
ALTREP: Alternate Representations of Basic R Objects

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

October 27, 2018

Luke Tierney (U. of Iowa) ALTREP University of Iowa 1 / 31

Introduction

R is widely used in the field of statistics and beyond, especially in
university environments.

R was originally developed by Robert Gentleman and Ross Ihaka in
the early 1990’s for a Macintosh computer lab at U. of Auckland, NZ.

Since 1997 R has been developed and maintained by the R-core
group, with 20 member located in 9 different countries.

The S language, on which R is based, was originally developed at Bell
Labs to support flexible data analysis.

As S evolved, it was developed into a full language that also supports
development of software for new methodology.

R has become the primary framework for developing and making
available new statistical methodology.

Many (now over 13,000) extension packages are available through
CRAN; more from Bioconductor and other repositories.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 2 / 31

Introduction

Since joining R-core in 1998 I have worked mostly on computational
infrastructure, such as

memory management
name space management
error handling framework
compilation
parallel computing support

Much of this is enabling technology not used directly by typical users
or only by package authors.

The topic of this talk is of a similar nature.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 3 / 31

Introduction

This is joint work with Gabe Becker and Tomas Kalibera.

The C level R implementation works with a fixed set of data types,
e.g. INTSXP, REALSXP, ENVSXP.

These have a particular memory layout, but are accessed only through
a function/macro abstraction.

For vector data the accessors are

LENGTH for the number of elements;
DATAPTR (usually via INTEGER, REAL, etc.) for a pointer to a
contiguous region in memory.

The memory is typically allocated by malloc

Luke Tierney (U. of Iowa) ALTREP University of Iowa 4 / 31

Introduction

ALTREP allows for alternate representations of these data types.

Some examples of things we want to enable:
allow vector data to be

in a memory-mapped file;
distributed, e.g. within Apache Spark or Hadoop;
shared with other applications, e.g. with Apache Arrow;

allow compact representation of arithmetic sequences;
allow adding meta-data to objects;
allow computations/allocations to be deferred;
support alternative representations of environments.

To existing C code ALTREP objects look like ordinary R objects.

Updated C code may be able to take advantage of special features.

Current state is available in the ALTREP SVN branch.

More details are available in ALTREP.html at the branch root.

Initial ALTREP support is available as of R 3.5.0.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 5 / 31

https://svn.r-project.org/R/branches/ALTREP/ALTREP.html

Example: Compact Integer Sequences

Vectors created by n1:n2, seq along or seq len can be represented
compactly.

In 3.4.x with JIT disabled:
system.time(for (i in 1:1e9) break)

user system elapsed

0.258 1.141 1.400

In R 3.5.0 with ALTREP:
system.time(for (i in 1:1e9) break)

user system elapsed

0 0.004 0.000 0.003

Luke Tierney (U. of Iowa) ALTREP University of Iowa 6 / 31

Example: Compact Integer Sequences

In R 3.4.x creating a larger sequence may fail:
x <- 1:1e10

Error: cannot allocate vector of size 74.5 Gb

In R 3.5.0 with ALTREP this succeeds:
x <- 1:1e10

length(x)

[1] 1e+10

Some operations may still fail:
y <- x + 1L

Error: cannot allocate vector of size 74.5 Gb

Luke Tierney (U. of Iowa) ALTREP University of Iowa 7 / 31

Example: Deferred String Conversions

Converting integers or reals to strings is expensive.

In lm and glm default row labels on design matrices are created but
rarely used.

In R 3.5.0 the internal coerce function returns a deferred string
conversion ALTREP object.

This class has a subset method that returns another deferred
conversion object.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 8 / 31

Example: Deferred String Conversions

For lm with n = 107 and p = 2:
x <- rnorm(1e7)

y <- x + rnorm(1e7)

system.time(lm(y ~ x))

user system elapsed

19.804 0.860 20.703 R 3.4.2 patched

1.960 1.184 3.147 R 3.5.0 with ALTREP

For glm:
system.time(glm(y ~ x))

user system elapsed

20.880 1.624 22.517 R 3.4.2 patched

6.144 5.508 11.657 R 3.5.0 with ALTREP

Deferred evaluation could be useful in many other settings as well.

