
Some Developments for the R Engine

Luke Tierney

Department of Statistics & Actuarial Science
University of Iowa

November 10, 2011

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 1 / 32

Introduction

R is a language for data analysis and graphics.

R is based on the S language developed by John Chambers and others
at Bell Labs.

R is widely used in the field of statistics and beyond, especially in
university environments.

R has become the primary framework for developing and making
available new statistical methodology.

Many (over 3,000) extension packages are available through CRAN or
similar repositories.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 2 / 32

Introduction

R is a language for data analysis and graphics.

R is based on the S language developed by John Chambers and others
at Bell Labs.

R is widely used in the field of statistics and beyond, especially in
university environments.

R has become the primary framework for developing and making
available new statistical methodology.

Many (over 3,000) extension packages are available through CRAN or
similar repositories.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 2 / 32

Introduction

R is a language for data analysis and graphics.

R is based on the S language developed by John Chambers and others
at Bell Labs.

R is widely used in the field of statistics and beyond, especially in
university environments.

R has become the primary framework for developing and making
available new statistical methodology.

Many (over 3,000) extension packages are available through CRAN or
similar repositories.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 2 / 32

Introduction

R is a language for data analysis and graphics.

R is based on the S language developed by John Chambers and others
at Bell Labs.

R is widely used in the field of statistics and beyond, especially in
university environments.

R has become the primary framework for developing and making
available new statistical methodology.

Many (over 3,000) extension packages are available through CRAN or
similar repositories.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 2 / 32

Introduction

R is a language for data analysis and graphics.

R is based on the S language developed by John Chambers and others
at Bell Labs.

R is widely used in the field of statistics and beyond, especially in
university environments.

R has become the primary framework for developing and making
available new statistical methodology.

Many (over 3,000) extension packages are available through CRAN or
similar repositories.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 2 / 32

History and Development Model

R is an Open Source project.

Originally developed by Robert Gentleman and Ross Ihaka in the early
1990’s for a Macintosh computer lab at U. of Auckland, NZ.

Developed by the R-core group since mid 1997,

Douglas Bates John Chambers Peter Dalgaard
Robert Gentleman Seth Falcon Kurt Hornik
Stefano Iacus Ross Ihaka Friedrich Leisch
Uwe Ligges Thomas Lumley Martin Maechler
Duncan Murdoch Paul Murrell Martyn Plummer
Brian Ripley Deepayan Sarkar Duncan Temple Lang
Luke Tierney Simon Urbanek

Strong community support through

contributed extension packages
mailing lists and blogs
contributed documentation and task views

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 3 / 32

History and Development Model

R is an Open Source project.

Originally developed by Robert Gentleman and Ross Ihaka in the early
1990’s for a Macintosh computer lab at U. of Auckland, NZ.

Developed by the R-core group since mid 1997,

Douglas Bates John Chambers Peter Dalgaard
Robert Gentleman Seth Falcon Kurt Hornik
Stefano Iacus Ross Ihaka Friedrich Leisch
Uwe Ligges Thomas Lumley Martin Maechler
Duncan Murdoch Paul Murrell Martyn Plummer
Brian Ripley Deepayan Sarkar Duncan Temple Lang
Luke Tierney Simon Urbanek

Strong community support through

contributed extension packages
mailing lists and blogs
contributed documentation and task views

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 3 / 32

History and Development Model

R is an Open Source project.

Originally developed by Robert Gentleman and Ross Ihaka in the early
1990’s for a Macintosh computer lab at U. of Auckland, NZ.

Developed by the R-core group since mid 1997,

Douglas Bates John Chambers Peter Dalgaard
Robert Gentleman Seth Falcon Kurt Hornik
Stefano Iacus Ross Ihaka Friedrich Leisch
Uwe Ligges Thomas Lumley Martin Maechler
Duncan Murdoch Paul Murrell Martyn Plummer
Brian Ripley Deepayan Sarkar Duncan Temple Lang
Luke Tierney Simon Urbanek

Strong community support through

contributed extension packages
mailing lists and blogs
contributed documentation and task views

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 3 / 32

History and Development Model

R is an Open Source project.

Originally developed by Robert Gentleman and Ross Ihaka in the early
1990’s for a Macintosh computer lab at U. of Auckland, NZ.

Developed by the R-core group since mid 1997,

Douglas Bates John Chambers Peter Dalgaard
Robert Gentleman Seth Falcon Kurt Hornik
Stefano Iacus Ross Ihaka Friedrich Leisch
Uwe Ligges Thomas Lumley Martin Maechler
Duncan Murdoch Paul Murrell Martyn Plummer
Brian Ripley Deepayan Sarkar Duncan Temple Lang
Luke Tierney Simon Urbanek

Strong community support through

contributed extension packages
mailing lists and blogs
contributed documentation and task views

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 3 / 32

History and Development Model

R is an Open Source project.

Originally developed by Robert Gentleman and Ross Ihaka in the early
1990’s for a Macintosh computer lab at U. of Auckland, NZ.

Developed by the R-core group since mid 1997,

Douglas Bates John Chambers Peter Dalgaard
Robert Gentleman Seth Falcon Kurt Hornik
Stefano Iacus Ross Ihaka Friedrich Leisch
Uwe Ligges Thomas Lumley Martin Maechler
Duncan Murdoch Paul Murrell Martyn Plummer
Brian Ripley Deepayan Sarkar Duncan Temple Lang
Luke Tierney Simon Urbanek

Strong community support through

contributed extension packages
mailing lists and blogs
contributed documentation and task views

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 3 / 32

History and Development Model

R is an Open Source project.

Originally developed by Robert Gentleman and Ross Ihaka in the early
1990’s for a Macintosh computer lab at U. of Auckland, NZ.

Developed by the R-core group since mid 1997,

Douglas Bates John Chambers Peter Dalgaard
Robert Gentleman Seth Falcon Kurt Hornik
Stefano Iacus Ross Ihaka Friedrich Leisch
Uwe Ligges Thomas Lumley Martin Maechler
Duncan Murdoch Paul Murrell Martyn Plummer
Brian Ripley Deepayan Sarkar Duncan Temple Lang
Luke Tierney Simon Urbanek

Strong community support through

contributed extension packages
mailing lists and blogs
contributed documentation and task views

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 3 / 32

History and Development Model

R is an Open Source project.

Originally developed by Robert Gentleman and Ross Ihaka in the early
1990’s for a Macintosh computer lab at U. of Auckland, NZ.

Developed by the R-core group since mid 1997,

Douglas Bates John Chambers Peter Dalgaard
Robert Gentleman Seth Falcon Kurt Hornik
Stefano Iacus Ross Ihaka Friedrich Leisch
Uwe Ligges Thomas Lumley Martin Maechler
Duncan Murdoch Paul Murrell Martyn Plummer
Brian Ripley Deepayan Sarkar Duncan Temple Lang
Luke Tierney Simon Urbanek

Strong community support through

contributed extension packages
mailing lists and blogs
contributed documentation and task views

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 3 / 32

Introduction

This talk outlines some recent developments in the core R engine I
have worked on and developments I expect to work on over the next
12 to 18 months:

Byte code compilation of R code.
Taking advantage of multiple cores for

basic vectorized operations
simple matrix operations.

Increasing the limit on the size of vector data objects.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 4 / 32

Introduction

This talk outlines some recent developments in the core R engine I
have worked on and developments I expect to work on over the next
12 to 18 months:

Byte code compilation of R code.
Taking advantage of multiple cores for

basic vectorized operations
simple matrix operations.

Increasing the limit on the size of vector data objects.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 4 / 32

Introduction

This talk outlines some recent developments in the core R engine I
have worked on and developments I expect to work on over the next
12 to 18 months:

Byte code compilation of R code.
Taking advantage of multiple cores for

basic vectorized operations
simple matrix operations.

Increasing the limit on the size of vector data objects.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 4 / 32

Introduction

This talk outlines some recent developments in the core R engine I
have worked on and developments I expect to work on over the next
12 to 18 months:

Byte code compilation of R code.
Taking advantage of multiple cores for

basic vectorized operations
simple matrix operations.

Increasing the limit on the size of vector data objects.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 4 / 32

Introduction

This talk outlines some recent developments in the core R engine I
have worked on and developments I expect to work on over the next
12 to 18 months:

Byte code compilation of R code.
Taking advantage of multiple cores for

basic vectorized operations
simple matrix operations.

Increasing the limit on the size of vector data objects.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 4 / 32

Introduction

This talk outlines some recent developments in the core R engine I
have worked on and developments I expect to work on over the next
12 to 18 months:

Byte code compilation of R code.
Taking advantage of multiple cores for

basic vectorized operations
simple matrix operations.

Increasing the limit on the size of vector data objects.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 4 / 32

Byte Code Compilation

The standard R evaluation mechanism

parses code into a parse tree when the code is read
evaluates code by interpreting the parse trees.

Most low level languages (e.g. C, FORTRAN) compile their source
code to native machine code.

Some intermediate level languages (e.g. Java, C#) and many
scripting languages (e.g. Perl, Python) compile to a simpler language
called byte code.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 5 / 32

Byte Code Compilation

The standard R evaluation mechanism

parses code into a parse tree when the code is read
evaluates code by interpreting the parse trees.

Most low level languages (e.g. C, FORTRAN) compile their source
code to native machine code.

Some intermediate level languages (e.g. Java, C#) and many
scripting languages (e.g. Perl, Python) compile to a simpler language
called byte code.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 5 / 32

Byte Code Compilation

The standard R evaluation mechanism

parses code into a parse tree when the code is read
evaluates code by interpreting the parse trees.

