Homework 4

Prob. and Stat. for Eng. (STAT:2020; Bognar)

1. Suppose the random variable X has the following probability distribution. Find the following probabilities.

$$
\begin{array}{rccccc}
x: & 0 & 1 & 2 & 3 & 4 \\
f(x)=P(X=x): & 0.2 & 0.1 & 0.2 & 0.2 & 0.3
\end{array}
$$

(a) $P(X \leq 2)$
(b) $P(X<2)$
(c) $P(X \leq 2 \cap X \geq 1)$
(d) $P(X=1 \cup X<3)$
(e) $P(X=2 \mid X \leq 2)$
2. A large warehouse contains 2 -packs, 4-packs, and 8 -packs of batteries. Suppose the random variable X equals the number of batteries in a randomly selected package of batteries. It is known that X has probability distribution

$$
f(x)=P(X=x)=\frac{8}{7 x} \quad \text { for } x=2,4,8
$$

(a) What is $P(X=2)$?
(b) Determine $P(X \geq 4)$.
3. Suppose the discrete random variable X has probability distribution

$$
f(x)=P(X=x)=\frac{1}{2^{x}} \quad \text { for } x=1,2, \ldots
$$

(a) Find $P(X=5)$.
(b) Determine $P(X \geq 2)$.
(c) Find $P(X \leq 4 \cap X \geq 4)$.
(d) Find $P(X \leq 4 \cup X \geq 4)$.
(e) Determine $P(X \leq 3 \mid X \geq 2)$.
4. A basket contains 4 puppies: one of the puppies has 1 spot, one of the puppies has 2 spots, and the remaining two puppies have 4 spots. Suppose two puppies are selected at random without replacement. Let the random variable X equal the total number of spots on the selected puppies.
(a) Find the probability distribution of X.
(b) Find the probability that the puppies have a total of 5 spots, i.e. find $P(X=5)$.
(c) Find the probability that the puppies have a total of 6 or more spots, i.e. find $P(X \geq 6)$.
5. Suppose a bowl has 9 chips; one chip is labeled " 1 ", three chips are labeled " 3 ", and five chips are labeled " 5 ". Suppose two chips are selected at random with replacement. Let the random variable X equal the absolute difference between the two draws (e.g. if the first draw is a $1\left(1_{1}\right)$ and the second draw is a $5\left(5_{2}\right)$, then the absolute difference is $|1-5|=4)$.
(a) Find the probability distribution of X.
(b) Find the probability that both draws are the same.
(c) Find the probability that both draws are not the same.
(d) Given that both draws are not the same, determine the probability that the absolute difference is equal to 2, i.e. find $P(X=2 \mid X>0)$.
6. Repeat question $5(\mathrm{a})$ assuming the chips are drawn without replacement.