Linear or generalize linear model result objects are one example.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 9 / 31

Example: Wrapper Objects and Attributes

Currently changing an attribute on a shared vector requires a copy of
the vector data.

Wrapper objects can hold the new attribute value and a reference to
the original object to access its data.

The unclass function is sometimes used to drop a class attribute.

In current R this forces a copy of the data, which can be expensive:
x <- structure(numeric(1e9), class = "foo")

system.time(base::unclass(x))

user system elapsed

1.315 2.709 4.032

Using a wrapper avoids the copy:
system.time(unclass(x))

user system elapsed

0.010 0.003 0.012

Automatic use of wrappers when changing attributes will most likely
be added to R-devel soon.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 10 / 31

Example: Wrapper Objects and Meta-Data

Wrapper objects can also be used to attach meta-data, such as

is the vector sorted;
are there no NA values.

The sort function returns a wrapper that records that the vector is
sorted.

Sorting a large vector takes some time:
x <- rnorm(1e8)

system.time(y <- sort(x))

user system elapsed

8.300 0.576 8.924

The result y is known to be sorted:
system.time(sort(y))

user system elapsed

0 0 0

Luke Tierney (U. of Iowa) ALTREP University of Iowa 11 / 31

Example: Wrapper Objects and Meta-Data

The sorting process will discover whether there are any NA values.

When there are no NA values this is recorded by sort function in the
returned wrapper.

This information is checked by anyNA and used for a quick return:
system.time(anyNA(x))

user system elapsed

0.062 0.000 0.061

system.time(anyNA(y))

user system elapsed

0 0 0

Luke Tierney (U. of Iowa) ALTREP University of Iowa 12 / 31

Example: Wrapper Objects and Meta-Data

Compact integer sequences also carry meta-data:
indx <- seq_along(x)

system.time(anyNA(indx))

user system elapsed

0 0 0

system.time(sort(indx))

user system elapsed

0 0 0

ALTREP objects can also provide methods for some basic summaries:
system.time(sum(x))

user system elapsed

0.176 0.000 0.176

system.time(sum(as.double(indx)))

user system elapsed

0 0 0

These summaries could be computed by special formulas or
memoized.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 13 / 31

Example: Memory Mapped Vectors

R 3.5.0 includes experimental sample classes for memory mapped
integer and real vectors.

The file can be opened for reading and writing or in read-only mode.

When used by ALTREP-aware code these will not result in allocating
memory for holding all the data.

Using non-aware functions may result in attempts to allocate large
objects.

The class provides an option for signaling an error when the raw data
pointer is requested.

A variant is also available as a small experimental package
simplemmap.

It should be possible to allow for files with 8, 16, or 64 bit integers, at
the expense of translation overhead.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 14 / 31

https://github.com/ltierney/Rpkg-simplemmap

Mutable Vectors

R uses pass by value semantics:

Conceptually, a function receives private copies of its arguments.

This eliminates bugs that would otherwise occur, but at a cost.

R can often avoid copying, but sometimes it cannot.

It can be useful to have objects that are considered mutable, or
passed by value, especially for internal data structures.

A number of packages cheat on this at the C level.

ALTREP may allow for providing mutable vectors in a more
disciplined and safe way.

Experiments on this are currently in progress.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 15 / 31

Abstract Classes

The framework is designed around a set of abstract classes:

ALTREP

ALTENV ALTVEC

ALTINTEGER ALTREAL ALTSTRING ...

The most specific classes correspond to R data types.

Concrete classes specialize one of these.

Each abstract class level defines a set of methods.