Most low level languages (e.g. C, FORTRAN) compile their source
code to native machine code.

Some intermediate level languages (e.g. Java, C#) and many
scripting languages (e.g. Perl, Python) compile to a simpler language
called byte code.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 5 / 32

Byte Code Compilation

The standard R evaluation mechanism

parses code into a parse tree when the code is read
evaluates code by interpreting the parse trees.

Most low level languages (e.g. C, FORTRAN) compile their source
code to native machine code.

Some intermediate level languages (e.g. Java, C#) and many
scripting languages (e.g. Perl, Python) compile to a simpler language
called byte code.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 5 / 32

Byte Code Compilation

The standard R evaluation mechanism

parses code into a parse tree when the code is read
evaluates code by interpreting the parse trees.

Most low level languages (e.g. C, FORTRAN) compile their source
code to native machine code.

Some intermediate level languages (e.g. Java, C#) and many
scripting languages (e.g. Perl, Python) compile to a simpler language
called byte code.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 5 / 32

Byte Code Compilation

Byte code is the machine code for a virtual machine.

Virtual machine code can then be interpreted by a simpler, more
efficient interpreter.

Virtual machines, and their machine code, are usually specific to the
languages they are designed to support.

Various strategies for further compiling byte code to native machine
code are also sometimes used.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 6 / 32

Byte Code Compilation

Byte code is the machine code for a virtual machine.

Virtual machine code can then be interpreted by a simpler, more
efficient interpreter.

Virtual machines, and their machine code, are usually specific to the
languages they are designed to support.

Various strategies for further compiling byte code to native machine
code are also sometimes used.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 6 / 32

Byte Code Compilation

Byte code is the machine code for a virtual machine.

Virtual machine code can then be interpreted by a simpler, more
efficient interpreter.

Virtual machines, and their machine code, are usually specific to the
languages they are designed to support.

Various strategies for further compiling byte code to native machine
code are also sometimes used.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 6 / 32

Byte Code Compilation

Byte code is the machine code for a virtual machine.

Virtual machine code can then be interpreted by a simpler, more
efficient interpreter.

Virtual machines, and their machine code, are usually specific to the
languages they are designed to support.

Various strategies for further compiling byte code to native machine
code are also sometimes used.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 6 / 32

Byte Code Compilation

Efforts to add byte code compilation to R have been underway for
some time.

The first release of the compiler occurred with R 2.13.0 this spring.

Some improvements in the virtual machine interpreter were released
with R 2.14.0 this fall.

The current compiler and virtual machine produce good
improvements in a number of cases.

Better results should be possible with some improvements to the
virtual machine and are currently being explored.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 7 / 32

Byte Code Compilation

Efforts to add byte code compilation to R have been underway for
some time.

The first release of the compiler occurred with R 2.13.0 this spring.

Some improvements in the virtual machine interpreter were released
with R 2.14.0 this fall.

The current compiler and virtual machine produce good
improvements in a number of cases.

Better results should be possible with some improvements to the
virtual machine and are currently being explored.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 7 / 32

Byte Code Compilation

Efforts to add byte code compilation to R have been underway for
some time.

The first release of the compiler occurred with R 2.13.0 this spring.

Some improvements in the virtual machine interpreter were released
with R 2.14.0 this fall.

The current compiler and virtual machine produce good
improvements in a number of cases.

Better results should be possible with some improvements to the
virtual machine and are currently being explored.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 7 / 32

Byte Code Compilation

Efforts to add byte code compilation to R have been underway for
some time.

The first release of the compiler occurred with R 2.13.0 this spring.

Some improvements in the virtual machine interpreter were released
with R 2.14.0 this fall.

The current compiler and virtual machine produce good
improvements in a number of cases.

Better results should be possible with some improvements to the
virtual machine and are currently being explored.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 7 / 32

Byte Code Compilation

Efforts to add byte code compilation to R have been underway for
some time.

The first release of the compiler occurred with R 2.13.0 this spring.

Some improvements in the virtual machine interpreter were released
with R 2.14.0 this fall.

The current compiler and virtual machine produce good
improvements in a number of cases.

Better results should be possible with some improvements to the
virtual machine and are currently being explored.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 7 / 32

Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing, or specify the ByteCompile option
in the DESCRIPTION file.
R 2.14.0 by default compiles R code in all base and recommended
packages.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 8 / 32

Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing, or specify the ByteCompile option
in the DESCRIPTION file.
R 2.14.0 by default compiles R code in all base and recommended
packages.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 8 / 32

Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing, or specify the ByteCompile option
in the DESCRIPTION file.
R 2.14.0 by default compiles R code in all base and recommended
packages.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 8 / 32

Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing, or specify the ByteCompile option
in the DESCRIPTION file.
R 2.14.0 by default compiles R code in all base and recommended
packages.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 8 / 32

Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing, or specify the ByteCompile option
in the DESCRIPTION file.
R 2.14.0 by default compiles R code in all base and recommended
packages.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 8 / 32

Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing, or specify the ByteCompile option
in the DESCRIPTION file.
R 2.14.0 by default compiles R code in all base and recommended
packages.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 8 / 32

Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing, or specify the ByteCompile option
in the DESCRIPTION file.
R 2.14.0 by default compiles R code in all base and recommended
packages.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 8 / 32

Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing, or specify the ByteCompile option
in the DESCRIPTION file.
R 2.14.0 by default compiles R code in all base and recommended
packages.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 8 / 32

Compiler Operation

The compiler can be called explicitly to compile single functions or
files of code:

cmpfun compiles a function
cmpfile compiles a file to be loaded by loadcmp

It is also possible to have package code compiled when a package is
installed.

Use --byte-compile when installing, or specify the ByteCompile option
in the DESCRIPTION file.
R 2.14.0 by default compiles R code in all base and recommended
packages.

Alternatively, the compiler can be used in a JIT mode where

functions are compiled on first use
loops are compiler before they are run

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 8 / 32

Compiler Operation

The current compiler includes a number of optimizations, such as

constant folding
special instructions for most SPECIALs, many BUILTINs
inlining simple .Internal calls: e.g.

dnorm(y, 2, 3)

is replaced by

.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

special instructions for many .Internals

The compiler is currently most effective for code used on scalar data
or short vectors where interpreter overhead is large relative to actual
computation.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 9 / 32

Compiler Operation

The current compiler includes a number of optimizations, such as

constant folding
special instructions for most SPECIALs, many BUILTINs
inlining simple .Internal calls: e.g.

dnorm(y, 2, 3)

is replaced by

.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

special instructions for many .Internals

The compiler is currently most effective for code used on scalar data
or short vectors where interpreter overhead is large relative to actual
computation.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 9 / 32

Compiler Operation

The current compiler includes a number of optimizations, such as

constant folding
special instructions for most SPECIALs, many BUILTINs
inlining simple .Internal calls: e.g.

dnorm(y, 2, 3)

is replaced by

.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

special instructions for many .Internals

The compiler is currently most effective for code used on scalar data
or short vectors where interpreter overhead is large relative to actual
computation.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 9 / 32

Compiler Operation

The current compiler includes a number of optimizations, such as

constant folding
special instructions for most SPECIALs, many BUILTINs
inlining simple .Internal calls: e.g.

dnorm(y, 2, 3)

is replaced by

.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

special instructions for many .Internals

The compiler is currently most effective for code used on scalar data
or short vectors where interpreter overhead is large relative to actual
computation.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 9 / 32

Compiler Operation

The current compiler includes a number of optimizations, such as

constant folding
special instructions for most SPECIALs, many BUILTINs
inlining simple .Internal calls: e.g.

dnorm(y, 2, 3)

is replaced by

.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

special instructions for many .Internals

The compiler is currently most effective for code used on scalar data
or short vectors where interpreter overhead is large relative to actual
computation.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 9 / 32

Compiler Operation

The current compiler includes a number of optimizations, such as

constant folding
special instructions for most SPECIALs, many BUILTINs
inlining simple .Internal calls: e.g.

dnorm(y, 2, 3)

is replaced by

.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))

special instructions for many .Internals

The compiler is currently most effective for code used on scalar data
or short vectors where interpreter overhead is large relative to actual
computation.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 9 / 32

A Simple Example

R Code

f <- function(x) {
s <- 0.0
for (y in x)

s <- s + y
s

}

VM Assembly Code

LDCONST 0.0
SETVAR s
POP
GETVAR x
STARTFOR y L2

L1: GETVAR s
GETVAR y
ADD
SETVAR s
POP
STEPFOR L1

L2: ENDFOR
POP
GETVAR s
RETURN

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 10 / 32

A Simple Example

R Code

f <- function(x) {
s <- 0.0
for (y in x)

s <- s + y
s

}

VM Assembly Code

LDCONST 0.0
SETVAR s
POP
GETVAR x
STARTFOR y L2

L1: GETVAR s
GETVAR y
ADD
SETVAR s
POP
STEPFOR L1

L2: ENDFOR
POP
GETVAR s
RETURN

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 10 / 32

Some Performance Results

Timings for some simple benchmarks on an x86_64 Ubuntu laptop:

Benchmark Interp. Comp. Speedup Exper. Speedup

p1 32.19 7.98 4.0 1.47 21.9
sum 6.72 1.86 3.6 0.59 11.4
conv 14.48 4.30 3.4 0.81 17.9
rem 56.82 23.68 2.4 4.77 11.9

Interp., Comp. are for the development version of R

includes some variable lookup improvements for compiled code

Exper.: experimental version using

separate instructions for vector, matrix indexing

typed stack to avoid allocating intermediate scalar values

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 11 / 32

Some Performance Results

Timings for some simple benchmarks on an x86_64 Ubuntu laptop:

Benchmark Interp. Comp. Speedup Exper. Speedup

p1 32.19 7.98 4.0 1.47 21.9
sum 6.72 1.86 3.6 0.59 11.4
conv 14.48 4.30 3.4 0.81 17.9
rem 56.82 23.68 2.4 4.77 11.9

Interp., Comp. are for the development version of R

includes some variable lookup improvements for compiled code

Exper.: experimental version using

separate instructions for vector, matrix indexing

typed stack to avoid allocating intermediate scalar values

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 11 / 32

Some Performance Results

Timings for some simple benchmarks on an x86_64 Ubuntu laptop:

Benchmark Interp. Comp. Speedup Exper. Speedup

p1 32.19 7.98 4.0 1.47 21.9
sum 6.72 1.86 3.6 0.59 11.4
conv 14.48 4.30 3.4 0.81 17.9
rem 56.82 23.68 2.4 4.77 11.9

Interp., Comp. are for the development version of R

includes some variable lookup improvements for compiled code

Exper.: experimental version using

separate instructions for vector, matrix indexing

typed stack to avoid allocating intermediate scalar values

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 11 / 32

Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Collaborations with computer scientists are being explored.

