HOMEWORK (BOGNAR) INTRODUCTION TO MATHEMATICAL STATISTICS II (STAT:3101)

1. Suppose X_1, \ldots, X_n is a random sample from a $Pois(\theta)$ distribution with pmf

$$f(x|\theta) = \frac{e^{-\theta}\theta^x}{x!}$$

for $x = 0, 1, 2, \dots$ and $\theta > 0$. Suppose the prior distribution on $\Theta \sim Gamma(\alpha, \beta)$ with pdf

$$h(\theta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta}$$

- (a) Find the posterior distribution of Θ given $X_1 = x_1, \ldots, X_n = x_n$, i.e. find $k(\theta | x_1, \ldots, x_n)$. *Hint: It is a gamma distribution.*
- (b) Find the posterior mean of Θ given $X_1 = x_1, \dots, X_n = x_n$, i.e. find $E(\Theta | X_1 = x_1, \dots, X_n = x_n)$.
- (c) Show that the estimate in (1b) is a weighted average of the prior mean $\alpha\beta$ and the MLE \bar{x} with respective weights $1/(n\beta + 1)$ and $n\beta/(n\beta + 1)$.
- (d) Suppose a researcher lets $\alpha = \beta = 2$. If she observes $X_1 = 6$, $X_2 = 3$, $X_3 = 2$, $X_4 = 4$, what is the Bayesian estimate of θ (using the posterior mean)?
- (e) Suppose a researcher lets $\alpha = \beta = 3$. If she observes $X_1 = 6$, $X_2 = 3$, $X_3 = 2$, $X_4 = 4$, what is the Bayesian estimate of θ (using the posterior mean)?
- (f) Are you surprised that the estimate in (1e) is larger than in (1d)? Why?
- (g) Looking at your answer in (1c), which has more influence on the posterior mean as the sample size increases, the prior mean $\alpha\beta$ or the MLE \bar{x} ?