Each concrete class has a table of method implementations.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 16 / 31

Methods
General Methods

ALTREP object methods:

Duplicate: SEXP Duplicate(SEXP x, Rboolean deep)
Coerce: SEXP Coerce(SEXP x, int type)
Length: R xlen t Length(SEXP x)
Inspect

The standard operations defer to these methods for ALTREP objects.

Duplicate and Coerce methods can return NULL to fall back to the
default behavior.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 17 / 31

Methods
Vector Methods

ALTVEC methods:

Dataptr: SEXP Dataptr(SEXP x, Rboolean writeable)
Dataptr or null
Extract subset
Extract subarray

Dataptr may need to allocate memory;

for now GC is suspended when calling the method.

Dataptr or null will not allocate.

Dataptr or null and Extract subset can be used to avoid fully
allocating an object.

Obtaining a read-only data pointer is also sometimes useful.

Adding Extract subarray will help for interfacing to structured
storage systems.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 18 / 31

Methods
Specific Vector Methods

Specific vector methods (patterned after JNI):

Elt
Get region
No NA
Is sorted
and several others.

Some numeric vector methods:

Min
Max
Sum

A single method for extracting properties specified by a bitmask
might be useful.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 19 / 31

Changes to Existing Functions

Existing functions will work without modification.

But using a writable data pointer via REAL or INTEGER

may cause allocation or reading of full data;
may require flushing meta-data information.

Some functions modified to avoid using the data pointer include

mean
min
max
sum
prod.

These use Get region to process data in chunks.

Many more functions could be modified along these lines.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 20 / 31

Changes to Existing Functions

Subsetting has also been modified to avoid using the data pointer.

This means, for example, that head and sample avoid allocation:
x <- 1:1e12

length(x)

[1] 1e+12

head(x)

[1] 1 2 3 4 5 6

> sample(x, 10)

[1] 736617330192 392069636550 568241239321 224393184527

[5] 851984238988 174365872796 366347672451 84457266227

[9] 72327203393 761965661188

Other operations attempt to allocate and fail:
x + 1

Error: cannot allocate vector of size 7450.6 Gb

log(x)

Error: cannot allocate vector of size 7450.6 Gb

Luke Tierney (U. of Iowa) ALTREP University of Iowa 21 / 31

Serialization and Package Support

Classes can provide custom serialization by defining methods for

Serialized state
Unserialize

Packages can register ALTREP classes.

Serialization records the package and class name.

Unserializing loads the package namespace and looks up the
registered class.

A sample package implementing a memory mapped vector object is
available on GitHub.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 22 / 31

Serialization and Package Support

Custom serialization requires a bump in the serialization version:

Older R versions cannot handle custom serializations; bumping the
format version gives a clearer error message.
Some packages that make assumptions about the serialization format
may need updates (e.g. digest).
This provides an opportunity for some other changes (e.g. recording
native encoding information).

The default serialization has been bumped in R-devel.

Bumping the serialization version created unexpected problems
because source packages contain serialized meta data for
documentation and vignettes.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 23 / 31

Serialization and Package Support
Skeleton of mmap Integer Implementation

/* MMAP Classes Objects */

static R_altrep_class_t mmap_integer_class;

/* ALTREP Methods */

static SEXP mmap_Serialized_state(SEXP x) { ... }

static SEXP mmap_Unserialize(SEXP class , SEXP state) { ... }

/* ALTVEC Methods */

static R_xlen_t mmap_Length(SEXP x) { ... }

static void *mmap_Dataptr(SEXP x, Rboolean writeable) { ... }

static void *mmap_Dataptr_or_null(SEXP x, Rboolean writeable) { ... }

/* ALTINTEGER Methods */

static int mmap_integer_Elt(SEXP x, R_xlen_t i) { ... }

static R_xlen_t mmap_integer_Get_region(SEXP sx, ...) { ... }

/* Constructor */

SEXP do_mmap_file(SEXP args) { ... }

Luke Tierney (U. of Iowa) ALTREP University of Iowa 24 / 31

Serialization and Package Support
Skeleton of mmap Integer Implementation

void R_init_simplemmap(DllInfo *dll)

{

/* create and initialize class objects */

R_altrep_class_t cls =

R_make_altinteger_class("mmap_integer", "simplemmap", dll);

mmap_integer_class = cls;

/* override methods */

R_set_altrep_Unserialize_method(cls , mmap_Unserialize);

...