Maintainability is a key concern.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 12 / 32

Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Collaborations with computer scientists are being explored.

Maintainability is a key concern.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 12 / 32

Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Collaborations with computer scientists are being explored.

Maintainability is a key concern.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 12 / 32

Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Collaborations with computer scientists are being explored.

Maintainability is a key concern.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 12 / 32

Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Collaborations with computer scientists are being explored.

Maintainability is a key concern.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 12 / 32

Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Collaborations with computer scientists are being explored.

Maintainability is a key concern.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 12 / 32

Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Collaborations with computer scientists are being explored.

Maintainability is a key concern.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 12 / 32

Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Collaborations with computer scientists are being explored.

Maintainability is a key concern.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 12 / 32

Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Collaborations with computer scientists are being explored.

Maintainability is a key concern.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 12 / 32

Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Collaborations with computer scientists are being explored.

Maintainability is a key concern.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 12 / 32

Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Collaborations with computer scientists are being explored.

Maintainability is a key concern.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 12 / 32

Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Collaborations with computer scientists are being explored.

Maintainability is a key concern.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 12 / 32

Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Collaborations with computer scientists are being explored.

Maintainability is a key concern.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 12 / 32

Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Collaborations with computer scientists are being explored.

Maintainability is a key concern.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 12 / 32

Future Directions

The current virtual machine uses a stack based design.

An alternative approach might use a register-based design.

Some additional optimizations currently being explored:

avoiding the allocation of intermediate values when possible
more efficient variable lookup mechanisms
more efficient function calls
possibly improved handling of lazy evaluation

Some promising preliminary results are available.

Other possible directions include

Partial evaluation when some arguments are constants
Intra-procedural optimizations and inlining
Declarations (sealing, scalars, types, strictness)
Machine code generation using LLVM or other approaches

Collaborations with computer scientists are being explored.

Maintainability is a key concern.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 12 / 32

Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will soon be common.

A common question:

How can I make R use more than one core for my computation?

There are many easy answers.

But this is the wrong question.

The right question:

How can we take advantage of having more than one core to get our
computations to run faster?

This is harder to answer.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 13 / 32

Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will soon be common.

A common question:

How can I make R use more than one core for my computation?

There are many easy answers.

But this is the wrong question.

The right question:

How can we take advantage of having more than one core to get our
computations to run faster?

This is harder to answer.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 13 / 32

Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will soon be common.

A common question:

How can I make R use more than one core for my computation?

There are many easy answers.

But this is the wrong question.

The right question:

How can we take advantage of having more than one core to get our
computations to run faster?

This is harder to answer.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 13 / 32

Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will soon be common.

A common question:

How can I make R use more than one core for my computation?

There are many easy answers.

But this is the wrong question.

The right question:

How can we take advantage of having more than one core to get our
computations to run faster?

This is harder to answer.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 13 / 32

Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will soon be common.

A common question:

How can I make R use more than one core for my computation?

There are many easy answers.

But this is the wrong question.

The right question:

How can we take advantage of having more than one core to get our
computations to run faster?

This is harder to answer.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 13 / 32

Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will soon be common.

A common question:

How can I make R use more than one core for my computation?

There are many easy answers.

But this is the wrong question.

The right question:

How can we take advantage of having more than one core to get our
computations to run faster?

This is harder to answer.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 13 / 32

Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will soon be common.

A common question:

How can I make R use more than one core for my computation?

There are many easy answers.

But this is the wrong question.

The right question:

How can we take advantage of having more than one core to get our
computations to run faster?

This is harder to answer.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 13 / 32

Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will soon be common.

A common question:

How can I make R use more than one core for my computation?

There are many easy answers.

But this is the wrong question.

The right question:

How can we take advantage of having more than one core to get our
computations to run faster?

This is harder to answer.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 13 / 32

Parallelizing Vector and Matrix Operations

Most modern computers feature two or more processor cores.

It is expected that tens of cores will soon be common.

A common question:

How can I make R use more than one core for my computation?

There are many easy answers.

But this is the wrong question.

The right question:

How can we take advantage of having more than one core to get our
computations to run faster?

This is harder to answer.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 13 / 32

Some Approaches to Parallel Computing

Two possible approaches:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

I will focus on implicit parallelization of

basic vectorized math functions
basic matrix operations (e.g. colSums)
BLAS

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 14 / 32

Some Approaches to Parallel Computing

Two possible approaches:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

I will focus on implicit parallelization of

basic vectorized math functions
basic matrix operations (e.g. colSums)
BLAS

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 14 / 32

Some Approaches to Parallel Computing

Two possible approaches:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

I will focus on implicit parallelization of

basic vectorized math functions
basic matrix operations (e.g. colSums)
BLAS

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 14 / 32

Some Approaches to Parallel Computing

Two possible approaches:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

I will focus on implicit parallelization of

basic vectorized math functions
basic matrix operations (e.g. colSums)
BLAS

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 14 / 32

Some Approaches to Parallel Computing

Two possible approaches:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

I will focus on implicit parallelization of

basic vectorized math functions
basic matrix operations (e.g. colSums)
BLAS

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 14 / 32

Some Approaches to Parallel Computing

Two possible approaches:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

I will focus on implicit parallelization of

basic vectorized math functions
basic matrix operations (e.g. colSums)
BLAS

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 14 / 32

Some Approaches to Parallel Computing

Two possible approaches:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

I will focus on implicit parallelization of

basic vectorized math functions
basic matrix operations (e.g. colSums)
BLAS

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 14 / 32

Some Approaches to Parallel Computing

Two possible approaches:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

I will focus on implicit parallelization of

basic vectorized math functions
basic matrix operations (e.g. colSums)
BLAS

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 14 / 32

Some Approaches to Parallel Computing

Two possible approaches:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

I will focus on implicit parallelization of

basic vectorized math functions
basic matrix operations (e.g. colSums)
BLAS

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 14 / 32

Some Approaches to Parallel Computing

Two possible approaches:
Explicit parallelization:

uses some form of annotation to specify parallelism
packages snow, multicore, parallel.

Implicit parallelization:

automatic, no user action needed

I will focus on implicit parallelization of

basic vectorized math functions
basic matrix operations (e.g. colSums)
BLAS

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 14 / 32

Parallelizing Vectorized Operations
An Idealized View

Basic idea for computing f(x[1:n]) on a two-processor system:

Run two worker threads.
Place half the computation on each thread.

Ideally this would produce a two-fold speed up.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 15 / 32

Parallelizing Vectorized Operations
An Idealized View

Basic idea for computing f(x[1:n]) on a two-processor system:

Run two worker threads.
Place half the computation on each thread.

Ideally this would produce a two-fold speed up.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 15 / 32

Parallelizing Vectorized Operations
An Idealized View

Basic idea for computing f(x[1:n]) on a two-processor system:

Run two worker threads.
Place half the computation on each thread.

Ideally this would produce a two-fold speed up.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 15 / 32

Parallelizing Vectorized Operations
An Idealized View

Basic idea for computing f(x[1:n]) on a two-processor system:

Run two worker threads.
Place half the computation on each thread.

Ideally this would produce a two-fold speed up.

Parallel

Sequential n

n/2

n/2

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 15 / 32

Parallelizing Vectorized Operations
A More Realistic View

Reality is a bit different:

Parallel

Sequential n

n/2

n/2

There is

synchronization overhead
sequential code and use of shared resources (memory, bus, . . .)
uneven workload

Parallelizing will only pay off if n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Careful tuning to ensure improvement will be needed.

Some aspects will depend on architecture and OS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 16 / 32

Parallelizing Vectorized Operations
A More Realistic View

Reality is a bit different:

Parallel

Sequential n

n/2

n/2

There is

synchronization overhead
sequential code and use of shared resources (memory, bus, . . .)
uneven workload

Parallelizing will only pay off if n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Careful tuning to ensure improvement will be needed.

Some aspects will depend on architecture and OS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 16 / 32

Parallelizing Vectorized Operations
A More Realistic View

Reality is a bit different:

Parallel

Sequential n

n/2

n/2

There is

synchronization overhead
sequential code and use of shared resources (memory, bus, . . .)
uneven workload

Parallelizing will only pay off if n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Careful tuning to ensure improvement will be needed.

