Homework (Bognar)

Introduction to Mathematical Statistics II (STAT:3101)

1. The standard Gumbel distribution has support $\mathcal{S}_{X}=(-\infty, \infty)$ with pdf

$$
f_{X}(x)=e^{-\left(x+e^{-x}\right)}
$$

and cdf

$$
F_{X}(x)=P(X \leq x)=e^{-e^{-x}}
$$

Five random numbers y_{1}, \ldots, y_{5} were generated from a $\operatorname{Unif}(0,1)$ distribution. Using these random numbers, generate a random sample x_{1}, \ldots, x_{5} from the standard Gumbel distribution.

$$
\begin{array}{ll}
y_{1}=0.924 & x_{1}= \\
y_{2}=0.538 & x_{2}= \\
y_{3}=0.007 & x_{3}= \\
y_{4}=0.358 & x_{4}= \\
y_{5}=0.805 & x_{5}=
\end{array}
$$

2. Suppose X_{1} and X_{2} have joint pdf

$$
f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)=24 x_{1} x_{2}
$$

for $0<x_{1}<1$ and $0<x_{2}<1-x_{1}$. Let $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{2}$.
(a) Find the joint pdf of Y_{1} and $Y_{2}, f_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right)$. Be sure to state the joint support.
(b) Find the marginal pdf of $Y_{1}, f_{Y_{1}}\left(y_{1}\right)$. Be sure to state the support. Compare this marginal pdf to the result from lecture; are you surprised that the marginals match?
(c) Find $\operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}(Y)$.
3. Suppose X_{1} and X_{2} have joint pdf

$$
f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)=2
$$

for $0<x_{1}<x_{2}<1$. Let $Y_{1}=X_{2} / X_{1}$ and $Y_{2}=X_{1}$.
(a) Find the joint pdf of Y_{1} and $Y_{2}, f_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right)$. Be sure to state the joint support.
(b) Find the marginal pdf of $Y_{1}, f_{Y_{1}}\left(y_{1}\right)$. Be sure to state the support.

