Homework (Bognar) Introduction to Mathematical Statistics II (STAT:3101)

1. A student claimed that he rolled a die 25 times and got the following sequence of heads and tails.

HTTTTHHHHTTTHHHHHHHHHHTTTTT

Suppose we wish to test H_0 : the sequence is random vs H_a : the sequence is not random using the runs test.

- (a) Using the runs test applet on our website, find the *p*-value for the test. *Hint: Let* $n_1 = 11$ and $n_2 = 14$.
- (b) At the $\alpha = 0.05$ significance level, is there evidence that the student did not perform the experiment like he claimed? Why?
- (c) Use the runs test applet on our website to help determine the critical region when $\alpha = 0.05$, i.e. find $C = \{r : r = \}$.
- (d) Approximate the p-value for the test using the normal approximation with continuity correction.
- 2. A roulette wheel was spun 30 times. When the ball landed in black, a "1" was recorded; when the ball did not land in black, a "0" was recorded. The sequence of spins is below.

 $1\ 0\ 0\ 1\ 1\ 0\ 1\ 1\ 0\ 1\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 1\ 0$

Suppose we wish to test H_0 : the sequence is random vs H_a : the sequence is not random using the runs test.

- (a) Using the runs test applet on our website, find the *p*-value for the test. *Hint: Let* $n_1 = 14$ and $n_2 = 16$.
- (b) At the $\alpha = 0.05$ significance level, is there evidence that the sequence of spins is not random? Why?
- (c) Use the runs test applet on our website to help determine the critical region when $\alpha = 0.05$, i.e. find $C = \{r : r = \}$.
- (d) Approximate the p-value for the test using the normal approximation with continuity correction.
- 3. For textbook Exercise 8.4-12, let X denote the of number of miles traveled per day for 48-passenger busses (F(x) is the cdf of X), and let Y denote the number of miles traveled per day for 38-passenger busses (G(y) is the cdf of Y). Suppose we wish to test $H_0: F(z) = G(z) \forall z$ (distributions are the same) vs H_a : not H_0 (distributions are not the same) using the runs test.
 - (a) Using the runs test applet on our website, find the p-value for the test.
 - (b) At the $\alpha = 0.05$ significance level, is there evidence that the distributions differ? Why?
 - (c) Use the runs test applet on our website to help determine the critical region when $\alpha = 0.05$, i.e. find $C = \{r : r = \}$.
 - (d) Approximate the p-value for the test using the normal approximation with continuity correction. This approximated p-value probably won't be very good. Our $n_1 = 9$ and $n_2 = 11$; the large sample approximation will likely be crude with such small sample sizes.
- 4. For textbook Exercise 8.4-18, let X denote plant growth in normal air (F(x) is the cdf of X), and let Y denote plant growth in enriched air (G(y) is the cdf of Y). Suppose we wish to test $H_0: F(z) = G(z) \forall z$ (distributions are the same) vs H_a : not H_0 (distributions are not the same) using the runs test.
 - (a) Using the runs test applet on our website, find the p-value for the test.
 - (b) At the $\alpha = 0.05$ significance level, is there evidence that the distributions differ? Why?
 - (c) Use the runs test applet on our website to help determine the critical region when $\alpha = 0.05$, i.e. find $C = \{r : r = \}$.