Some aspects will depend on architecture and OS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 16 / 32

Parallelizing Vectorized Operations
A More Realistic View

Reality is a bit different:

Parallel

Sequential n

n/2

n/2

There is

synchronization overhead
sequential code and use of shared resources (memory, bus, . . .)
uneven workload

Parallelizing will only pay off if n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Careful tuning to ensure improvement will be needed.

Some aspects will depend on architecture and OS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 16 / 32

Parallelizing Vectorized Operations
A More Realistic View

Reality is a bit different:

Parallel

Sequential n

n/2

n/2

There is

synchronization overhead
sequential code and use of shared resources (memory, bus, . . .)
uneven workload

Parallelizing will only pay off if n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Careful tuning to ensure improvement will be needed.

Some aspects will depend on architecture and OS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 16 / 32

Parallelizing Vectorized Operations
A More Realistic View

Reality is a bit different:

Parallel

Sequential n

n/2

n/2

There is

synchronization overhead
sequential code and use of shared resources (memory, bus, . . .)
uneven workload

Parallelizing will only pay off if n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Careful tuning to ensure improvement will be needed.

Some aspects will depend on architecture and OS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 16 / 32

Parallelizing Vectorized Operations
A More Realistic View

Reality is a bit different:

Parallel

Sequential n

n/2

n/2

There is

synchronization overhead
sequential code and use of shared resources (memory, bus, . . .)
uneven workload

Parallelizing will only pay off if n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Careful tuning to ensure improvement will be needed.

Some aspects will depend on architecture and OS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 16 / 32

Parallelizing Vectorized Operations
A More Realistic View

Reality is a bit different:

Parallel

Sequential n

n/2

n/2

There is

synchronization overhead
sequential code and use of shared resources (memory, bus, . . .)
uneven workload

Parallelizing will only pay off if n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Careful tuning to ensure improvement will be needed.

Some aspects will depend on architecture and OS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 16 / 32

Parallelizing Vectorized Operations
A More Realistic View

Reality is a bit different:

Parallel

Sequential n

n/2

n/2

There is

synchronization overhead
sequential code and use of shared resources (memory, bus, . . .)
uneven workload

Parallelizing will only pay off if n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Careful tuning to ensure improvement will be needed.

Some aspects will depend on architecture and OS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 16 / 32

Parallelizing Vectorized Operations
A More Realistic View

Reality is a bit different:

Parallel

Sequential n

n/2

n/2

There is

synchronization overhead
sequential code and use of shared resources (memory, bus, . . .)
uneven workload

Parallelizing will only pay off if n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Careful tuning to ensure improvement will be needed.

Some aspects will depend on architecture and OS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 16 / 32

Parallelizing Vectorized Operations
A More Realistic View

Reality is a bit different:

Parallel

Sequential n

n/2

n/2

There is

synchronization overhead
sequential code and use of shared resources (memory, bus, . . .)
uneven workload

Parallelizing will only pay off if n is large enough.

For some functions, e.g. qbeta, n ≈ 10 may be large enough.
For some, e.g. qnorm, n ≈ 1000 is needed.
For basic arithmetic operations n ≈ 30000 may be needed.

Careful tuning to ensure improvement will be needed.

Some aspects will depend on architecture and OS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 16 / 32

Parallelizing Vectorized Operations
Some Experimental Results

0 200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

n

C
P

U
 ti

m
e

in
 m

ill
is

ec
on

ds

qnorm, Linux/AMD/x86_64

0 200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

n

C
P

U
 ti

m
e

in
 m

ill
is

ec
on

ds

pgamma, Linux/AMD/x86_64

0 200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

n

C
P

U
 ti

m
e

in
 m

ill
is

ec
on

ds

qnorm, Mac OS X/Intel/i386

0 200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

n

C
P

U
 ti

m
e

in
 m

ill
is

ec
on

ds

pgamma, Mac OS X/Intel/i386

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 17 / 32

Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
If the slope for P processors is sP , then at least for P = 2 and P = 4,

sP ≈ s1/P

Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 18 / 32

Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
If the slope for P processors is sP , then at least for P = 2 and P = 4,

sP ≈ s1/P

Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 18 / 32

Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
If the slope for P processors is sP , then at least for P = 2 and P = 4,

sP ≈ s1/P

Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 18 / 32

Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
If the slope for P processors is sP , then at least for P = 2 and P = 4,

sP ≈ s1/P

Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 18 / 32

Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
If the slope for P processors is sP , then at least for P = 2 and P = 4,

sP ≈ s1/P

Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 18 / 32

Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
If the slope for P processors is sP , then at least for P = 2 and P = 4,

sP ≈ s1/P

Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 18 / 32

Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
If the slope for P processors is sP , then at least for P = 2 and P = 4,

sP ≈ s1/P

Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 18 / 32

Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
If the slope for P processors is sP , then at least for P = 2 and P = 4,

sP ≈ s1/P

Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 18 / 32

Parallelizing Vectorized Operations
Some Experimental Results

Some observations:

Times are roughly linear in vector length.
Intercepts on a given platform are roughly the same for all functions.
If the slope for P processors is sP , then at least for P = 2 and P = 4,

sP ≈ s1/P

Relative slopes of functions seem roughly independent of
OS/architecture.

A simple calibration strategy:

Compute relative slopes once, or average across several setups.
For each OS/architecture combination compute the intercepts.

The appropriate time to run calibration code is still open.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 18 / 32

Parallelizing Vectorized Operations
Implementation

Need to use threads

One possibility: using raw pthreads

Better choice: use Open MP

Open MP consists of

compiler directives (#pragma statements in C)
a runtime support library

Most commercial compilers support Open MP.

Current gcc versions support Open MP; newer ones do a better job.

MinGW for Win32 also supports Open MP; an additional pthreads
download is needed.

Support for Win64 now available also and should be in the toolchain
soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 19 / 32

Parallelizing Vectorized Operations
Implementation

Need to use threads

One possibility: using raw pthreads

Better choice: use Open MP

Open MP consists of

compiler directives (#pragma statements in C)
a runtime support library

Most commercial compilers support Open MP.

Current gcc versions support Open MP; newer ones do a better job.

MinGW for Win32 also supports Open MP; an additional pthreads
download is needed.

Support for Win64 now available also and should be in the toolchain
soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 19 / 32

Parallelizing Vectorized Operations
Implementation

Need to use threads

One possibility: using raw pthreads

Better choice: use Open MP

Open MP consists of

compiler directives (#pragma statements in C)
a runtime support library

Most commercial compilers support Open MP.

Current gcc versions support Open MP; newer ones do a better job.

MinGW for Win32 also supports Open MP; an additional pthreads
download is needed.

Support for Win64 now available also and should be in the toolchain
soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 19 / 32

Parallelizing Vectorized Operations
Implementation

Need to use threads

One possibility: using raw pthreads

Better choice: use Open MP

Open MP consists of

compiler directives (#pragma statements in C)
a runtime support library

Most commercial compilers support Open MP.

Current gcc versions support Open MP; newer ones do a better job.

MinGW for Win32 also supports Open MP; an additional pthreads
download is needed.

Support for Win64 now available also and should be in the toolchain
soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 19 / 32

Parallelizing Vectorized Operations
Implementation

Need to use threads

One possibility: using raw pthreads

Better choice: use Open MP

Open MP consists of

compiler directives (#pragma statements in C)
a runtime support library

Most commercial compilers support Open MP.

Current gcc versions support Open MP; newer ones do a better job.

MinGW for Win32 also supports Open MP; an additional pthreads
download is needed.

Support for Win64 now available also and should be in the toolchain
soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 19 / 32

Parallelizing Vectorized Operations
Implementation

Need to use threads

One possibility: using raw pthreads

Better choice: use Open MP

Open MP consists of

compiler directives (#pragma statements in C)
a runtime support library

Most commercial compilers support Open MP.

Current gcc versions support Open MP; newer ones do a better job.

MinGW for Win32 also supports Open MP; an additional pthreads
download is needed.

Support for Win64 now available also and should be in the toolchain
soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 19 / 32

Parallelizing Vectorized Operations
Implementation

Need to use threads

One possibility: using raw pthreads

Better choice: use Open MP

Open MP consists of

compiler directives (#pragma statements in C)
a runtime support library

Most commercial compilers support Open MP.

Current gcc versions support Open MP; newer ones do a better job.

MinGW for Win32 also supports Open MP; an additional pthreads
download is needed.

Support for Win64 now available also and should be in the toolchain
soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 19 / 32

Parallelizing Vectorized Operations
Implementation

Need to use threads

One possibility: using raw pthreads

Better choice: use Open MP

Open MP consists of

compiler directives (#pragma statements in C)
a runtime support library

Most commercial compilers support Open MP.

Current gcc versions support Open MP; newer ones do a better job.

MinGW for Win32 also supports Open MP; an additional pthreads
download is needed.

Support for Win64 now available also and should be in the toolchain
soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 19 / 32

Parallelizing Vectorized Operations
Implementation

Need to use threads

One possibility: using raw pthreads

Better choice: use Open MP

Open MP consists of

compiler directives (#pragma statements in C)
a runtime support library

Most commercial compilers support Open MP.

Current gcc versions support Open MP; newer ones do a better job.

MinGW for Win32 also supports Open MP; an additional pthreads
download is needed.

Support for Win64 now available also and should be in the toolchain
soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 19 / 32

Parallelizing Vectorized Operations
Implementation

Need to use threads

One possibility: using raw pthreads

Better choice: use Open MP

Open MP consists of

compiler directives (#pragma statements in C)
a runtime support library

Most commercial compilers support Open MP.

