland, New Zealand.

Now developed and maintained by a distributed group of 20 people.

R is based on the S language developed by John Chambers and others
at Bell Labs.

R is widely used in the field of statistics and beyond, especially in
university environments.

R has become the primary framework for developing and making
available new statistical methodology.

Many (over 3,000) extension packages are available through CRAN or
similar repositories.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 2 / 24



Introduction

R is a language for data analysis and graphics.

Originally developed by Ross Ihaka and Robert Gentleman at
University of Auckland, New Zealand.

Now developed and maintained by a distributed group of 20 people.

R is based on the S language developed by John Chambers and others
at Bell Labs.

R is widely used in the field of statistics and beyond, especially in
university environments.

R has become the primary framework for developing and making
available new statistical methodology.

Many (over 3,000) extension packages are available through CRAN or
similar repositories.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 2 / 24



Introduction

R is a language for data analysis and graphics.

Originally developed by Ross Ihaka and Robert Gentleman at
University of Auckland, New Zealand.

Now developed and maintained by a distributed group of 20 people.

R is based on the S language developed by John Chambers and others
at Bell Labs.

R is widely used in the field of statistics and beyond, especially in
university environments.

R has become the primary framework for developing and making
available new statistical methodology.

Many (over 3,000) extension packages are available through CRAN or
similar repositories.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 2 / 24



Introduction

R is a language for data analysis and graphics.

Originally developed by Ross Ihaka and Robert Gentleman at
University of Auckland, New Zealand.

Now developed and maintained by a distributed group of 20 people.

R is based on the S language developed by John Chambers and others
at Bell Labs.

R is widely used in the field of statistics and beyond, especially in
university environments.

R has become the primary framework for developing and making
available new statistical methodology.

Many (over 3,000) extension packages are available through CRAN or
similar repositories.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 2 / 24



Introduction

R is a language for data analysis and graphics.

Originally developed by Ross Ihaka and Robert Gentleman at
University of Auckland, New Zealand.

Now developed and maintained by a distributed group of 20 people.

R is based on the S language developed by John Chambers and others
at Bell Labs.

R is widely used in the field of statistics and beyond, especially in
university environments.

R has become the primary framework for developing and making
available new statistical methodology.

Many (over 3,000) extension packages are available through CRAN or
similar repositories.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 2 / 24



Introduction

R is a language for data analysis and graphics.

Originally developed by Ross Ihaka and Robert Gentleman at
University of Auckland, New Zealand.

Now developed and maintained by a distributed group of 20 people.

R is based on the S language developed by John Chambers and others
at Bell Labs.

R is widely used in the field of statistics and beyond, especially in
university environments.

R has become the primary framework for developing and making
available new statistical methodology.

Many (over 3,000) extension packages are available through CRAN or
similar repositories.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 2 / 24



Introduction

R is a language for data analysis and graphics.

Originally developed by Ross Ihaka and Robert Gentleman at
University of Auckland, New Zealand.

Now developed and maintained by a distributed group of 20 people.

R is based on the S language developed by John Chambers and others
at Bell Labs.

R is widely used in the field of statistics and beyond, especially in
university environments.

R has become the primary framework for developing and making
available new statistical methodology.

Many (over 3,000) extension packages are available through CRAN or
similar repositories.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 2 / 24



Introduction

This talk outlines three areas of development in the core R engine:

New large vector support.
Fine-grained parallelization of vector and matrix operations.
Byte code compilation of R code.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 3 / 24



Introduction

This talk outlines three areas of development in the core R engine:

New large vector support.
Fine-grained parallelization of vector and matrix operations.
Byte code compilation of R code.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 3 / 24



Introduction

This talk outlines three areas of development in the core R engine:

New large vector support.
Fine-grained parallelization of vector and matrix operations.
Byte code compilation of R code.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 3 / 24



Introduction

This talk outlines three areas of development in the core R engine:

New large vector support.
Fine-grained parallelization of vector and matrix operations.
Byte code compilation of R code.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 3 / 24



Large Vector Support

Big Data is a hot topic in this session.

Some categories:

fit into memory
fit on one machine’s disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to handle smaller large data problems on machines
with enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 4 / 24



Large Vector Support

Big Data is a hot topic in this session.

Some categories:

fit into memory
fit on one machine’s disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to handle smaller large data problems on machines
with enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 4 / 24



Large Vector Support

Big Data is a hot topic in this session.

Some categories:

fit into memory
fit on one machine’s disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to handle smaller large data problems on machines
with enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 4 / 24



Large Vector Support

Big Data is a hot topic in this session.

Some categories:

fit into memory
fit on one machine’s disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to handle smaller large data problems on machines
with enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 4 / 24



Large Vector Support

Big Data is a hot topic in this session.

Some categories:

fit into memory
fit on one machine’s disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to handle smaller large data problems on machines
with enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 4 / 24



Large Vector Support

Big Data is a hot topic in this session.

Some categories:

fit into memory
fit on one machine’s disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to handle smaller large data problems on machines
with enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 4 / 24



Large Vector Support

Big Data is a hot topic in this session.

Some categories:

fit into memory
fit on one machine’s disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to handle smaller large data problems on machines
with enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 4 / 24



Large Vector Support

Big Data is a hot topic in this session.

Some categories:

fit into memory
fit on one machine’s disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to handle smaller large data problems on machines
with enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 4 / 24



Large Vector Support
Initial Objectives

Through R 2.15.1 the total number of elements in a vector cannot
exceed 231 − 1 = 2, 147, 483, 647

This limit represents the largest possible 32-bit signed integer.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

We need a way to raise this limit that meets several goals:

avoid having to rewrite too much of R itself
avoid requiring package authors to rewrite too much C code
avoid having existing compiled C code fail if possible
allow incrementally adding support for procedures where it makes sense

For now, keep 231 − 1 limit on matrix rows and columns.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 5 / 24



Large Vector Support
Initial Objectives

Through R 2.15.1 the total number of elements in a vector cannot
exceed 231 − 1 = 2, 147, 483, 647

This limit represents the largest possible 32-bit signed integer.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

We need a way to raise this limit that meets several goals:

avoid having to rewrite too much of R itself
avoid requiring package authors to rewrite too much C code
avoid having existing compiled C code fail if possible
allow incrementally adding support for procedures where it makes sense

For now, keep 231 − 1 limit on matrix rows and columns.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 5 / 24



Large Vector Support
Initial Objectives

Through R 2.15.1 the total number of elements in a vector cannot
exceed 231 − 1 = 2, 147, 483, 647

This limit represents the largest possible 32-bit signed integer.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

We need a way to raise this limit that meets several goals:

avoid having to rewrite too much of R itself
avoid requiring package authors to rewrite too much C code
avoid having existing compiled C code fail if possible
allow incrementally adding support for procedures where it makes sense

