Homework (Bognar)

Introduction to Mathematical Statistics II (STAT:3101)

1. A student claimed that he rolled a die 25 times and got the following sequence of heads and tails.

HTTTTTHHHTTTHHHHHTHHTTTTT

Suppose we wish to test H_{0} : the sequence is random vs H_{a} : the sequence is not random using the runs test.
(a) Using the runs test applet on our website, find the p-value for the test. Hint: Let $n_{1}=11$ and $n_{2}=14$.
(b) At the $\alpha=0.05$ significance level, is there evidence that the student did not perform the experiment like he claimed? Why?
(c) Use the runs test applet on our website to help determine the critical region when $\alpha=0.05$, i.e. find $C=\{r: r=$ \}.
(d) Approximate the p-value for the test using the normal approximation with continuity correction.
2. A roulette wheel was spun 30 times. When the ball landed in black, a " 1 " was recorded; when the ball did not land in black, a " 0 " was recorded. The sequence of spins is below.

100110110101001001000010101110
Suppose we wish to test H_{0} : the sequence is random vs H_{a} : the sequence is not random using the runs test.
(a) Using the runs test applet on our website, find the p-value for the test. Hint: Let $n_{1}=14$ and $n_{2}=16$.
(b) At the $\alpha=0.05$ significance level, is there evidence that the sequence of spins is not random? Why?
(c) Use the runs test applet on our website to help determine the critical region when $\alpha=0.05$, i.e. find $C=\{r: r=\quad\}$.
(d) Approximate the p-value for the test using the normal approximation with continuity correction.
3. For textbook Exercise 8.4-12, let X denote the of number of miles traveled per day for 48-passenger busses $(F(x)$ is the cdf of $X)$, and let Y denote the number of miles traveled per day for 38-passenger busses $(G(y)$ is the cdf of $Y)$. Suppose we wish to test $H_{0}: F(z)=G(z) \forall z$ (distributions are the same) vs H_{a} : not H_{0} (distributions are not the same) using the runs test.
(a) Using the runs test applet on our website, find the p-value for the test.
(b) At the $\alpha=0.05$ significance level, is there evidence that the distributions differ? Why?
(c) Use the runs test applet on our website to help determine the critical region when $\alpha=0.05$, i.e. find $C=\{r: r=\quad\}$.
(d) Approximate the p-value for the test using the normal approximation with continuity correction. This approximated p-value probably won't be very good. Our $n_{1}=9$ and $n_{2}=11$; the large sample approximation will likely be crude with such small sample sizes.
4. For textbook Exercise 8.4-18, let X denote plant growth in normal air $(F(x)$ is the cdf of $X)$, and let Y denote plant growth in enriched air $(G(y)$ is the cdf of $Y)$. Suppose we wish to test $H_{0}: F(z)=G(z) \forall z$ (distributions are the same) vs H_{a} : not H_{0} (distributions are not the same) using the runs test.
(a) Using the runs test applet on our website, find the p-value for the test.
(b) At the $\alpha=0.05$ significance level, is there evidence that the distributions differ? Why?
(c) Use the runs test applet on our website to help determine the critical region when $\alpha=0.05$, i.e. find $C=\{r: r=\quad\}$.