R_set_altinteger_Get_region_method(cls , mmap_integer_Get_region);

/* register public routines */

static const R_ExternalMethodDef ExtEntries [] = {

{"mmap_file", (DL_FUNC) &do_mmap_file , -1},

{NULL , NULL , 0}

};

R_registerRoutines(dll , NULL , NULL , NULL , ExtEntries);

}

Luke Tierney (U. of Iowa) ALTREP University of Iowa 25 / 31

Some Implementation Details

ALTREP objects are allocated as CONS cells with an altrep header
bit set.

Standard operations like LENGTH look at this bit to decide whether
to dispatch.

To allow efficient scalar identification there is also a scalar bit,

With the ALTREP changes, operations like DATAPTR, STRING ELT,
and SET STRING ELT now might cause allocation.

Eventually code should be rewritten to allow for this.

For now, GC is suspended in these allocations.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 26 / 31

Some Issues and Notes

Performance can suffer due to:
overhead of checking altrep bit for standard objects;
dispatching overhead for ALTREP objects.

Accessing the DATAPTR and possibly allocating may sometimes be
much faster.

Switching to an ALTREP may only pay off if objects are large.

Deferred evaluations/allocations are very useful, but:
allocation failures can be delayed and come at unexpected times;
operations may produce unexpected large allocations, e.g. log(1:1e10);
some situations can lead to repeated evaluations.

Memory mapping issues:
unserialization failure when the file is not available;
some settings might need a conversion layer (e.g. a file of 8-bit
integers).

Deferred edits might be useful for improving complex assignment
performance.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 27 / 31

Current Status

The initial ALTREP infrastructure is incorporated in R 3.5.0,
including

compact integer sequences;
deferred string conversions;
meta-data wrappers.

The infrastructure is still experimental and may still change, but
mostly through addition of methods.

Package authors who might benefit from defining ALTREP classes are
encouraged to give it a try.

We may be setting up a GitHub organization for sharing experiments
with new ALTREP classes.

Experience with the package support framework will help to see if
further changes are needed.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 28 / 31

Next Steps

Some additional data representations:

mutable vectors;
memory mapping with translation for byte count or byte order;
virtual subarrays;
virtual versions of rep results;
run-length encoding;
sparse vectors/arrays.

More uses of deferred computation:

regression results;
reduction operations like log-likelihood computations;
ifelse alternatives;
edits in complex assignment.

More use of meta data.

Wrappers to avoid duplicating when changing attributes.

Experiment with alternate environment representations.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 29 / 31

Conclusions

The ALTREP changes are evolutionary:

Existing code should continue to work.
Performance overhead should be minimal.

The framework should help to

allow experimentation with some new ideas;
regularize some things currently being done.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 30 / 31

Other Things

Reference counting:

more maintainable;
allow less duplicating;
may help improving complex assignment performance.

Compilation:

reduce remaining interpreted/compiled differences;
more optimization opportunities.
de-optimize when guard conditions fail.

Luke Tierney (U. of Iowa) ALTREP University of Iowa 31 / 31

	Introduction
	Examples
	Compact Integer Sequences
	Deferred String Conversions
	Wrapper Objects and Attributes
	Wrapper Objects and Meta-Data
	Memory Mapped Vectors
	Mutable Vectors

	Design and Implementation
	Abstract Classes
	Methods
	Changes to Existing Functions
	Serialization and Package Support
	Some Implementation Details

	Some Issues
	Current Status
	Next Steps
	Conclusions