For now, keep 231 − 1 limit on matrix rows and columns.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 5 / 24



Large Vector Support
Initial Objectives

Through R 2.15.1 the total number of elements in a vector cannot
exceed 231 − 1 = 2, 147, 483, 647

This limit represents the largest possible 32-bit signed integer.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

We need a way to raise this limit that meets several goals:

avoid having to rewrite too much of R itself
avoid requiring package authors to rewrite too much C code
avoid having existing compiled C code fail if possible
allow incrementally adding support for procedures where it makes sense

For now, keep 231 − 1 limit on matrix rows and columns.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 5 / 24



Large Vector Support
Initial Objectives

Through R 2.15.1 the total number of elements in a vector cannot
exceed 231 − 1 = 2, 147, 483, 647

This limit represents the largest possible 32-bit signed integer.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

We need a way to raise this limit that meets several goals:

avoid having to rewrite too much of R itself
avoid requiring package authors to rewrite too much C code
avoid having existing compiled C code fail if possible
allow incrementally adding support for procedures where it makes sense

For now, keep 231 − 1 limit on matrix rows and columns.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 5 / 24



Large Vector Support
Initial Objectives

Through R 2.15.1 the total number of elements in a vector cannot
exceed 231 − 1 = 2, 147, 483, 647

This limit represents the largest possible 32-bit signed integer.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

We need a way to raise this limit that meets several goals:

avoid having to rewrite too much of R itself
avoid requiring package authors to rewrite too much C code
avoid having existing compiled C code fail if possible
allow incrementally adding support for procedures where it makes sense

For now, keep 231 − 1 limit on matrix rows and columns.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 5 / 24



Large Vector Support
Initial Objectives

Through R 2.15.1 the total number of elements in a vector cannot
exceed 231 − 1 = 2, 147, 483, 647

This limit represents the largest possible 32-bit signed integer.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

We need a way to raise this limit that meets several goals:

avoid having to rewrite too much of R itself
avoid requiring package authors to rewrite too much C code
avoid having existing compiled C code fail if possible
allow incrementally adding support for procedures where it makes sense

For now, keep 231 − 1 limit on matrix rows and columns.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 5 / 24



Large Vector Support
Initial Objectives

Through R 2.15.1 the total number of elements in a vector cannot
exceed 231 − 1 = 2, 147, 483, 647

This limit represents the largest possible 32-bit signed integer.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

We need a way to raise this limit that meets several goals:

avoid having to rewrite too much of R itself
avoid requiring package authors to rewrite too much C code
avoid having existing compiled C code fail if possible
allow incrementally adding support for procedures where it makes sense

For now, keep 231 − 1 limit on matrix rows and columns.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 5 / 24



Large Vector Support
Initial Objectives

Through R 2.15.1 the total number of elements in a vector cannot
exceed 231 − 1 = 2, 147, 483, 647

This limit represents the largest possible 32-bit signed integer.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

We need a way to raise this limit that meets several goals:

avoid having to rewrite too much of R itself
avoid requiring package authors to rewrite too much C code
avoid having existing compiled C code fail if possible
allow incrementally adding support for procedures where it makes sense

For now, keep 231 − 1 limit on matrix rows and columns.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 5 / 24



Large Vector Support
Initial Objectives

Through R 2.15.1 the total number of elements in a vector cannot
exceed 231 − 1 = 2, 147, 483, 647

This limit represents the largest possible 32-bit signed integer.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

We need a way to raise this limit that meets several goals:

avoid having to rewrite too much of R itself
avoid requiring package authors to rewrite too much C code
avoid having existing compiled C code fail if possible
allow incrementally adding support for procedures where it makes sense

For now, keep 231 − 1 limit on matrix rows and columns.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 5 / 24



Large Vector Support
Current Design

C level changes:

Preserve existing memory layout
Use special marker in length field to identify long vectors
LENGTH accessor (returning int) signals an error for long vectors
Long vector aware code uses XLENGTH to return R xlen t.

R code should not need to be changed:

double precision indices can be used for subsetting
length will return double for long vectors
.C and .Fortran will signal errors for long vectors.

A document describing how to add long vector support to a package
should be available soon.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 6 / 24



Large Vector Support
Current Design

C level changes:

Preserve existing memory layout
Use special marker in length field to identify long vectors
LENGTH accessor (returning int) signals an error for long vectors
Long vector aware code uses XLENGTH to return R xlen t.

R code should not need to be changed:

double precision indices can be used for subsetting
length will return double for long vectors
.C and .Fortran will signal errors for long vectors.

A document describing how to add long vector support to a package
should be available soon.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 6 / 24



Large Vector Support
Current Design

C level changes:

Preserve existing memory layout
Use special marker in length field to identify long vectors
LENGTH accessor (returning int) signals an error for long vectors
Long vector aware code uses XLENGTH to return R xlen t.

R code should not need to be changed:

double precision indices can be used for subsetting
length will return double for long vectors
.C and .Fortran will signal errors for long vectors.

A document describing how to add long vector support to a package
should be available soon.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 6 / 24



Large Vector Support
Current Design

C level changes:

Preserve existing memory layout
Use special marker in length field to identify long vectors
LENGTH accessor (returning int) signals an error for long vectors
Long vector aware code uses XLENGTH to return R xlen t.

R code should not need to be changed:

double precision indices can be used for subsetting
length will return double for long vectors
.C and .Fortran will signal errors for long vectors.

A document describing how to add long vector support to a package
should be available soon.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 6 / 24



Large Vector Support
Current Design

C level changes:

Preserve existing memory layout
Use special marker in length field to identify long vectors
LENGTH accessor (returning int) signals an error for long vectors
Long vector aware code uses XLENGTH to return R xlen t.

R code should not need to be changed:

double precision indices can be used for subsetting
length will return double for long vectors
.C and .Fortran will signal errors for long vectors.

A document describing how to add long vector support to a package
should be available soon.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 6 / 24



Large Vector Support
Current Design

C level changes:

Preserve existing memory layout
Use special marker in length field to identify long vectors
LENGTH accessor (returning int) signals an error for long vectors
Long vector aware code uses XLENGTH to return R xlen t.

R code should not need to be changed:

double precision indices can be used for subsetting
length will return double for long vectors
.C and .Fortran will signal errors for long vectors.

A document describing how to add long vector support to a package
should be available soon.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 6 / 24



Large Vector Support
Current Design

C level changes:

Preserve existing memory layout
Use special marker in length field to identify long vectors
LENGTH accessor (returning int) signals an error for long vectors
Long vector aware code uses XLENGTH to return R xlen t.

R code should not need to be changed:

double precision indices can be used for subsetting
length will return double for long vectors
.C and .Fortran will signal errors for long vectors.

