HOMEWORK ELEMENTARY STATISTICS & INFERENCE (STAT:1020; BOGNAR)

- 1. The longevity of truck tires (in months) has a normal distribution with mean μ months and standard deviation $\sigma = 8.0$ months. Suppose n = 16 tires are randomly selected and the sample mean longevity $\bar{x} = 42.5$ months.
 - (a) Test $H_0: \mu = 40$ versus $H_a: \mu \neq 40$ at the $\alpha = 0.05$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
 - (b) Based upon your answer in 1a, does the mean longevity μ significantly differ from 40? Why?
 - (c) Find a 95% CI for the mean longevity μ .
 - (d) Based upon your answer in 1c, does the population mean longevity μ significantly differ from 40? Why?
 - (e) Based upon your answer in 1c, will the p-value for the test in 1a be less than α or greater than α ? Why?
 - (f) Find the p-value for the test in 1a.
 - (g) Based on your answer in (1f), does the population mean longevity μ significantly differ from 40? Why?
- 2. The diastolic blood pressure, X, of smokers follows a normal distribution with mean μ and standard deviation $\sigma = 15$, i.e. $X \sim N(\mu, \sigma = 15)$. The diastolic blood pressure of 3 randomly selected smokers was:

125 140 125

- (a) Find a 90% CI for the population mean diastolic blood pressure μ .
- (b) Test $H_0: \mu = 140$ vs. $H_a: \mu \neq 140$ at the $\alpha = 0.10$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
- (c) Find the p-value for the test in 2b.
- (d) Based upon your answer in 2c, does the population mean diastolic blood pressure μ significantly differ from 140? Why?
- (e) Based upon your answer in 2a, does the population mean diastolic blood pressure μ significantly differ from 140? Why?
- 3. In the Iowa Driving Simulator, the number of times the center line is crossed by individuals that are under the influence of alcohol has a distribution that is skewed to the right with mean μ and standard deviation $\sigma = 7$. For the 49 participants that drove after drinking alcohol, the mean number of times the center line was crossed was $\bar{x} = 10$.
 - (a) Test $H_0: \mu = 12$ versus $H_a: \mu \neq 12$ at the $\alpha = 0.05$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
 - (b) Based upon your answer in 3a, will the p-value for the test be less than α or greater than α ? Why?
 - (c) Find the p-value for the test in 3a.
 - (d) Based upon your answer in 3c, does the mean number of crossings μ significantly differ from 12? Why?
 - (e) Could we perform the above analysis if the sample size n < 30? Explain.
- 4. A random sample of size n is obtained from a normal distribution with mean μ and standard deviation $\sigma = 12$. A 96.6% confidence interval for μ was computed to be (118.26,126.74). Suppose a researcher wants to test $H_0: \mu = 125$ versus $H_a: \mu \neq 125$ at the $\alpha = 0.05$ significance level. Find the p-value for the test and state your decision and final conclusion.