Current gcc versions support Open MP; newer ones do a better job.

MinGW for Win32 also supports Open MP; an additional pthreads
download is needed.

Support for Win64 now available also and should be in the toolchain
soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 19 / 32

Parallelizing Vectorized Operations
Implementation

Basic loop for a one-argument function:
#pragma omp parallel for if (P > 0) num_threads(P) \

default(shared) private(i) reduction(&&:naflag)

for (i = 0; i < n; i++) {

double ai = a[i];

MATH1_LOOP_BODY(y[i], f(ai), ai, naflag);

}

Steps in converting to Open MP:

check f is thread-safe; modify if not
rewrite loop to work with the Open MP directive
test without Open MP, then enable Open MP

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 20 / 32

Parallelizing Vectorized Operations
Implementation

Basic loop for a one-argument function:
#pragma omp parallel for if (P > 0) num_threads(P) \

default(shared) private(i) reduction(&&:naflag)

for (i = 0; i < n; i++) {

double ai = a[i];

MATH1_LOOP_BODY(y[i], f(ai), ai, naflag);

}

Steps in converting to Open MP:

check f is thread-safe; modify if not
rewrite loop to work with the Open MP directive
test without Open MP, then enable Open MP

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 20 / 32

Parallelizing Vectorized Operations
Implementation

Basic loop for a one-argument function:
#pragma omp parallel for if (P > 0) num_threads(P) \

default(shared) private(i) reduction(&&:naflag)

for (i = 0; i < n; i++) {

double ai = a[i];

MATH1_LOOP_BODY(y[i], f(ai), ai, naflag);

}

Steps in converting to Open MP:

check f is thread-safe; modify if not
rewrite loop to work with the Open MP directive
test without Open MP, then enable Open MP

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 20 / 32

Parallelizing Vectorized Operations
Implementation

Basic loop for a one-argument function:
#pragma omp parallel for if (P > 0) num_threads(P) \

default(shared) private(i) reduction(&&:naflag)

for (i = 0; i < n; i++) {

double ai = a[i];

MATH1_LOOP_BODY(y[i], f(ai), ai, naflag);

}

Steps in converting to Open MP:

check f is thread-safe; modify if not
rewrite loop to work with the Open MP directive
test without Open MP, then enable Open MP

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 20 / 32

Parallelizing Vectorized Operations
Implementation

Basic loop for a one-argument function:
#pragma omp parallel for if (P > 0) num_threads(P) \

default(shared) private(i) reduction(&&:naflag)

for (i = 0; i < n; i++) {

double ai = a[i];

MATH1_LOOP_BODY(y[i], f(ai), ai, naflag);

}

Steps in converting to Open MP:

check f is thread-safe; modify if not
rewrite loop to work with the Open MP directive
test without Open MP, then enable Open MP

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 20 / 32

Parallelizing Vectorized Operations
Implementation

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Functions in nmath that have not been parallelized yet:

Bessel functions (partially done)
Wilcoxon, signed rank functions (may not make sense)
random number generators

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 21 / 32

Parallelizing Vectorized Operations
Implementation

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Functions in nmath that have not been parallelized yet:

Bessel functions (partially done)
Wilcoxon, signed rank functions (may not make sense)
random number generators

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 21 / 32

Parallelizing Vectorized Operations
Implementation

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Functions in nmath that have not been parallelized yet:

Bessel functions (partially done)
Wilcoxon, signed rank functions (may not make sense)
random number generators

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 21 / 32

Parallelizing Vectorized Operations
Implementation

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Functions in nmath that have not been parallelized yet:

Bessel functions (partially done)
Wilcoxon, signed rank functions (may not make sense)
random number generators

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 21 / 32

Parallelizing Vectorized Operations
Implementation

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Functions in nmath that have not been parallelized yet:

Bessel functions (partially done)
Wilcoxon, signed rank functions (may not make sense)
random number generators

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 21 / 32

Parallelizing Vectorized Operations
Implementation

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Functions in nmath that have not been parallelized yet:

Bessel functions (partially done)
Wilcoxon, signed rank functions (may not make sense)
random number generators

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 21 / 32

Parallelizing Vectorized Operations
Implementation

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Functions in nmath that have not been parallelized yet:

Bessel functions (partially done)
Wilcoxon, signed rank functions (may not make sense)
random number generators

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 21 / 32

Parallelizing Vectorized Operations
Implementation

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Functions in nmath that have not been parallelized yet:

Bessel functions (partially done)
Wilcoxon, signed rank functions (may not make sense)
random number generators

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 21 / 32

Parallelizing Vectorized Operations
Implementation

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Functions in nmath that have not been parallelized yet:

Bessel functions (partially done)
Wilcoxon, signed rank functions (may not make sense)
random number generators

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 21 / 32

Parallelizing Vectorized Operations
Implementation

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Functions in nmath that have not been parallelized yet:

Bessel functions (partially done)
Wilcoxon, signed rank functions (may not make sense)
random number generators

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 21 / 32

Parallelizing Vectorized Operations
Implementation

Some things that are not thread-safe:

use of global variables
R memory allocation
signaling warnings and errors
user interrupt checking
creating internationalized messages (calls to gettext)

Random number generation is also problematic.

Functions in nmath that have not been parallelized yet:

Bessel functions (partially done)
Wilcoxon, signed rank functions (may not make sense)
random number generators

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 21 / 32

Parallelizing Vectorized Operations
Availability

Package pnmath is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

This requires a version of gcc that

supports Open MP
allows dlopen to be used on libgomp.so

A version using just pthreads is available in pnmath0.

Loading these packages replaces builtin operations by parallelized
ones.

For Linux, Mac OS X predetermined intercept calibrations are used.

For other platforms a calibration test is run at package load time.

The calibration can be run manually by calling calibratePnmath

Hopefully we will be able to include this in R soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 22 / 32

http://www.stat.uiowa.edu/~luke/R/experimental/

Parallelizing Vectorized Operations
Availability

Package pnmath is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

This requires a version of gcc that

supports Open MP
allows dlopen to be used on libgomp.so

A version using just pthreads is available in pnmath0.

Loading these packages replaces builtin operations by parallelized
ones.

For Linux, Mac OS X predetermined intercept calibrations are used.

For other platforms a calibration test is run at package load time.

The calibration can be run manually by calling calibratePnmath

Hopefully we will be able to include this in R soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 22 / 32

http://www.stat.uiowa.edu/~luke/R/experimental/

Parallelizing Vectorized Operations
Availability

Package pnmath is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

This requires a version of gcc that

supports Open MP
allows dlopen to be used on libgomp.so

A version using just pthreads is available in pnmath0.

Loading these packages replaces builtin operations by parallelized
ones.

For Linux, Mac OS X predetermined intercept calibrations are used.

For other platforms a calibration test is run at package load time.

The calibration can be run manually by calling calibratePnmath

Hopefully we will be able to include this in R soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 22 / 32

http://www.stat.uiowa.edu/~luke/R/experimental/

Parallelizing Vectorized Operations
Availability

Package pnmath is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

This requires a version of gcc that

supports Open MP
allows dlopen to be used on libgomp.so

A version using just pthreads is available in pnmath0.

Loading these packages replaces builtin operations by parallelized
ones.

For Linux, Mac OS X predetermined intercept calibrations are used.

For other platforms a calibration test is run at package load time.

The calibration can be run manually by calling calibratePnmath

Hopefully we will be able to include this in R soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 22 / 32

http://www.stat.uiowa.edu/~luke/R/experimental/

Parallelizing Vectorized Operations
Availability

Package pnmath is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

This requires a version of gcc that

supports Open MP
allows dlopen to be used on libgomp.so

A version using just pthreads is available in pnmath0.

Loading these packages replaces builtin operations by parallelized
ones.

For Linux, Mac OS X predetermined intercept calibrations are used.

For other platforms a calibration test is run at package load time.

The calibration can be run manually by calling calibratePnmath

Hopefully we will be able to include this in R soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 22 / 32

http://www.stat.uiowa.edu/~luke/R/experimental/

Parallelizing Vectorized Operations
Availability

Package pnmath is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

This requires a version of gcc that

supports Open MP
allows dlopen to be used on libgomp.so

A version using just pthreads is available in pnmath0.

Loading these packages replaces builtin operations by parallelized
ones.

For Linux, Mac OS X predetermined intercept calibrations are used.

For other platforms a calibration test is run at package load time.

The calibration can be run manually by calling calibratePnmath

Hopefully we will be able to include this in R soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 22 / 32

http://www.stat.uiowa.edu/~luke/R/experimental/

Parallelizing Vectorized Operations
Availability

Package pnmath is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

This requires a version of gcc that

supports Open MP
allows dlopen to be used on libgomp.so

A version using just pthreads is available in pnmath0.

Loading these packages replaces builtin operations by parallelized
ones.

For Linux, Mac OS X predetermined intercept calibrations are used.

For other platforms a calibration test is run at package load time.

The calibration can be run manually by calling calibratePnmath

Hopefully we will be able to include this in R soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 22 / 32

http://www.stat.uiowa.edu/~luke/R/experimental/

Parallelizing Vectorized Operations
Availability

Package pnmath is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

This requires a version of gcc that

supports Open MP
allows dlopen to be used on libgomp.so

A version using just pthreads is available in pnmath0.

Loading these packages replaces builtin operations by parallelized
ones.

For Linux, Mac OS X predetermined intercept calibrations are used.

For other platforms a calibration test is run at package load time.