A document describing how to add long vector support to a package
should be available soon.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 6 / 24



Large Vector Support
Current Design

C level changes:

Preserve existing memory layout
Use special marker in length field to identify long vectors
LENGTH accessor (returning int) signals an error for long vectors
Long vector aware code uses XLENGTH to return R xlen t.

R code should not need to be changed:

double precision indices can be used for subsetting
length will return double for long vectors
.C and .Fortran will signal errors for long vectors.

A document describing how to add long vector support to a package
should be available soon.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 6 / 24



Large Vector Support
Current Design

C level changes:

Preserve existing memory layout
Use special marker in length field to identify long vectors
LENGTH accessor (returning int) signals an error for long vectors
Long vector aware code uses XLENGTH to return R xlen t.

R code should not need to be changed:

double precision indices can be used for subsetting
length will return double for long vectors
.C and .Fortran will signal errors for long vectors.

A document describing how to add long vector support to a package
should be available soon.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 6 / 24



Large Vector Support
Current Design

C level changes:

Preserve existing memory layout
Use special marker in length field to identify long vectors
LENGTH accessor (returning int) signals an error for long vectors
Long vector aware code uses XLENGTH to return R xlen t.

R code should not need to be changed:

double precision indices can be used for subsetting
length will return double for long vectors
.C and .Fortran will signal errors for long vectors.

A document describing how to add long vector support to a package
should be available soon.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 6 / 24



Large Vector Support
Progress So Far

A number of internal functions now support long vectors.

Some statistical functions with long vector support:

random number generators
mean
sort
fivenum
lm.fit
glm.fit

The function dist can handle more than 216 observations by returning
a long vector result.

Many matrix and array functions already support large arrays:

colSums, colMeans
rowSums, rowMeans

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 7 / 24



Large Vector Support
Progress So Far

A number of internal functions now support long vectors.

Some statistical functions with long vector support:

random number generators
mean
sort
fivenum
lm.fit
glm.fit

The function dist can handle more than 216 observations by returning
a long vector result.

Many matrix and array functions already support large arrays:

colSums, colMeans
rowSums, rowMeans

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 7 / 24



Large Vector Support
Progress So Far

A number of internal functions now support long vectors.

Some statistical functions with long vector support:

random number generators
mean
sort
fivenum
lm.fit
glm.fit

The function dist can handle more than 216 observations by returning
a long vector result.

Many matrix and array functions already support large arrays:

colSums, colMeans
rowSums, rowMeans

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 7 / 24



Large Vector Support
Progress So Far

A number of internal functions now support long vectors.

Some statistical functions with long vector support:

random number generators
mean
sort
fivenum
lm.fit
glm.fit

The function dist can handle more than 216 observations by returning
a long vector result.

Many matrix and array functions already support large arrays:

colSums, colMeans
rowSums, rowMeans

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 7 / 24



Large Vector Support
Progress So Far

A number of internal functions now support long vectors.

Some statistical functions with long vector support:

random number generators
mean
sort
fivenum
lm.fit
glm.fit

The function dist can handle more than 216 observations by returning
a long vector result.

Many matrix and array functions already support large arrays:

colSums, colMeans
rowSums, rowMeans

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 7 / 24



Large Vector Support
Progress So Far

A number of internal functions now support long vectors.

Some statistical functions with long vector support:

random number generators
mean
sort
fivenum
lm.fit
glm.fit

The function dist can handle more than 216 observations by returning
a long vector result.

Many matrix and array functions already support large arrays:

colSums, colMeans
rowSums, rowMeans

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 7 / 24



Large Vector Support
Progress So Far

A number of internal functions now support long vectors.

Some statistical functions with long vector support:

random number generators
mean
sort
fivenum
lm.fit
glm.fit

The function dist can handle more than 216 observations by returning
a long vector result.

Many matrix and array functions already support large arrays:

colSums, colMeans
rowSums, rowMeans

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 7 / 24



Large Vector Support
Progress So Far

A number of internal functions now support long vectors.

Some statistical functions with long vector support:

random number generators
mean
sort
fivenum
lm.fit
glm.fit

The function dist can handle more than 216 observations by returning
a long vector result.

Many matrix and array functions already support large arrays:

colSums, colMeans
rowSums, rowMeans

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 7 / 24



Large Vector Support
Progress So Far

A number of internal functions now support long vectors.

Some statistical functions with long vector support:

random number generators
mean
sort
fivenum
lm.fit
glm.fit

The function dist can handle more than 216 observations by returning
a long vector result.

Many matrix and array functions already support large arrays:

colSums, colMeans
rowSums, rowMeans

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 7 / 24



Large Vector Support
Progress So Far

A number of internal functions now support long vectors.

Some statistical functions with long vector support:

random number generators
mean
sort
fivenum
lm.fit
glm.fit

The function dist can handle more than 216 observations by returning
a long vector result.

Many matrix and array functions already support large arrays:

colSums, colMeans
rowSums, rowMeans

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 7 / 24



Large Vector Support
Progress So Far

A number of internal functions now support long vectors.

Some statistical functions with long vector support:

random number generators
mean
sort
fivenum
lm.fit
glm.fit

The function dist can handle more than 216 observations by returning
a long vector result.

Many matrix and array functions already support large arrays:

colSums, colMeans
rowSums, rowMeans

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 7 / 24



Large Vector Support
Progress So Far

A number of internal functions now support long vectors.

Some statistical functions with long vector support:

random number generators
mean
sort
fivenum
lm.fit
glm.fit

The function dist can handle more than 216 observations by returning
a long vector result.

Many matrix and array functions already support large arrays:

colSums, colMeans
rowSums, rowMeans

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 7 / 24



Large Vector Support
Open Issues

Converting existing methods to support large vectors is fairly straight
forward, however:

more numerically stable algorithms may be needed
faster/parallel algorithms may be needed
the ability to interrupt computations may become important
statistical usefulness may not scale to larger data

The size where these issues become relevant is likely much lower!

Future work will consider

whether to add a separate 64-bit integer type, or change the basic R
integer type to 64 bits
possibly adding 8 and 16 bit integer types
arithmetic and overflow issues that these raise
whether to allow numbers of rows and columns in matrices to exceed
231 − 1 as well

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 8 / 24



Large Vector Support
Open Issues

Converting existing methods to support large vectors is fairly straight
forward, however:

more numerically stable algorithms may be needed
faster/parallel algorithms may be needed
the ability to interrupt computations may become important
statistical usefulness may not scale to larger data

The size where these issues become relevant is likely much lower!

