Homework (Propagation of Error, a.k.a. Delta Method) Prob. and Stat. for Eng. (STAT:2020; Bognar)

1. Suppose a farmer has a crop circle. The area (in square meters) of the crop circle is

$$
A=\pi R^{2}
$$

where the radius $R \sim \cdot\left(\mu_{R}=100, \sigma_{R}^{2}=4^{2}\right)$ (i.e. $\left.100 \pm 4\right)$ meters.
(a) Approximate μ_{A}.
(b) Approximate σ_{A}.
(c) Write the estimate of the area, along with the estimated error, in engineering (i.e. \pm) notation. Be sure to state the units.
2. A sewage treatment facility has a large circular holding tank. A worker wishes to measure the volume of the tank (in cubic meters). The volume can be found by

$$
V=\frac{C^{2} h}{4 \pi}
$$

where h is the height of the tank (in meters), and C is the circumference of the tank (in meters). The height h can be measured without error. The large circumference, however, is very difficult to measure accurately due to the limited measuring equipment available. Assume $C \sim \cdot\left(\mu_{C}, \sigma_{C}^{2}=40^{2}\right)$ meters. The worker measured the height to be $h=3.2$ meters and the circumference C to be $c=210$ meters.
(a) Approximate μ_{V}.
(b) Approximate σ_{V}.
(c) Write the estimate of the volume, along with the estimated error, in engineering (i.e. \pm) notation. Be sure to state the units.
3. A physicist needs to estimate the density of a cube (all sides of the cube have equal length). Density (in $\mathrm{kg} / \mathrm{m}^{3}$) can be found by

$$
D=\frac{M}{L^{3}}
$$

where M is the mass of the object (in $k g$) and L is the length of a side of the cube (in meters). Assume the mass $M \sim \cdot\left(\mu_{M}=1.0, \sigma_{M}^{2}=0.02^{2}\right)$ (i.e. 1.0 ± 0.02) and assume the length $L \sim \cdot\left(\mu_{L}=0.1, \sigma_{L}^{2}=0.005^{2}\right)$ (i.e. $\left.0.1 \pm 0.005\right)$. Assume M and L are independent.
(a) Approximate μ_{D}.
(b) Approximate σ_{D}.
(c) Write the estimate of the density, along with the estimated error, in engineering (i.e. \pm) notation. Be sure to state the units.
4. An engineer needs to estimate the amount of power dissipated by a wire-wound resistor. Power (in watts) can be found by

$$
P=\frac{V^{2}}{R}
$$

where V is the voltage (in volts) and R is the resistance (in Ohms). In this particular application, assume the voltage $V \sim \cdot\left(\mu_{V}, \sigma_{V}^{2}=0.2^{2}\right)$ and assume the resistance $R \sim \cdot\left(\mu_{R}, \sigma_{R}^{2}=0.1^{2}\right)$. Assume V and R are independent. The engineer measured the voltage and resistance and found $v=14.4$ volts and $r=8.2 \mathrm{Ohms}$.
(a) Approximate μ_{P}.
(b) Approximate σ_{P}.
(c) Write the estimate of the power, along with the estimated error, in engineering (i.e. \pm) notation. Be sure to state the units.

