Homework (Linear Combination of Normal Distributions) Prob. and Stat. for Eng. (STAT:2020; Bognar)

1. Suppose X_{1}, X_{2}, and X_{3} are independent random variables where

$$
\begin{aligned}
& X_{1} \sim N\left(\mu_{1}=1, \sigma_{1}^{2}=1^{2}\right) \\
& X_{2} \sim N\left(\mu_{2}=2, \sigma_{2}^{2}=2^{2}\right) \\
& X_{3} \sim N\left(\mu_{3}=3, \sigma_{3}^{2}=3^{2}\right)
\end{aligned}
$$

(a) Let $W=X_{1}-X_{2}$. What is the distribution of W ? Be sure to state all parameters. Show your work using clear notation.
(b) Using your answer in (1a), find $P\left(X_{1}>X_{2}\right)$. Show your work using clear notation.
(c) Let $W=X_{1}-6 X_{2}+2 X_{3}$. What is the distribution of W ? Be sure to state all parameters. Show your work using clear notation.
(d) Using your answer in (1c), find $P\left(X_{1}-6 X_{2}>5-2 X_{3}\right)$. Show your work using clear notation.
2. An artist makes pottery. There are two major steps: wheel throwing and firing. The time (in minutes) for wheel throwing can be modeled by a $X_{1} \sim N\left(\mu=40, \sigma^{2}=2^{2}\right)$ distribution and the time for firing can be modeled by a $X_{2} \sim N\left(\mu=60, \sigma^{2}=3^{2}\right)$ distribution. Assume independence.
(a) Determine the probability that a piece of pottery will be completed in less than 95 minutes.
(b) Determine the probability that a piece of pottery will take longer than 110 minutes.
(c) Determine the probability that $2 X_{1}>1.5 X_{2}$.
(d) Determine the probability that $2 X_{1}>X_{2}+15$.
(e) Suppose 10 pieces of pottery are randomly selected. Determine the probability that the mean firing time \bar{X} is between 58 and 61 minutes.
(f) Suppose 10 pieces of pottery are randomly selected. Let \bar{X} denote the sample mean firing time. Determine the 10th percentile of \bar{X}.
(g) Determine the probability that 2 pieces of pottery will take less than 210 minutes using a linear combination. Think carefully when doing this problem. Note that we can not simply find $P\left(2 X_{1}+2 X_{2}<210\right)$. Hint: Let Y_{1} denote the completion time for the first piece, and let Y_{2} denote the completion time for the second piece.
3. Suppose X_{1}, \ldots, X_{25} are independent and identically distributed normal random variables with mean $\mu=100$ and standard deviation $\sigma=20$, i.e.

$$
X_{i} \stackrel{i i d}{\sim} N\left(\mu=100, \sigma^{2}=20^{2}=400\right)
$$

for $i=1, \ldots, 25$. Let the sample mean $\bar{X}=\frac{1}{25} \sum_{i=1}^{25} X_{i}$.
(a) Find $P(98<\bar{X}<105)$.
(b) Find the 10 th percentile of \bar{X}.
4. Suppose X_{1}, X_{2}, and X_{3} are independent random variables where

$$
\begin{aligned}
& X_{1} \sim N\left(\mu_{1}=\mu, \sigma_{1}^{2}=1^{2}\right) \\
& X_{2} \sim N\left(\mu_{2}=\mu, \sigma_{2}^{2}=2^{2}\right) \\
& X_{3} \sim N\left(\mu_{3}=\mu, \sigma_{3}^{2}=3^{2}\right)
\end{aligned}
$$

If $0.9=P\left(5 X_{1}+2 X_{2}-4 X_{3}>10\right)$, find μ.