Future work will consider

whether to add a separate 64-bit integer type, or change the basic R
integer type to 64 bits
possibly adding 8 and 16 bit integer types
arithmetic and overflow issues that these raise
whether to allow numbers of rows and columns in matrices to exceed
231 − 1 as well

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 8 / 24



Large Vector Support
Open Issues

Converting existing methods to support large vectors is fairly straight
forward, however:

more numerically stable algorithms may be needed
faster/parallel algorithms may be needed
the ability to interrupt computations may become important
statistical usefulness may not scale to larger data

The size where these issues become relevant is likely much lower!

Future work will consider

whether to add a separate 64-bit integer type, or change the basic R
integer type to 64 bits
possibly adding 8 and 16 bit integer types
arithmetic and overflow issues that these raise
whether to allow numbers of rows and columns in matrices to exceed
231 − 1 as well

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 8 / 24



Large Vector Support
Open Issues

Converting existing methods to support large vectors is fairly straight
forward, however:

more numerically stable algorithms may be needed
faster/parallel algorithms may be needed
the ability to interrupt computations may become important
statistical usefulness may not scale to larger data

The size where these issues become relevant is likely much lower!

Future work will consider

whether to add a separate 64-bit integer type, or change the basic R
integer type to 64 bits
possibly adding 8 and 16 bit integer types
arithmetic and overflow issues that these raise
whether to allow numbers of rows and columns in matrices to exceed
231 − 1 as well

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 8 / 24



Large Vector Support
Open Issues

Converting existing methods to support large vectors is fairly straight
forward, however:

more numerically stable algorithms may be needed
faster/parallel algorithms may be needed
the ability to interrupt computations may become important
statistical usefulness may not scale to larger data

The size where these issues become relevant is likely much lower!

Future work will consider

whether to add a separate 64-bit integer type, or change the basic R
integer type to 64 bits
possibly adding 8 and 16 bit integer types
arithmetic and overflow issues that these raise
whether to allow numbers of rows and columns in matrices to exceed
231 − 1 as well

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 8 / 24



Large Vector Support
Open Issues

Converting existing methods to support large vectors is fairly straight
forward, however:

more numerically stable algorithms may be needed
faster/parallel algorithms may be needed
the ability to interrupt computations may become important
statistical usefulness may not scale to larger data

The size where these issues become relevant is likely much lower!

Future work will consider

whether to add a separate 64-bit integer type, or change the basic R
integer type to 64 bits
possibly adding 8 and 16 bit integer types
arithmetic and overflow issues that these raise
whether to allow numbers of rows and columns in matrices to exceed
231 − 1 as well

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 8 / 24



Large Vector Support
Open Issues

Converting existing methods to support large vectors is fairly straight
forward, however:

more numerically stable algorithms may be needed
faster/parallel algorithms may be needed
the ability to interrupt computations may become important
statistical usefulness may not scale to larger data

The size where these issues become relevant is likely much lower!

Future work will consider

whether to add a separate 64-bit integer type, or change the basic R
integer type to 64 bits
possibly adding 8 and 16 bit integer types
arithmetic and overflow issues that these raise
whether to allow numbers of rows and columns in matrices to exceed
231 − 1 as well

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 8 / 24



Large Vector Support
Open Issues

Converting existing methods to support large vectors is fairly straight
forward, however:

more numerically stable algorithms may be needed
faster/parallel algorithms may be needed
the ability to interrupt computations may become important
statistical usefulness may not scale to larger data

The size where these issues become relevant is likely much lower!

Future work will consider

whether to add a separate 64-bit integer type, or change the basic R
integer type to 64 bits
possibly adding 8 and 16 bit integer types
arithmetic and overflow issues that these raise
whether to allow numbers of rows and columns in matrices to exceed
231 − 1 as well

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 8 / 24



Large Vector Support
Open Issues

Converting existing methods to support large vectors is fairly straight
forward, however:

more numerically stable algorithms may be needed
faster/parallel algorithms may be needed
the ability to interrupt computations may become important
statistical usefulness may not scale to larger data

The size where these issues become relevant is likely much lower!

Future work will consider

whether to add a separate 64-bit integer type, or change the basic R
integer type to 64 bits
possibly adding 8 and 16 bit integer types
arithmetic and overflow issues that these raise
whether to allow numbers of rows and columns in matrices to exceed
231 − 1 as well

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 8 / 24



Large Vector Support
Open Issues

Converting existing methods to support large vectors is fairly straight
forward, however:

more numerically stable algorithms may be needed
faster/parallel algorithms may be needed
the ability to interrupt computations may become important
statistical usefulness may not scale to larger data

The size where these issues become relevant is likely much lower!

Future work will consider

whether to add a separate 64-bit integer type, or change the basic R
integer type to 64 bits
possibly adding 8 and 16 bit integer types
arithmetic and overflow issues that these raise
whether to allow numbers of rows and columns in matrices to exceed
231 − 1 as well

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 8 / 24



Large Vector Support
Open Issues

Converting existing methods to support large vectors is fairly straight
forward, however:

more numerically stable algorithms may be needed
faster/parallel algorithms may be needed
the ability to interrupt computations may become important
statistical usefulness may not scale to larger data

The size where these issues become relevant is likely much lower!

Future work will consider

whether to add a separate 64-bit integer type, or change the basic R
integer type to 64 bits
possibly adding 8 and 16 bit integer types
arithmetic and overflow issues that these raise
whether to allow numbers of rows and columns in matrices to exceed
231 − 1 as well

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 8 / 24



Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will be available soon.

Two ways to take advantage of multiple cores:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

Implicit parallelization is particularly suited to

basic vectorized math functions
basic matrix operations (e.g. colSums)

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 9 / 24



Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will be available soon.

Two ways to take advantage of multiple cores:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

Implicit parallelization is particularly suited to

basic vectorized math functions
basic matrix operations (e.g. colSums)

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 9 / 24



Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will be available soon.

Two ways to take advantage of multiple cores:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

Implicit parallelization is particularly suited to

basic vectorized math functions
basic matrix operations (e.g. colSums)

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 9 / 24



Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will be available soon.

Two ways to take advantage of multiple cores:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

Implicit parallelization is particularly suited to

basic vectorized math functions
basic matrix operations (e.g. colSums)

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 9 / 24



Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will be available soon.

Two ways to take advantage of multiple cores:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

Implicit parallelization is particularly suited to

basic vectorized math functions
basic matrix operations (e.g. colSums)

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 9 / 24



Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will be available soon.

Two ways to take advantage of multiple cores:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

Implicit parallelization is particularly suited to

basic vectorized math functions
basic matrix operations (e.g. colSums)

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 9 / 24



Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will be available soon.

Two ways to take advantage of multiple cores:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

Implicit parallelization is particularly suited to

basic vectorized math functions
basic matrix operations (e.g. colSums)

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 9 / 24



Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will be available soon.

