1. The longevity of truck tires (in thousands of miles) follows a normal distribution with mean $\mu$ and standard deviation $\sigma=20$. Suppose $n=64$ tires are randomly selected and the sample mean $\bar{x}=76.5$.
(a) Test $H_{0}: \mu=75$ versus $H_{a}: \mu \neq 75$ at the $\alpha=0.05$ significance level using a 3 -step test.
(b) Based upon your answer in part (a), does $\mu$ significantly differ from 75 ? Why?
(c) Find the $p$-value for the test in part (a).
(d) Based upon your answer in part (c), does $\mu$ significantly differ from 75 ? Why?
(e) Find a $95 \%$ confidence interval for $\mu$.
(f) Based upon your answer in part (e), does $\mu$ significantly differ from 75 ? Why?
(g) If the longevities were not normally distributed, could we still do inference for $\mu$ ? Why?
2. A coffee shop knows that the temperature of their coffees has a distribution that is skewed to the left with mean $\mu$ degrees and standard deviation $\sigma=8$ degrees. A random sample of 36 coffees yielded a sample mean temperature $\bar{x}=187$ degrees.
(a) Test $H_{0}: \mu=190$ versus $H_{a}: \mu \neq 190$ at the $\alpha=0.01$ significance level using a 3 -step test.
(b) Based upon your answer in part (a), does $\mu$ significantly differ from 190? Why?
(c) Approximate the $p$-value for the test in part (a).
(d) Based upon your answer in part (c), does $\mu$ significantly differ from 190? Why?
(e) Find a $99 \%$ confidence interval for $\mu$.
(f) Based upon your answer in part (e), does $\mu$ significantly differ from 190? Why?
(g) Suppose the sample size was 10 , not 36 . Could we still do inference for $\mu$ ? Why?
