Capital requirements, risk measures and comonotonicity

Jan Dhaene1 Steven Vanduffel1 Qihe Tang2 Marc Goovaerts3 Rob Kaas2 David Vyncke1

Abstract. In this paper we examine and summarize properties of several well-known risk measures, with special attention given to the class of distortion risk measures. We investigate the relationship between these risk measures and theories of choice under risk. We also consider the problem of evaluating risk measures for sums of non-independent random variables and propose approximations based on the concept of comonotonicity.

Keywords: distortion risk measures, Value-at-Risk, Tail Value-at-Risk, Conditional Tail Expectation, comonotonicity.

1 Introduction

Insurance company risks can be classified in a number of ways, see for instance the “Report of the IAA’s Working Party on Solvency”4. One possible way of classification is to distinguish between financial risks (asset risks and liability risks) and operational risks, see e.g. Nakada, Shah, Koyluugo & Collignon (1999).

Insurance operations are liability driven. In exchange for a fixed premium, the insurance company engages itself to pay the claim amounts related to the insured events. Liability risks (also called technical risks) focus on the nature of the risk that the insurance company is assuming by selling insurance contracts. They can be subdivided into non-catastrophic risks (like claims volatility) and catastrophic risks (like September 11).

The insurance company will hold assets to meet its future liabilities. Asset risks (or investment risks) are associated with insurers’ asset management. They are often subdivided in credit risks (like the issuer of a bond gets ruined) and market risks (like depreciation risk).

Risks that cannot be classified as either asset or liability risks are called operational risks and are subdivided in business risks (like lower production than expected) and event risks (like system failure).

A risk measure is defined as a mapping from the set of random variables representing the risks at hand to the real numbers. We will always consider random variables as losses, or payments that have to be made. A negative outcome for the loss variable means that a gain has occurred. The real number denoting a general risk measure associated with the loss random variable \(Y \) will be denoted by \(\rho [Y] \). Common risk measures in actuarial science are premium principles, see for instance Goovaerts, De Vijlder & Haezendonck (1984), or also chapter 5 in Kaas, Goovaerts, Dhaene & Denuit (2001). Other risk measures are used for determining provisions and capital requirements of an insurer, in order to avoid insolvency. Then they measure the upper tails of distribution functions. Such measures of risk are considered in Artzner, Delbaen, Eber & Heath (1999), Wirch & Hardy (2000), Panjer (2002), Dhaene, Goovaerts & Kaas (2003), Tsanakas & Desli (2003), among others. In this paper, we will concentrate on risk measures that can be used for reserving and solvency purposes.

Let \(X \) be the random variable representing the insurance company’s risks related to a particular policy, a particular line-of-business or to the entire insurance portfolio over a specified time horizon. We do not specify what kind of risk \(X \) is. It could be one specific risk type, such as credit risk for all assets. Or it could be a sum of dependent risks \(X_1 + \cdots + X_n \), where the \(X_i \) represent the different risk types such as market risk, event risk and so on, or where the \(X_i \) represent the claims related to the different policies of the portfolio.

Ensuring that insurers have the financial means to meet their obligations to pay the present and future claims related to policyholders is the purpose of solvency5. In order to avoid insolvency over the specified time horizon at some given level of risk tolerance, the insurer should hold assets of value \(\rho [X] \) or more. Essentially, \(\rho [X] \) should be such that \(\Pr [X > \rho [X]] \) is ‘small enough’. Note that \(\rho [X] \) is a risk measure expressed in monetary terms. It could be defined for instance as the 99-th percentile of the distribution function of \(X \).

A portion of these assets finds its counterpart on the right hand side of the balance sheet as liabilities (technical provisions or actuarial reserves). The value of these liabilities will be denoted by \(P [X] \). The ‘required capital’ will be denoted by \(K [X] \). It is defined as the excess of the insurer’s required assets over its liabilities: \(K [X] = \rho [X] - P [X] \). In order to determine the required capital \(K [X] \), the value of the liabilities \(P [X] \) has to be determined. Since liabilities of insurance companies can in general not be traded efficiently in open markets, they cannot be ‘marked to market’, but have to be determined by a ‘mark to model’ approach. Hence, \(P [X] \) could be defined as a ‘fair value’ of the liabilities. The liabilities \(P [X] \) could be defined as the 75-th percentile of the distribution of \(X \), or they could be defined as the expected value \(E [X] \) increased by some additional prudency margin, or they could be evaluated using a ‘replicating portfolio’ approach.