Two ways to take advantage of multiple cores:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

Implicit parallelization is particularly suited to

basic vectorized math functions
basic matrix operations (e.g. colSums)

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 9 / 24



Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will be available soon.

Two ways to take advantage of multiple cores:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

Implicit parallelization is particularly suited to

basic vectorized math functions
basic matrix operations (e.g. colSums)

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 9 / 24



Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will be available soon.

Two ways to take advantage of multiple cores:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

Implicit parallelization is particularly suited to

basic vectorized math functions
basic matrix operations (e.g. colSums)

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 9 / 24



Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will be available soon.

Two ways to take advantage of multiple cores:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

Implicit parallelization is particularly suited to

basic vectorized math functions
basic matrix operations (e.g. colSums)

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 9 / 24



Parallelizing Vector and Matrix Operations
Performance Implications

Basic idea for a P-core system:

run P worker threads
place 1/P of the work on each thread

Idealized view: this produces a P-fold speedup.

Actual speedup is less:

there is synchronization overhead
sequential code and use of shared resources (memory, bus, . . . )
actual workloads are uneven

Result: parallel code can be slower!

Parallelizing will only pay off if data size n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 10 / 24



Parallelizing Vector and Matrix Operations
Performance Implications

Basic idea for a P-core system:

run P worker threads
place 1/P of the work on each thread

Idealized view: this produces a P-fold speedup.

Actual speedup is less:

there is synchronization overhead
sequential code and use of shared resources (memory, bus, . . . )
actual workloads are uneven

Result: parallel code can be slower!

Parallelizing will only pay off if data size n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 10 / 24



Parallelizing Vector and Matrix Operations
Performance Implications

Basic idea for a P-core system:

run P worker threads
place 1/P of the work on each thread

Idealized view: this produces a P-fold speedup.

Actual speedup is less:

there is synchronization overhead
sequential code and use of shared resources (memory, bus, . . . )
actual workloads are uneven

Result: parallel code can be slower!

Parallelizing will only pay off if data size n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 10 / 24



Parallelizing Vector and Matrix Operations
Performance Implications

Basic idea for a P-core system:

run P worker threads
place 1/P of the work on each thread

Idealized view: this produces a P-fold speedup.

Actual speedup is less:

there is synchronization overhead
sequential code and use of shared resources (memory, bus, . . . )
actual workloads are uneven

Result: parallel code can be slower!

Parallelizing will only pay off if data size n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 10 / 24



Parallelizing Vector and Matrix Operations
Performance Implications

Basic idea for a P-core system:

run P worker threads
place 1/P of the work on each thread

Idealized view: this produces a P-fold speedup.

Actual speedup is less:

there is synchronization overhead
sequential code and use of shared resources (memory, bus, . . . )
actual workloads are uneven

Result: parallel code can be slower!

Parallelizing will only pay off if data size n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 10 / 24



Parallelizing Vector and Matrix Operations
Performance Implications

Basic idea for a P-core system:

run P worker threads
place 1/P of the work on each thread

Idealized view: this produces a P-fold speedup.

Actual speedup is less:

there is synchronization overhead
sequential code and use of shared resources (memory, bus, . . . )
actual workloads are uneven

Result: parallel code can be slower!

Parallelizing will only pay off if data size n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 10 / 24



Parallelizing Vector and Matrix Operations
Performance Implications

Basic idea for a P-core system:

run P worker threads
place 1/P of the work on each thread

Idealized view: this produces a P-fold speedup.

Actual speedup is less:

there is synchronization overhead
sequential code and use of shared resources (memory, bus, . . . )
actual workloads are uneven

Result: parallel code can be slower!

Parallelizing will only pay off if data size n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 10 / 24



Parallelizing Vector and Matrix Operations
Performance Implications

Basic idea for a P-core system:

run P worker threads
place 1/P of the work on each thread

Idealized view: this produces a P-fold speedup.

Actual speedup is less:

there is synchronization overhead
sequential code and use of shared resources (memory, bus, . . . )
actual workloads are uneven

Result: parallel code can be slower!

Parallelizing will only pay off if data size n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 10 / 24



Parallelizing Vector and Matrix Operations
Performance Implications

Basic idea for a P-core system:

run P worker threads
place 1/P of the work on each thread

Idealized view: this produces a P-fold speedup.

Actual speedup is less:

there is synchronization overhead
sequential code and use of shared resources (memory, bus, . . . )
actual workloads are uneven

Result: parallel code can be slower!

Parallelizing will only pay off if data size n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 10 / 24



Parallelizing Vector and Matrix Operations
Performance Implications

Basic idea for a P-core system:

run P worker threads
place 1/P of the work on each thread

Idealized view: this produces a P-fold speedup.

Actual speedup is less:

there is synchronization overhead
sequential code and use of shared resources (memory, bus, . . . )
actual workloads are uneven

Result: parallel code can be slower!

Parallelizing will only pay off if data size n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 10 / 24



Parallelizing Vector and Matrix Operations
Performance Implications

Basic idea for a P-core system:

run P worker threads
place 1/P of the work on each thread

Idealized view: this produces a P-fold speedup.

Actual speedup is less:

there is synchronization overhead
sequential code and use of shared resources (memory, bus, . . . )
actual workloads are uneven

Result: parallel code can be slower!

Parallelizing will only pay off if data size n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 10 / 24



Parallelizing Vector and Matrix Operations
Performance Implications

Basic idea for a P-core system:

run P worker threads
place 1/P of the work on each thread

Idealized view: this produces a P-fold speedup.

Actual speedup is less:

there is synchronization overhead
sequential code and use of shared resources (memory, bus, . . . )
actual workloads are uneven

Result: parallel code can be slower!

Parallelizing will only pay off if data size n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 10 / 24



Parallelizing Vector and Matrix Operations
Performance Implications

Basic idea for a P-core system:

run P worker threads
place 1/P of the work on each thread

Idealized view: this produces a P-fold speedup.

Actual speedup is less:

there is synchronization overhead
sequential code and use of shared resources (memory, bus, . . . )
actual workloads are uneven

Result: parallel code can be slower!

Parallelizing will only pay off if data size n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 10 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

OpenMP provides a convenient way to implement parallelism at the
C/FORTRAN level.

Good performance of the synchronization barrier is critical for
fine-grained parallelization.

On Linux/gcc OpenMP performance is very good.

On Mac OS X and Windows gcc’s OpenMP barrier performance is
not adequate.

High performance on Linux is achieved by careful use of spin waiting.

We can use the same approach on Mac OS X and Windows and
achieve good performance.

Unfortunately, this means abandoning OpenMP.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 11 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

OpenMP provides a convenient way to implement parallelism at the
C/FORTRAN level.

Good performance of the synchronization barrier is critical for
fine-grained parallelization.

On Linux/gcc OpenMP performance is very good.