The calibration can be run manually by calling calibratePnmath

Hopefully we will be able to include this in R soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 22 / 32

http://www.stat.uiowa.edu/~luke/R/experimental/

Parallelizing Vectorized Operations
Availability

Package pnmath is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

This requires a version of gcc that

supports Open MP
allows dlopen to be used on libgomp.so

A version using just pthreads is available in pnmath0.

Loading these packages replaces builtin operations by parallelized
ones.

For Linux, Mac OS X predetermined intercept calibrations are used.

For other platforms a calibration test is run at package load time.

The calibration can be run manually by calling calibratePnmath

Hopefully we will be able to include this in R soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 22 / 32

http://www.stat.uiowa.edu/~luke/R/experimental/

Parallelizing Vectorized Operations
Availability

Package pnmath is available at

http://www.stat.uiowa.edu/~luke/R/experimental/

This requires a version of gcc that

supports Open MP
allows dlopen to be used on libgomp.so

A version using just pthreads is available in pnmath0.

Loading these packages replaces builtin operations by parallelized
ones.

For Linux, Mac OS X predetermined intercept calibrations are used.

For other platforms a calibration test is run at package load time.

The calibration can be run manually by calling calibratePnmath

Hopefully we will be able to include this in R soon.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 22 / 32

http://www.stat.uiowa.edu/~luke/R/experimental/

Parallelizing Simple Matrix Operations

Very preliminary results for colSums on an 8-core Linux machine:

size

tim
e

2.5e−05

3.0e−05

3.5e−05

4.0e−05

4.5e−05

5.0e−05

0 5000 10000 15000

●

●
●●

●●
●●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●●
●●●●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●
● ●

● ●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

● ●

●
●

● ●

●

●

● ●

● ●

● ●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

● ●

● ●

● ●

●

●

●

●

● ●

●
●

● ●

●

●
●●●●

●

●●●●

●

● ●
●

●

●
●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●

●
● ●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●
●

●

● ● ● ●
● ●

●

●
●

●
●

●

●
●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

1
2
4
6
8

●

●

●

●

●

Preliminary results on OS X indicate cutoff levels may be much higher.

Part of the implementation work was done by Xiao Yang.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 23 / 32

Parallelizing Simple Matrix Operations

Very preliminary results for colSums on an 8-core Linux machine:

size

tim
e

2.5e−05

3.0e−05

3.5e−05

4.0e−05

4.5e−05

5.0e−05

0 5000 10000 15000

●

●
●●

●●
●●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●●
●●●●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●
● ●

● ●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

● ●

●
●

● ●

●

●

● ●

● ●

● ●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

● ●

● ●

● ●

●

●

●

●

● ●

●
●

● ●

●

●
●●●●

●

●●●●

●

● ●
●

●

●
●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●

●
● ●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●
●

●

● ● ● ●
● ●

●

●
●

●
●

●

●
●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

1
2
4
6
8

●

●

●

●

●

Preliminary results on OS X indicate cutoff levels may be much higher.

Part of the implementation work was done by Xiao Yang.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 23 / 32

Parallelizing Simple Matrix Operations

Very preliminary results for colSums on an 8-core Linux machine:

size

tim
e

2.5e−05

3.0e−05

3.5e−05

4.0e−05

4.5e−05

5.0e−05

0 5000 10000 15000

●

●
●●

●●
●●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●●
●●●●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●
● ●

● ●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

● ●

●
●

● ●

●

●

● ●

● ●

● ●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

● ●

● ●

● ●

●

●

●

●

● ●

●
●

● ●

●

●
●●●●

●

●●●●

●

● ●
●

●

●
●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●

●
● ●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●
●

●

● ● ● ●
● ●

●

●
●

●
●

●

●
●

● ●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

1
2
4
6
8

●

●

●

●

●

Preliminary results on OS X indicate cutoff levels may be much higher.

Part of the implementation work was done by Xiao Yang.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 23 / 32

Parallelizing Simple Matrix Operations

Some issues to consider:

Again using too many processor cores for small problems can slow the
computation down.

colSums can be parallelized by rows or columns:

Handling groups of columns in parallel produces identical results to a
sequential version.
Handling groups of rows in parallel changes numerical results slightly
(floating point addition is not associative).

rowSums is slightly more complex since locality of reference (column
major storage) need to be taken into account.

A number of other basic operations can be handled similarly.

Simple uses of apply and sweep might also be handled along these
lines.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 24 / 32

Parallelizing Simple Matrix Operations

Some issues to consider:

Again using too many processor cores for small problems can slow the
computation down.

colSums can be parallelized by rows or columns:

Handling groups of columns in parallel produces identical results to a
sequential version.
Handling groups of rows in parallel changes numerical results slightly
(floating point addition is not associative).

rowSums is slightly more complex since locality of reference (column
major storage) need to be taken into account.

A number of other basic operations can be handled similarly.

Simple uses of apply and sweep might also be handled along these
lines.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 24 / 32

Parallelizing Simple Matrix Operations

Some issues to consider:

Again using too many processor cores for small problems can slow the
computation down.

colSums can be parallelized by rows or columns:

Handling groups of columns in parallel produces identical results to a
sequential version.
Handling groups of rows in parallel changes numerical results slightly
(floating point addition is not associative).

rowSums is slightly more complex since locality of reference (column
major storage) need to be taken into account.

A number of other basic operations can be handled similarly.

Simple uses of apply and sweep might also be handled along these
lines.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 24 / 32

Parallelizing Simple Matrix Operations

Some issues to consider:

Again using too many processor cores for small problems can slow the
computation down.

colSums can be parallelized by rows or columns:

Handling groups of columns in parallel produces identical results to a
sequential version.
Handling groups of rows in parallel changes numerical results slightly
(floating point addition is not associative).

rowSums is slightly more complex since locality of reference (column
major storage) need to be taken into account.

A number of other basic operations can be handled similarly.

Simple uses of apply and sweep might also be handled along these
lines.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 24 / 32

Parallelizing Simple Matrix Operations

Some issues to consider:

Again using too many processor cores for small problems can slow the
computation down.

colSums can be parallelized by rows or columns:

Handling groups of columns in parallel produces identical results to a
sequential version.
Handling groups of rows in parallel changes numerical results slightly
(floating point addition is not associative).

rowSums is slightly more complex since locality of reference (column
major storage) need to be taken into account.

A number of other basic operations can be handled similarly.

Simple uses of apply and sweep might also be handled along these
lines.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 24 / 32

Parallelizing Simple Matrix Operations

Some issues to consider:

Again using too many processor cores for small problems can slow the
computation down.

colSums can be parallelized by rows or columns:

Handling groups of columns in parallel produces identical results to a
sequential version.
Handling groups of rows in parallel changes numerical results slightly
(floating point addition is not associative).

rowSums is slightly more complex since locality of reference (column
major storage) need to be taken into account.

A number of other basic operations can be handled similarly.

Simple uses of apply and sweep might also be handled along these
lines.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 24 / 32

Parallelizing Simple Matrix Operations

Some issues to consider:

Again using too many processor cores for small problems can slow the
computation down.

colSums can be parallelized by rows or columns:

Handling groups of columns in parallel produces identical results to a
sequential version.
Handling groups of rows in parallel changes numerical results slightly
(floating point addition is not associative).

rowSums is slightly more complex since locality of reference (column
major storage) need to be taken into account.

A number of other basic operations can be handled similarly.

Simple uses of apply and sweep might also be handled along these
lines.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 24 / 32

Using a Parallel BLAS

Most core linear algebra calculations use the Basic Linear Algebra
Subroutines library (BLAS).

R has supported using a custom BLAS implementation for some time.

Both Intel and AMD provide sequential and threaded accelerated
BLAS implementations.

Atlas and Goto’s BLAS also come in sequential and threaded versions.

Very preliminary testing suggests that the Intel threaded BLAS works
well for small and large matrices.

Anecdotal evidence, that may no longer apply, suggests that this may
not be true of some other threaded BLAS implementations.

More testing is needed.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 25 / 32

Using a Parallel BLAS

Most core linear algebra calculations use the Basic Linear Algebra
Subroutines library (BLAS).

R has supported using a custom BLAS implementation for some time.

Both Intel and AMD provide sequential and threaded accelerated
BLAS implementations.

Atlas and Goto’s BLAS also come in sequential and threaded versions.

Very preliminary testing suggests that the Intel threaded BLAS works
well for small and large matrices.

Anecdotal evidence, that may no longer apply, suggests that this may
not be true of some other threaded BLAS implementations.

More testing is needed.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 25 / 32

Using a Parallel BLAS

Most core linear algebra calculations use the Basic Linear Algebra
Subroutines library (BLAS).

R has supported using a custom BLAS implementation for some time.

Both Intel and AMD provide sequential and threaded accelerated
BLAS implementations.

Atlas and Goto’s BLAS also come in sequential and threaded versions.

Very preliminary testing suggests that the Intel threaded BLAS works
well for small and large matrices.

Anecdotal evidence, that may no longer apply, suggests that this may
not be true of some other threaded BLAS implementations.

More testing is needed.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 25 / 32

Using a Parallel BLAS

Most core linear algebra calculations use the Basic Linear Algebra
Subroutines library (BLAS).

R has supported using a custom BLAS implementation for some time.

Both Intel and AMD provide sequential and threaded accelerated
BLAS implementations.

Atlas and Goto’s BLAS also come in sequential and threaded versions.

Very preliminary testing suggests that the Intel threaded BLAS works
well for small and large matrices.

