Homework

Elementary Statistics \& Inference (STAT:1020; Bognar)

1. The longevity of truck tires (in months) has a normal distribution with mean μ months and standard deviation $\sigma=8.0$ months. Suppose $n=16$ tires are randomly selected and the sample mean longevity $\bar{x}=42.5$ months.
(a) Test $H_{0}: \mu=40$ versus $H_{a}: \mu \neq 40$ at the $\alpha=0.05$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
(b) Based upon your answer in 1a, does the mean longevity μ significantly differ from 40? Why?
(c) Find a 95% CI for the mean longevity μ.
(d) Based upon your answer in 1 c, does the population mean longevity μ significantly differ from 40 ? Why?
(e) Based upon your answer in 1 c , will the p-value for the test in 1 a be less than α or greater than α ? Why?
(f) Find the p-value for the test in 1 a .
(g) Based on your answer in (1f), does the population mean longevity μ significantly differ from 40? Why?
2. The diastolic blood pressure, X, of smokers follows a normal distribution with mean μ and standard deviation $\sigma=15$, i.e. $X \sim N(\mu, \sigma=15)$. The diastolic blood pressure of 3 randomly selected smokers was:

$$
\begin{array}{lll}
125 & 140 & 125
\end{array}
$$

(a) Find a 90% CI for the population mean diastolic blood pressure μ.
(b) Test $H_{0}: \mu=140$ vs. $H_{a}: \mu \neq 140$ at the $\alpha=0.10$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
(c) Find the p-value for the test in 2 b .
(d) Based upon your answer in 2c does the population mean diastolic blood pressure μ significantly differ from 140? Why?
(e) Based upon your answer in 2a, does the population mean diastolic blood pressure μ significantly differ from 140? Why?
3. In the Iowa Driving Simulator, the number of times the center line is crossed by individuals that are under the influence of alcohol has a distribution that is skewed to the right with mean μ and standard deviation $\sigma=7$. For the 49 participants that drove after drinking alcohol, the mean number of times the center line was crossed was $\bar{x}=10$.
(a) Test $H_{0}: \mu=12$ versus $H_{a}: \mu \neq 12$ at the $\alpha=0.05$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
(b) Based upon your answer in 3a, will the p-value for the test be less than α or greater than α ? Why?
(c) Find the p-value for the test in 3 a .
(d) Based upon your answer in 3 c , does the mean number of crossings μ significantly differ from 12 ? Why?
(e) Could we perform the above analysis if the sample size $n<30$? Explain.
4. A random sample of size n is obtained from a normal distribution with mean μ and standard deviation $\sigma=12$. A 96.6% confidence interval for μ was computed to be (118.26,126.74). Suppose a researcher wants to test $H_{0}: \mu=125$ versus $H_{a}: \mu \neq 125$ at the $\alpha=0.05$ significance level. Find the $p-$ value for the test and state your decision and final conclusion.