On Mac OS X and Windows gcc’s OpenMP barrier performance is
not adequate.

High performance on Linux is achieved by careful use of spin waiting.

We can use the same approach on Mac OS X and Windows and
achieve good performance.

Unfortunately, this means abandoning OpenMP.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 11 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

OpenMP provides a convenient way to implement parallelism at the
C/FORTRAN level.

Good performance of the synchronization barrier is critical for
fine-grained parallelization.

On Linux/gcc OpenMP performance is very good.

On Mac OS X and Windows gcc’s OpenMP barrier performance is
not adequate.

High performance on Linux is achieved by careful use of spin waiting.

We can use the same approach on Mac OS X and Windows and
achieve good performance.

Unfortunately, this means abandoning OpenMP.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 11 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

OpenMP provides a convenient way to implement parallelism at the
C/FORTRAN level.

Good performance of the synchronization barrier is critical for
fine-grained parallelization.

On Linux/gcc OpenMP performance is very good.

On Mac OS X and Windows gcc’s OpenMP barrier performance is
not adequate.

High performance on Linux is achieved by careful use of spin waiting.

We can use the same approach on Mac OS X and Windows and
achieve good performance.

Unfortunately, this means abandoning OpenMP.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 11 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

OpenMP provides a convenient way to implement parallelism at the
C/FORTRAN level.

Good performance of the synchronization barrier is critical for
fine-grained parallelization.

On Linux/gcc OpenMP performance is very good.

On Mac OS X and Windows gcc’s OpenMP barrier performance is
not adequate.

High performance on Linux is achieved by careful use of spin waiting.

We can use the same approach on Mac OS X and Windows and
achieve good performance.

Unfortunately, this means abandoning OpenMP.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 11 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

OpenMP provides a convenient way to implement parallelism at the
C/FORTRAN level.

Good performance of the synchronization barrier is critical for
fine-grained parallelization.

On Linux/gcc OpenMP performance is very good.

On Mac OS X and Windows gcc’s OpenMP barrier performance is
not adequate.

High performance on Linux is achieved by careful use of spin waiting.

We can use the same approach on Mac OS X and Windows and
achieve good performance.

Unfortunately, this means abandoning OpenMP.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 11 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

OpenMP provides a convenient way to implement parallelism at the
C/FORTRAN level.

Good performance of the synchronization barrier is critical for
fine-grained parallelization.

On Linux/gcc OpenMP performance is very good.

On Mac OS X and Windows gcc’s OpenMP barrier performance is
not adequate.

High performance on Linux is achieved by careful use of spin waiting.

We can use the same approach on Mac OS X and Windows and
achieve good performance.

Unfortunately, this means abandoning OpenMP.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 11 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

We are using a pthreads-based implementation using atomic integer
operations for synchronization during the spin wait.

We expect to make an interface to this framework available to
package authors as well.

Care is needed to make sure that all functions called from worker
threads are thread-safe.

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 12 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

We are using a pthreads-based implementation using atomic integer
operations for synchronization during the spin wait.

We expect to make an interface to this framework available to
package authors as well.

Care is needed to make sure that all functions called from worker
threads are thread-safe.

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 12 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

We are using a pthreads-based implementation using atomic integer
operations for synchronization during the spin wait.

We expect to make an interface to this framework available to
package authors as well.

Care is needed to make sure that all functions called from worker
threads are thread-safe.

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 12 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

We are using a pthreads-based implementation using atomic integer
operations for synchronization during the spin wait.

We expect to make an interface to this framework available to
package authors as well.

Care is needed to make sure that all functions called from worker
threads are thread-safe.

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 12 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

We are using a pthreads-based implementation using atomic integer
operations for synchronization during the spin wait.

We expect to make an interface to this framework available to
package authors as well.

Care is needed to make sure that all functions called from worker
threads are thread-safe.

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 12 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

We are using a pthreads-based implementation using atomic integer
operations for synchronization during the spin wait.

We expect to make an interface to this framework available to
package authors as well.

Care is needed to make sure that all functions called from worker
threads are thread-safe.

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 12 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

We are using a pthreads-based implementation using atomic integer
operations for synchronization during the spin wait.

We expect to make an interface to this framework available to
package authors as well.

Care is needed to make sure that all functions called from worker
threads are thread-safe.

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 12 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

We are using a pthreads-based implementation using atomic integer
operations for synchronization during the spin wait.

We expect to make an interface to this framework available to
package authors as well.

Care is needed to make sure that all functions called from worker
threads are thread-safe.

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 12 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

We are using a pthreads-based implementation using atomic integer
operations for synchronization during the spin wait.

We expect to make an interface to this framework available to
package authors as well.

Care is needed to make sure that all functions called from worker
threads are thread-safe.

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 12 / 24



Parallelizing Vector and Matrix Operations
Implementation Issues

We are using a pthreads-based implementation using atomic integer
operations for synchronization during the spin wait.

We expect to make an interface to this framework available to
package authors as well.

Care is needed to make sure that all functions called from worker
threads are thread-safe.

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 12 / 24



Parallelizing Vectorized Operations
Some Experimental Results

n

tim
es

2e−05

3e−05

4e−05

5e−05

0 100 200 300

qnorm
linux

pgamma
linux

qnorm
mac

0 100 200 300

2e−05

3e−05

4e−05

5e−05

pgamma
mac

1
2
4
8

●

●

●

●

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 13 / 24



Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 14 / 24



Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 14 / 24



Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 14 / 24



Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 14 / 24



Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 14 / 24



Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 14 / 24



Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 14 / 24



Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 14 / 24



Parallelizing Vectorized Operations
Some Notes

An experimental package pnmath0 that parallelizes many basic
vectorized math functions is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

The functions colSums and dist in the current R distribution can run
in parallel but do not by default.

Hopefully more will be included in the R distribution before too long.

Still need to find clean way for a user to control the maximal number
of threads allowed.

Also need to resolve whether slight changes of results are acceptable,
especially in reductions.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 15 / 24

http://www.stat.uiowa.edu/~luke/R/experimental/


Parallelizing Vectorized Operations
Some Notes

An experimental package pnmath0 that parallelizes many basic
vectorized math functions is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

The functions colSums and dist in the current R distribution can run
in parallel but do not by default.

Hopefully more will be included in the R distribution before too long.

Still need to find clean way for a user to control the maximal number
of threads allowed.

Also need to resolve whether slight changes of results are acceptable,
especially in reductions.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 15 / 24

http://www.stat.uiowa.edu/~luke/R/experimental/


Parallelizing Vectorized Operations
Some Notes

An experimental package pnmath0 that parallelizes many basic
vectorized math functions is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

The functions colSums and dist in the current R distribution can run
in parallel but do not by default.

Hopefully more will be included in the R distribution before too long.