Anecdotal evidence, that may no longer apply, suggests that this may
not be true of some other threaded BLAS implementations.

More testing is needed.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 25 / 32

Using a Parallel BLAS

Most core linear algebra calculations use the Basic Linear Algebra
Subroutines library (BLAS).

R has supported using a custom BLAS implementation for some time.

Both Intel and AMD provide sequential and threaded accelerated
BLAS implementations.

Atlas and Goto’s BLAS also come in sequential and threaded versions.

Very preliminary testing suggests that the Intel threaded BLAS works
well for small and large matrices.

Anecdotal evidence, that may no longer apply, suggests that this may
not be true of some other threaded BLAS implementations.

More testing is needed.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 25 / 32

Using a Parallel BLAS

Most core linear algebra calculations use the Basic Linear Algebra
Subroutines library (BLAS).

R has supported using a custom BLAS implementation for some time.

Both Intel and AMD provide sequential and threaded accelerated
BLAS implementations.

Atlas and Goto’s BLAS also come in sequential and threaded versions.

Very preliminary testing suggests that the Intel threaded BLAS works
well for small and large matrices.

Anecdotal evidence, that may no longer apply, suggests that this may
not be true of some other threaded BLAS implementations.

More testing is needed.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 25 / 32

Using a Parallel BLAS

Most core linear algebra calculations use the Basic Linear Algebra
Subroutines library (BLAS).

R has supported using a custom BLAS implementation for some time.

Both Intel and AMD provide sequential and threaded accelerated
BLAS implementations.

Atlas and Goto’s BLAS also come in sequential and threaded versions.

Very preliminary testing suggests that the Intel threaded BLAS works
well for small and large matrices.

Anecdotal evidence, that may no longer apply, suggests that this may
not be true of some other threaded BLAS implementations.

More testing is needed.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 25 / 32

Parallelization and Compilation

Compilation may be useful for parallelizing vector operations:

Many vector operations occur in compound expressions, like

exp(-0.5*x^2)

A compiler may be able to fuse these operations:

This will allow gains from parallelizing compound operations on
shorter vectors.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 26 / 32

Parallelization and Compilation

Compilation may be useful for parallelizing vector operations:

Many vector operations occur in compound expressions, like

exp(-0.5*x^2)

A compiler may be able to fuse these operations:

This will allow gains from parallelizing compound operations on
shorter vectors.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 26 / 32

Parallelization and Compilation

Compilation may be useful for parallelizing vector operations:

Many vector operations occur in compound expressions, like

exp(-0.5*x^2)

A compiler may be able to fuse these operations:

SQUARE

SQUARE

SCALE

SCALE EXP

EXP

EXPSQUARE SCALE

SQUARE SCALE EXP

Compiled, fused

Interpreted

Sequential SQUARE SCALE EXP

This will allow gains from parallelizing compound operations on
shorter vectors.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 26 / 32

Parallelization and Compilation

Compilation may be useful for parallelizing vector operations:

Many vector operations occur in compound expressions, like

exp(-0.5*x^2)

A compiler may be able to fuse these operations:

SQUARE

SQUARE

SCALE

SCALE EXP

EXP

EXPSQUARE SCALE

SQUARE SCALE EXP

Compiled, fused

Interpreted

Sequential SQUARE SCALE EXP

This will allow gains from parallelizing compound operations on
shorter vectors.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 26 / 32

Big Data

Automated data acquisition in science and commerce is producing
huge amounts of data.

Big Data is a hot topic in the popular and trade press.

Some categories:

fit into memory
fit on one machines disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to smaller large data problems on machines with
enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 27 / 32

Big Data

Automated data acquisition in science and commerce is producing
huge amounts of data.

Big Data is a hot topic in the popular and trade press.

Some categories:

fit into memory
fit on one machines disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to smaller large data problems on machines with
enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 27 / 32

Big Data

Automated data acquisition in science and commerce is producing
huge amounts of data.

Big Data is a hot topic in the popular and trade press.

Some categories:

fit into memory
fit on one machines disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to smaller large data problems on machines with
enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 27 / 32

Big Data

Automated data acquisition in science and commerce is producing
huge amounts of data.

Big Data is a hot topic in the popular and trade press.

Some categories:

fit into memory
fit on one machines disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to smaller large data problems on machines with
enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 27 / 32

Big Data

Automated data acquisition in science and commerce is producing
huge amounts of data.

Big Data is a hot topic in the popular and trade press.

Some categories:

fit into memory
fit on one machines disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to smaller large data problems on machines with
enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 27 / 32

Big Data

Automated data acquisition in science and commerce is producing
huge amounts of data.

Big Data is a hot topic in the popular and trade press.

Some categories:

fit into memory
fit on one machines disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to smaller large data problems on machines with
enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 27 / 32

Big Data

Automated data acquisition in science and commerce is producing
huge amounts of data.

Big Data is a hot topic in the popular and trade press.

Some categories:

fit into memory
fit on one machines disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to smaller large data problems on machines with
enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 27 / 32

Big Data

Automated data acquisition in science and commerce is producing
huge amounts of data.

Big Data is a hot topic in the popular and trade press.

Some categories:

fit into memory
fit on one machines disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to smaller large data problems on machines with
enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 27 / 32

Big Data

Automated data acquisition in science and commerce is producing
huge amounts of data.

Big Data is a hot topic in the popular and trade press.

Some categories:

fit into memory
fit on one machines disk storage
require multiple machines to store

Smaller large data sets can be handled by standard methods if enough
memory is available.

Very large data sets require specialized methods and algorithms.

R should be able to smaller large data problems on machines with
enough memory.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 27 / 32

Limit on Vector Object Size

Currently The total number of elements in a vector cannot exceed
231 − 1 = 2, 147, 483, 647

This limit represents the largest possible 32-bit signed integer.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

Can this limit be raised without breaking too much existing R code
and requiring the rewriting of too much C code?

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 28 / 32

Limit on Vector Object Size

Currently The total number of elements in a vector cannot exceed
231 − 1 = 2, 147, 483, 647

This limit represents the largest possible 32-bit signed integer.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

Can this limit be raised without breaking too much existing R code
and requiring the rewriting of too much C code?

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 28 / 32

Limit on Vector Object Size

Currently The total number of elements in a vector cannot exceed
231 − 1 = 2, 147, 483, 647

This limit represents the largest possible 32-bit signed integer.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

Can this limit be raised without breaking too much existing R code
and requiring the rewriting of too much C code?

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 28 / 32

Limit on Vector Object Size

Currently The total number of elements in a vector cannot exceed
231 − 1 = 2, 147, 483, 647

This limit represents the largest possible 32-bit signed integer.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

Can this limit be raised without breaking too much existing R code
and requiring the rewriting of too much C code?

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 28 / 32

Limit on Vector Object Size

Currently The total number of elements in a vector cannot exceed
231 − 1 = 2, 147, 483, 647

This limit represents the largest possible 32-bit signed integer.

For numeric (double precision) data this means the largest possible
vector is about 16 GB.

This is fairly large, but is becoming an issue with larger data sets with
many variables on 64-bit platforms.

Can this limit be raised without breaking too much existing R code
and requiring the rewriting of too much C code?

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 28 / 32

Some Considerations

For all practical purposes on all current architectures the C int type
and the FORTRAN integer type are 32 bit signed integers.

The R source code uses C int or FORTRAN integer types in many
places that would need to be changed to a wider type.

The R memory manager is easy enough to change.

Finding all the other places in the C code implementing R where int
would need to be changed to a wider type, and making sure it is not
changed where it should not be, is hard.

External code used by R is also a problem, in particular the BLAS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 29 / 32

Some Considerations

For all practical purposes on all current architectures the C int type
and the FORTRAN integer type are 32 bit signed integers.

The R source code uses C int or FORTRAN integer types in many
places that would need to be changed to a wider type.

The R memory manager is easy enough to change.

Finding all the other places in the C code implementing R where int
would need to be changed to a wider type, and making sure it is not
changed where it should not be, is hard.

External code used by R is also a problem, in particular the BLAS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 29 / 32

Some Considerations

For all practical purposes on all current architectures the C int type
and the FORTRAN integer type are 32 bit signed integers.

The R source code uses C int or FORTRAN integer types in many
places that would need to be changed to a wider type.

The R memory manager is easy enough to change.

Finding all the other places in the C code implementing R where int
would need to be changed to a wider type, and making sure it is not
changed where it should not be, is hard.

External code used by R is also a problem, in particular the BLAS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 29 / 32

Some Considerations

For all practical purposes on all current architectures the C int type
and the FORTRAN integer type are 32 bit signed integers.

The R source code uses C int or FORTRAN integer types in many
places that would need to be changed to a wider type.

The R memory manager is easy enough to change.

Finding all the other places in the C code implementing R where int
would need to be changed to a wider type, and making sure it is not
changed where it should not be, is hard.

External code used by R is also a problem, in particular the BLAS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 29 / 32

Some Considerations

For all practical purposes on all current architectures the C int type
and the FORTRAN integer type are 32 bit signed integers.

The R source code uses C int or FORTRAN integer types in many
places that would need to be changed to a wider type.

The R memory manager is easy enough to change.

Finding all the other places in the C code implementing R where int
would need to be changed to a wider type, and making sure it is not
changed where it should not be, is hard.

External code used by R is also a problem, in particular the BLAS.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 29 / 32

Some Possible Directions

A possible strategy:
Change length fields in internal headers to support longer vectors.
Change standard field accessors to signal an error if long vectors are
used.
Add new accessors that allow long vectors.
Gradually introduce long vector support into the R internals.

