Homework 3

Elementary Statistics \& Inference (STAT:1020; Bognar)

1. Based on long-run relative frequencies, approximately 51% of all births in the U.S. are boys (i.e. $P(B)=0.51$, $P(G)=0.49)$. Assume independence.
(a) If a woman has 3 children, find the probability that she has all boys.
(b) If a woman has 3 children, find the probability that she does not have all boys.
(c) If a woman has 3 children, find the probability that the first child is a boy, while the last 2 children are girls.
(d) If a woman has 3 children, find the probability that she has 1 or more boys.
2. Suppose that 4% of desktop computers run the Linux operating system (L). Suppose 2 computers are randomly selected (assume independence).
(a) Find the probability that neither computer is running Linux.
(b) Find the probability that the first computer runs Linux $\left(L_{1}\right)$ or the second computer runs linux $\left(L_{2}\right)$.
(c) Find the probability that exactly one of the computers runs Linux.
3. It is known that 72% of adults suffer from vision problems. It is also known that 65% of adults suffer from vision problems and wear corrective lenses (i.e. eye glasses, contacts). Given that a randomly selected adult suffers from vision problems, find the probability that he/she wears corrective lenses.
4. Suppose a box contains 12 silver coins (S) and 3 gold coins (G). If you randomly select 2 coins without replacement, determine the probability that the first coin is silver $\left(S_{1}\right)$ and the second coin is gold $\left(G_{2}\right)$.
5. Suppose a die is rolled. Consider the following events:

$$
\begin{aligned}
& A=2,4 \text { or } 6 \text { is rolled } \\
& B=1,2 \text { or } 5 \text { is rolled } \\
& C=3 \text { or } 5 \text { is rolled }
\end{aligned}
$$

(a) Are A and B are mutually exclusive? Why?
(b) Are A and C are mutually exclusive? Why?
(c) Find $P(A \mid B)$
(d) Find $P(B \cup C)$.
6. Suppose events A and B are mutually exclusive where $P(A)=0.5$ and $P(B)=0.2$. What is $P(A \mid B)$?