Still need to find clean way for a user to control the maximal number
of threads allowed.

Also need to resolve whether slight changes of results are acceptable,
especially in reductions.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 15 / 24

http://www.stat.uiowa.edu/~luke/R/experimental/


Parallelizing Vectorized Operations
Some Notes

An experimental package pnmath0 that parallelizes many basic
vectorized math functions is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

The functions colSums and dist in the current R distribution can run
in parallel but do not by default.

Hopefully more will be included in the R distribution before too long.

Still need to find clean way for a user to control the maximal number
of threads allowed.

Also need to resolve whether slight changes of results are acceptable,
especially in reductions.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 15 / 24

http://www.stat.uiowa.edu/~luke/R/experimental/


Parallelizing Vectorized Operations
Some Notes

An experimental package pnmath0 that parallelizes many basic
vectorized math functions is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

The functions colSums and dist in the current R distribution can run
in parallel but do not by default.

Hopefully more will be included in the R distribution before too long.

Still need to find clean way for a user to control the maximal number
of threads allowed.

Also need to resolve whether slight changes of results are acceptable,
especially in reductions.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 15 / 24

http://www.stat.uiowa.edu/~luke/R/experimental/


Byte Code Compilation
Background

The standard R evaluation mechanism

parses code into a parse tree when the code is read
evaluates code by interpreting the parse trees.

Most low level languages (e.g. C, Fortran) compile their source code
to native machine code.

Some intermediate level languages (e.g. Java, C#) and many
scripting languages (e.g. Perl, Python) compile to a simpler language
called byte code.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 16 / 24



Byte Code Compilation
Background

The standard R evaluation mechanism

parses code into a parse tree when the code is read
evaluates code by interpreting the parse trees.

Most low level languages (e.g. C, Fortran) compile their source code
to native machine code.

Some intermediate level languages (e.g. Java, C#) and many
scripting languages (e.g. Perl, Python) compile to a simpler language
called byte code.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 16 / 24



Byte Code Compilation
Background

The standard R evaluation mechanism

parses code into a parse tree when the code is read
evaluates code by interpreting the parse trees.

Most low level languages (e.g. C, Fortran) compile their source code
to native machine code.

Some intermediate level languages (e.g. Java, C#) and many
scripting languages (e.g. Perl, Python) compile to a simpler language
called byte code.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 16 / 24



Byte Code Compilation
Background

The standard R evaluation mechanism

parses code into a parse tree when the code is read
evaluates code by interpreting the parse trees.

Most low level languages (e.g. C, Fortran) compile their source code
to native machine code.

Some intermediate level languages (e.g. Java, C#) and many
scripting languages (e.g. Perl, Python) compile to a simpler language
called byte code.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 16 / 24



Byte Code Compilation
Background

The standard R evaluation mechanism

parses code into a parse tree when the code is read
evaluates code by interpreting the parse trees.

Most low level languages (e.g. C, Fortran) compile their source code
to native machine code.

Some intermediate level languages (e.g. Java, C#) and many
scripting languages (e.g. Perl, Python) compile to a simpler language
called byte code.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 16 / 24



Byte Code Compilation
Background

Byte code is the machine code for a virtual machine.

Virtual machine code can then be interpreted by a simpler, more
efficient interpreter.

Virtual machines, and their machine code, are usually specific to the
languages they are designed to support.

Various strategies for further compiling byte code to native machine
code are also sometimes used.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 17 / 24



Byte Code Compilation
Background

Byte code is the machine code for a virtual machine.

Virtual machine code can then be interpreted by a simpler, more
efficient interpreter.

Virtual machines, and their machine code, are usually specific to the
languages they are designed to support.

Various strategies for further compiling byte code to native machine
code are also sometimes used.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 17 / 24



Byte Code Compilation
Background

Byte code is the machine code for a virtual machine.

Virtual machine code can then be interpreted by a simpler, more
efficient interpreter.

Virtual machines, and their machine code, are usually specific to the
languages they are designed to support.

Various strategies for further compiling byte code to native machine
code are also sometimes used.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 17 / 24



Byte Code Compilation
Background

Byte code is the machine code for a virtual machine.

Virtual machine code can then be interpreted by a simpler, more
efficient interpreter.

Virtual machines, and their machine code, are usually specific to the
languages they are designed to support.

Various strategies for further compiling byte code to native machine
code are also sometimes used.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 17 / 24



Byte Code Compilation
Background

Efforts to add byte code compilation to R have been underway for
some time.

The first release of the compiler occurred with R 2.13.0.

The current compiler and virtual machine produce good
improvements in a number of cases.

Better results should be possible with some improvements to the
virtual machine and are currently being explored.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 18 / 24



Byte Code Compilation
Background

Efforts to add byte code compilation to R have been underway for
some time.

The first release of the compiler occurred with R 2.13.0.

The current compiler and virtual machine produce good
improvements in a number of cases.

Better results should be possible with some improvements to the
virtual machine and are currently being explored.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 18 / 24



Byte Code Compilation
Background

Efforts to add byte code compilation to R have been underway for
some time.

The first release of the compiler occurred with R 2.13.0.

The current compiler and virtual machine produce good
improvements in a number of cases.

Better results should be possible with some improvements to the
virtual machine and are currently being explored.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 18 / 24



Byte Code Compilation
Background

Efforts to add byte code compilation to R have been underway for
some time.

The first release of the compiler occurred with R 2.13.0.

The current compiler and virtual machine produce good
improvements in a number of cases.

Better results should be possible with some improvements to the
virtual machine and are currently being explored.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 18 / 24



Byte Code Compilation
Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing or specify the ByteCompile option in
the DESCRIPTION file.
Since R 2.14.0 R code in all base and recommended packages is
compiled by default.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 19 / 24



Byte Code Compilation
Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing or specify the ByteCompile option in
the DESCRIPTION file.
Since R 2.14.0 R code in all base and recommended packages is
compiled by default.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 19 / 24



Byte Code Compilation
Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing or specify the ByteCompile option in
the DESCRIPTION file.
Since R 2.14.0 R code in all base and recommended packages is
compiled by default.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 19 / 24



Byte Code Compilation
Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing or specify the ByteCompile option in
the DESCRIPTION file.
Since R 2.14.0 R code in all base and recommended packages is
compiled by default.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 19 / 24



Byte Code Compilation
Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing or specify the ByteCompile option in
the DESCRIPTION file.
Since R 2.14.0 R code in all base and recommended packages is
compiled by default.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 19 / 24



Byte Code Compilation
Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing or specify the ByteCompile option in
the DESCRIPTION file.
Since R 2.14.0 R code in all base and recommended packages is
compiled by default.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 19 / 24