The initial header change will require recompiling all C code but no
further code changes.
After the header change, support for large vectors can be introduced
incrementally in R itself and in packages.
It may eventually be necessary to introduce a long integer data type
or change the integer type from 32 to 64 bits.
It may also be sufficient to store larger integers as double precision
floating point numbers.
If the integer representation is changed, a possible direction to explore
is whether smaller integer types could be added (one byte and two
byte, for example).

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 30 / 32

Some Possible Directions

A possible strategy:
Change length fields in internal headers to support longer vectors.
Change standard field accessors to signal an error if long vectors are
used.
Add new accessors that allow long vectors.
Gradually introduce long vector support into the R internals.

The initial header change will require recompiling all C code but no
further code changes.
After the header change, support for large vectors can be introduced
incrementally in R itself and in packages.
It may eventually be necessary to introduce a long integer data type
or change the integer type from 32 to 64 bits.
It may also be sufficient to store larger integers as double precision
floating point numbers.
If the integer representation is changed, a possible direction to explore
is whether smaller integer types could be added (one byte and two
byte, for example).

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 30 / 32

Some Possible Directions

A possible strategy:
Change length fields in internal headers to support longer vectors.
Change standard field accessors to signal an error if long vectors are
used.
Add new accessors that allow long vectors.
Gradually introduce long vector support into the R internals.

The initial header change will require recompiling all C code but no
further code changes.
After the header change, support for large vectors can be introduced
incrementally in R itself and in packages.
It may eventually be necessary to introduce a long integer data type
or change the integer type from 32 to 64 bits.
It may also be sufficient to store larger integers as double precision
floating point numbers.
If the integer representation is changed, a possible direction to explore
is whether smaller integer types could be added (one byte and two
byte, for example).

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 30 / 32

Some Possible Directions

A possible strategy:
Change length fields in internal headers to support longer vectors.
Change standard field accessors to signal an error if long vectors are
used.
Add new accessors that allow long vectors.
Gradually introduce long vector support into the R internals.

The initial header change will require recompiling all C code but no
further code changes.
After the header change, support for large vectors can be introduced
incrementally in R itself and in packages.
It may eventually be necessary to introduce a long integer data type
or change the integer type from 32 to 64 bits.
It may also be sufficient to store larger integers as double precision
floating point numbers.
If the integer representation is changed, a possible direction to explore
is whether smaller integer types could be added (one byte and two
byte, for example).

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 30 / 32

Some Possible Directions

A possible strategy:
Change length fields in internal headers to support longer vectors.
Change standard field accessors to signal an error if long vectors are
used.
Add new accessors that allow long vectors.
Gradually introduce long vector support into the R internals.

The initial header change will require recompiling all C code but no
further code changes.
After the header change, support for large vectors can be introduced
incrementally in R itself and in packages.
It may eventually be necessary to introduce a long integer data type
or change the integer type from 32 to 64 bits.
It may also be sufficient to store larger integers as double precision
floating point numbers.
If the integer representation is changed, a possible direction to explore
is whether smaller integer types could be added (one byte and two
byte, for example).

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 30 / 32

Some Possible Directions

A possible strategy:
Change length fields in internal headers to support longer vectors.
Change standard field accessors to signal an error if long vectors are
used.
Add new accessors that allow long vectors.
Gradually introduce long vector support into the R internals.

The initial header change will require recompiling all C code but no
further code changes.
After the header change, support for large vectors can be introduced
incrementally in R itself and in packages.
It may eventually be necessary to introduce a long integer data type
or change the integer type from 32 to 64 bits.
It may also be sufficient to store larger integers as double precision
floating point numbers.
If the integer representation is changed, a possible direction to explore
is whether smaller integer types could be added (one byte and two
byte, for example).

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 30 / 32

Some Possible Directions

A possible strategy:
Change length fields in internal headers to support longer vectors.
Change standard field accessors to signal an error if long vectors are
used.
Add new accessors that allow long vectors.
Gradually introduce long vector support into the R internals.

The initial header change will require recompiling all C code but no
further code changes.
After the header change, support for large vectors can be introduced
incrementally in R itself and in packages.
It may eventually be necessary to introduce a long integer data type
or change the integer type from 32 to 64 bits.
It may also be sufficient to store larger integers as double precision
floating point numbers.
If the integer representation is changed, a possible direction to explore
is whether smaller integer types could be added (one byte and two
byte, for example).

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 30 / 32

Some Possible Directions

A possible strategy:
Change length fields in internal headers to support longer vectors.
Change standard field accessors to signal an error if long vectors are
used.
Add new accessors that allow long vectors.
Gradually introduce long vector support into the R internals.

The initial header change will require recompiling all C code but no
further code changes.
After the header change, support for large vectors can be introduced
incrementally in R itself and in packages.
It may eventually be necessary to introduce a long integer data type
or change the integer type from 32 to 64 bits.
It may also be sufficient to store larger integers as double precision
floating point numbers.
If the integer representation is changed, a possible direction to explore
is whether smaller integer types could be added (one byte and two
byte, for example).

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 30 / 32

Some Possible Directions

A possible strategy:
Change length fields in internal headers to support longer vectors.
Change standard field accessors to signal an error if long vectors are
used.
Add new accessors that allow long vectors.
Gradually introduce long vector support into the R internals.

The initial header change will require recompiling all C code but no
further code changes.
After the header change, support for large vectors can be introduced
incrementally in R itself and in packages.
It may eventually be necessary to introduce a long integer data type
or change the integer type from 32 to 64 bits.
It may also be sufficient to store larger integers as double precision
floating point numbers.
If the integer representation is changed, a possible direction to explore
is whether smaller integer types could be added (one byte and two
byte, for example).

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 30 / 32

Some Possible Directions

A possible strategy:
Change length fields in internal headers to support longer vectors.
Change standard field accessors to signal an error if long vectors are
used.
Add new accessors that allow long vectors.
Gradually introduce long vector support into the R internals.

The initial header change will require recompiling all C code but no
further code changes.
After the header change, support for large vectors can be introduced
incrementally in R itself and in packages.
It may eventually be necessary to introduce a long integer data type
or change the integer type from 32 to 64 bits.
It may also be sufficient to store larger integers as double precision
floating point numbers.
If the integer representation is changed, a possible direction to explore
is whether smaller integer types could be added (one byte and two
byte, for example).

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 30 / 32

Status of Explorations

Initial experiments are promising.

In some cases just changing data types will be sufficient.

In other cases more may be needed, such as

ability to interrupt computations
more stable numerical algorithms

Some more experimentation is needed.

If successful, the header changes may occur within the next few
weeks.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 31 / 32

Status of Explorations

Initial experiments are promising.

In some cases just changing data types will be sufficient.

In other cases more may be needed, such as

ability to interrupt computations
more stable numerical algorithms

Some more experimentation is needed.

If successful, the header changes may occur within the next few
weeks.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 31 / 32

Status of Explorations

Initial experiments are promising.

In some cases just changing data types will be sufficient.

In other cases more may be needed, such as

ability to interrupt computations
more stable numerical algorithms

Some more experimentation is needed.

If successful, the header changes may occur within the next few
weeks.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 31 / 32

Status of Explorations

Initial experiments are promising.

In some cases just changing data types will be sufficient.

In other cases more may be needed, such as

ability to interrupt computations
more stable numerical algorithms

Some more experimentation is needed.

If successful, the header changes may occur within the next few
weeks.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 31 / 32

Status of Explorations

Initial experiments are promising.

In some cases just changing data types will be sufficient.

In other cases more may be needed, such as

ability to interrupt computations
more stable numerical algorithms

Some more experimentation is needed.

If successful, the header changes may occur within the next few
weeks.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 31 / 32

Status of Explorations

Initial experiments are promising.

In some cases just changing data types will be sufficient.

In other cases more may be needed, such as

ability to interrupt computations
more stable numerical algorithms

Some more experimentation is needed.

If successful, the header changes may occur within the next few
weeks.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 31 / 32

Status of Explorations

Initial experiments are promising.

In some cases just changing data types will be sufficient.

In other cases more may be needed, such as

ability to interrupt computations
more stable numerical algorithms

Some more experimentation is needed.

If successful, the header changes may occur within the next few
weeks.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 31 / 32

Summary

This talk has outlined several areas I believe are important and to
which I hope I can make some contributions during the near future.

The R development model is quite distributed: other R developers are
working on a wide range of other areas.

Fortunately conflicts are rare and the different efforts, so far at least,
have merged together quite very successfully.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 32 / 32

Summary

This talk has outlined several areas I believe are important and to
which I hope I can make some contributions during the near future.

The R development model is quite distributed: other R developers are
working on a wide range of other areas.

Fortunately conflicts are rare and the different efforts, so far at least,
have merged together quite very successfully.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 32 / 32

Summary

This talk has outlined several areas I believe are important and to
which I hope I can make some contributions during the near future.

The R development model is quite distributed: other R developers are
working on a wide range of other areas.

Fortunately conflicts are rare and the different efforts, so far at least,
have merged together quite very successfully.

Luke Tierney (U. of Iowa) Developments for the R engine November 10, 2011 32 / 32

	Introduction
	Byte Code Compilation
	Background
	Compiler Operation
	A Simple Example
	Some Performance Results
	Future Directions

	Parallelizing Vector and Matrix Operations
	Parallelizing Vectorized Operations
	Parallelizing Simple Matrix Operations
	Using a Parallel BLAS

	Increasing the Limit on Vector Object Size
	Summary

