- 1. The longevity of truck tires (in thousands of miles) follows a normal distribution with mean μ and standard deviation $\sigma = 20$. Suppose n = 64 tires are randomly selected and the sample mean $\bar{x} = 76.5$.
 - (a) Test $H_0: \mu = 75$ versus $H_a: \mu \neq 75$ at the $\alpha = 0.05$ significance level using a 3-step test.
 - (b) Based upon your answer in part (a), does μ significantly differ from 75? Why?
 - (c) Find the p-value for the test in part (a).
 - (d) Based upon your answer in part (c), does μ significantly differ from 75? Why?
 - (e) Find a 95% confidence interval for μ .
 - (f) Based upon your answer in part (e), does μ significantly differ from 75? Why?
 - (g) If the longevities were not normally distributed, could we still do inference for μ ? Why?
- 2. A coffee shop knows that the temperature of their coffees has a distribution that is skewed to the left with mean μ degrees and standard deviation $\sigma = 8$ degrees. A random sample of 36 coffees yielded a sample mean temperature $\bar{x} = 187$ degrees.
 - (a) Test $H_0: \mu = 190$ versus $H_a: \mu \neq 190$ at the $\alpha = 0.01$ significance level using a 3-step test.
 - (b) Based upon your answer in part (a), does μ significantly differ from 190? Why?
 - (c) Approximate the p-value for the test in part (a).
 - (d) Based upon your answer in part (c), does μ significantly differ from 190? Why?
 - (e) Find a 99% confidence interval for μ .
 - (f) Based upon your answer in part (e), does μ significantly differ from 190? Why?
 - (g) Suppose the sample size was 10, not 36. Could we still do inference for μ ? Why?