Byte Code Compilation
Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing or specify the ByteCompile option in
the DESCRIPTION file.
Since R 2.14.0 R code in all base and recommended packages is
compiled by default.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 19 / 24



Byte Code Compilation
Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing or specify the ByteCompile option in
the DESCRIPTION file.
Since R 2.14.0 R code in all base and recommended packages is
compiled by default.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 19 / 24



Byte Code Compilation
Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing or specify the ByteCompile option in
the DESCRIPTION file.
Since R 2.14.0 R code in all base and recommended packages is
compiled by default.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 19 / 24



Byte Code Compilation
Compiler Operation

The current compiler includes a number of optimizations, such as

constant folding
special instructions for most SPECIALs, many BUILTINs
inlining simple .Internal calls: e.g.

dnorm(y, 2, 3)

is replaced by

.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

special instructions for many .Internals

The compiler is currently most effective for code used on scalar data
or short vectors where interpreter overhead is large relative to actual
computation.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 20 / 24



Byte Code Compilation
Compiler Operation

The current compiler includes a number of optimizations, such as

constant folding
special instructions for most SPECIALs, many BUILTINs
inlining simple .Internal calls: e.g.

dnorm(y, 2, 3)

is replaced by

.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

special instructions for many .Internals

The compiler is currently most effective for code used on scalar data
or short vectors where interpreter overhead is large relative to actual
computation.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 20 / 24



Byte Code Compilation
Compiler Operation

The current compiler includes a number of optimizations, such as

constant folding
special instructions for most SPECIALs, many BUILTINs
inlining simple .Internal calls: e.g.

dnorm(y, 2, 3)

is replaced by

.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

special instructions for many .Internals

The compiler is currently most effective for code used on scalar data
or short vectors where interpreter overhead is large relative to actual
computation.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 20 / 24



Byte Code Compilation
Compiler Operation

The current compiler includes a number of optimizations, such as

constant folding
special instructions for most SPECIALs, many BUILTINs
inlining simple .Internal calls: e.g.

dnorm(y, 2, 3)

is replaced by

.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

special instructions for many .Internals

The compiler is currently most effective for code used on scalar data
or short vectors where interpreter overhead is large relative to actual
computation.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 20 / 24



Byte Code Compilation
Compiler Operation

The current compiler includes a number of optimizations, such as

constant folding
special instructions for most SPECIALs, many BUILTINs
inlining simple .Internal calls: e.g.

dnorm(y, 2, 3)

is replaced by

.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

special instructions for many .Internals

The compiler is currently most effective for code used on scalar data
or short vectors where interpreter overhead is large relative to actual
computation.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 20 / 24



Byte Code Compilation
Compiler Operation

The current compiler includes a number of optimizations, such as

constant folding
special instructions for most SPECIALs, many BUILTINs
inlining simple .Internal calls: e.g.

dnorm(y, 2, 3)

is replaced by

.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

special instructions for many .Internals

The compiler is currently most effective for code used on scalar data
or short vectors where interpreter overhead is large relative to actual
computation.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 20 / 24



Byte Code Compilation
A Simple Example

R Code

f <- function(x) {

s <- 0.0

for (y in x)

s <- s + y

s

}

VM Assembly Code

LDCONST 0.0

SETVAR s

POP

GETVAR x

STARTFOR y L2

L1: GETVAR s

GETVAR y

ADD

SETVAR s

POP

STEPFOR L1

L2: ENDFOR

POP

GETVAR s

RETURN

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 21 / 24



Byte Code Compilation
Some Performance Results

Timings for some simple benchmarks on an x86 64 Ubuntu laptop:

Benchmark Interp. Comp. Speedup Exper. Speedup

p1 32.19 7.98 4.0 1.47 21.9
sum 6.72 1.86 3.6 0.59 11.4
conv 14.48 4.30 3.4 0.81 17.9
rem 56.82 23.68 2.4 4.77 11.9

Interp., Comp. are for the current released version of R

Exper.: experimental version using

separate instructions for vector, matrix indexing
typed stack to avoid allocating intermediate scalar values

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 22 / 24



Byte Code Compilation
Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 23 / 24



Byte Code Compilation
Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 23 / 24



Byte Code Compilation
Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 23 / 24



Byte Code Compilation
Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 23 / 24



Byte Code Compilation
Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 23 / 24



Byte Code Compilation
Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 23 / 24



Byte Code Compilation
Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 23 / 24



Byte Code Compilation
Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 23 / 24



Byte Code Compilation
Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 23 / 24



Byte Code Compilation
Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 23 / 24



Byte Code Compilation
Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 23 / 24



Byte Code Compilation
Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 23 / 24



Byte Code Compilation
Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 23 / 24



Synergy

There is synergy among these three areas of development; for
example:

Many functions applied to large data are excellent candidates for
parallelization.
The compiler may be able to fuse operations and allow more efficient
parallelization at the fused operation level.
The compiler may also be able to compile certain uses of sweep and
apply functions.

Exploring these opportunities will be a goal of work over the coming
year.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 24 / 24



Synergy

There is synergy among these three areas of development; for
example:

Many functions applied to large data are excellent candidates for
parallelization.
The compiler may be able to fuse operations and allow more efficient
parallelization at the fused operation level.
The compiler may also be able to compile certain uses of sweep and
apply functions.

Exploring these opportunities will be a goal of work over the coming
year.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 24 / 24



Synergy

There is synergy among these three areas of development; for
example:

Many functions applied to large data are excellent candidates for
parallelization.
The compiler may be able to fuse operations and allow more efficient
parallelization at the fused operation level.
The compiler may also be able to compile certain uses of sweep and
apply functions.

Exploring these opportunities will be a goal of work over the coming
year.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 24 / 24



Synergy

There is synergy among these three areas of development; for
example:

Many functions applied to large data are excellent candidates for
parallelization.
The compiler may be able to fuse operations and allow more efficient
parallelization at the fused operation level.
The compiler may also be able to compile certain uses of sweep and
apply functions.

Exploring these opportunities will be a goal of work over the coming
year.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 24 / 24



Synergy

There is synergy among these three areas of development; for
example:

Many functions applied to large data are excellent candidates for
parallelization.
The compiler may be able to fuse operations and allow more efficient
parallelization at the fused operation level.
The compiler may also be able to compile certain uses of sweep and
apply functions.

Exploring these opportunities will be a goal of work over the coming
year.

Luke Tierney (U. of Iowa) Developments for the R engine June 24, 2012 24 / 24


	Introduction
	Large Vector Support
	Initial Objectives
	Current Design
	Progress So Far
	Open Issues

	Parallelizing Vector and Matrix Operations
	Performance Implications
	Implementation Issues
	Some Experimental Results
	Some Notes

	Byte Code Compilation
	Background
	Compiler Operation
	A Simple Example
	Some Performance Results
	Future Directions

	Synergy

