HOMEWORK ELEMENTARY STATISTICS & INFERENCE (STAT:1020; BOGNAR)

- 1. The gain of a certain type of JFET transistor follows a normal distribution with mean μ and standard deviation σ . An electrical engineer randomly selected 7 transistors, and computed $\bar{x} = 116.2$ and s = 7.8.
 - (a) Find a 95% confidence interval for μ .
 - (b) If we were to test $H_0: \mu = 125$ vs. $H_a: \mu \neq 125$ at the $\alpha = 0.05$ significance level, would you reject H_0 ? Why?
 - (c) Test $H_0: \mu = 125$ vs. $H_a: \mu \neq 125$ at the $\alpha = 0.05$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
 - (d) Find the p-value for the test in 1c.
- 2. The amount of time per day (in hours) office workers spend working on a computer can be modeled by a normal distribution with mean μ and standard deviation σ . A manager wants to infer about the population mean μ , so he randomly selects 5 employees and observes their work habits. The raw data is:

6.5, 7.1, 5.9, 6.2, 6.3

- (a) Compute the sample mean \bar{x} and the sample standard deviation s.
- (b) Test $H_0: \mu = 6$ vs. $H_a: \mu \neq 6$ at the $\alpha = 0.01$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
- (c) Based upon your answer in 2b, does the population mean computer time μ significantly differ from 6 hours? Why?
- (d) Find the p-value for the test in 2b.
- (e) Find a 99% confidence interval for μ .
- 3. Wood et. al (1988) studied the efficacy of diet for losing weight. The study, which lasted one year, involved only men. The weight loss for dieting men follows a normal distribution with mean μ and standard deviation σ . A group of n = 16 dieting men lost an average of $\bar{x} = 7.2$ pounds with standard deviation s = 4.4 pounds. This problem will highlight the fact that a one-sided test has more statistical power than a two-sided test.
 - (a) Find a 90% confidence interval for μ .
 - (b) Based upon your answer in 3a, does the population mean weight loss μ significantly differ from 5.5 pounds? Why?
 - (c) Test $H_0: \mu = 5.5$ vs. $H_a: \mu \neq 5.5$ at the $\alpha = 0.10$ significance level. Find the test statistic and critical value, plot the rejection region, and state your decision and final conclusion.
 - (d) Approximate the p-value for the test in 3c.
 - (e) Based upon your answer in 3d, does the population mean weight loss μ significantly differ from 5.5 pounds? Why?
- 4. The resistance (in Ohms) of a certain type of resistor (an electronic device) follows a normal distribution with mean μ and standard deviation σ . A technician randomly selected 25 resistors; the mean resistance was $\bar{x} = 971$ with standard deviation s = 68.
 - (a) Find a 95% confidence interval for μ .
 - (b) Based upon your answer in 4a, does the mean resistance μ significantly differ from 1,000? Why?
 - (c) Suppose we wish to test $H_0: \mu = 1,000$ versus $H_a: \mu \neq 1,000$ at the $\alpha = 0.05$ significance level. What is the *p*-value for the test?
 - (d) Based upon your answer in 4c, does the mean resistance μ significantly differ from 1,000? Why?
 - (e) Suppose the significance level $\alpha = 0.10$. Does the mean resistance μ significantly differ from 1,000? Why? Hint: No further computations are necessary; you can answer this question based on the p-value in part (4c).
 - (f) Suppose the significance level $\alpha = 0.01$. Does the mean resistance μ significantly differ from 1,000? Why? Hint: No further computations are necessary; you can answer this question based on the p-value in part (4c).