The definition of ‘required capital’ is general in the sense that it can be used to define ‘regulatory capital’, ‘rating agency

1 Katholieke Universiteit Leuven
2 Universiteit van Amsterdam
3 Katholieke Universiteit Leuven and Universiteit van Amsterdam

capital’ as well as ‘economic capital’, depending on the risk measure that is used and the way how the liabilities are evaluated. Regulatory and rating agency capital requirements are often determined using aggregate industry averages. In this case, they may not sufficiently reflect the risks of the particular company under consideration. On the other hand, if they are based on customized internal models, which is an emerging trend, they will reflect the individual company’s risk more accurately.

The reference period over which insolvency has to be avoided has to be chosen carefully, taking into account the long-term commitments inherent in insurance products. It might be the time needed to run-off the whole portfolio, or it may be a fixed time period such as one year, in which case X also includes provisions to be set up at the end of the period.

The optimal level of risk tolerance will depend on several considerations such as the length of the reference period, as well as policyholders’ concerns and owners’ interests. A longer reference period will allow a lower level of risk tolerance. Regulatory authorities and rating agencies want sufficiently high levels of capital because holding more capital increases the capacity of the company to meet its obligations. Tax authorities, on the other hand, will not allow insurance companies to avoid taxes on profits by using these profits to increase the level of the capital. Furthermore, the more capital held, the lower the return on equity. Therefore, the shareholders of the company will only be willing to provide a sufficiently large capital $K[X]$ if they are sufficiently rewarded for it. This ‘cost of capital’ is covered by the policyholders who will have to pay an extra premium for it, see e.g. Bühlmann (1985).

In order to verify if the actual capital is in accordance with the desired risk tolerance level, the insurer has to compare the computed monetary value $\rho[X]$ with the value of the assets. It seems obvious to valuate the assets by their market value.

Our definition of ‘required capital’ is related to one of the definitions of economic capital in the ‘SOA Specialty Guide on Economic Capital’6; Economic capital is ‘the excess of the market value of the assets over the fair value of the liabilities required to ensure that obligations can be satisfied at a given level of risk tolerance, over a specified time horizon’.

As pointed out in the ”Issues paper on solvency, solvency assessments and actuarial issues”7 an insurance company’s solvency position is not fully determined by its solvency margin alone. In general an insurer’s solvency relies on a prudent evaluation of the technical provisions, on the investment of the assets corresponding to these technical provisions in accordance with quantitative and qualitative rules and finally also on the existence of an adequate solvency margin.

In this paper, we will concentrate on risk measures $\rho[X]$ that can be used in determining the ‘total balance sheet capital requirement’ which is the sum of both liabilities and solvency capital requirement: $\rho[X] = P[X] + K[X]$.

As mentioned above, the risk X will often be a sum of non-independent risks. Hence, we will consider the general problem of determining approximations for risk measures of sums of random variables of which the dependency structure is unknown or too cumbersome to work with.

In Section 2 we introduce several well-known risk measures and the relations that hold between them. Characteristics for ordering concepts in terms of risk measures are explored in Section 3. The concept of comonotonicity is introduced in Section 4. The class of distortion risk measures is examined in Section 5. Approximations for distortion risk measures of sums of non-independent random variables are considered. Section 6 concludes the paper.

2 Some well-known risk measures

As a first example of a risk measure, consider the p-quantile risk measure, often called the ‘VaR’ (Value-at-Risk) at level p in the financial and actuarial literature. For any $p \in (0, 1)$, the p-quantile risk measure for a random variable X, which will be denoted by $Q_p[X]$, is defined by

$$Q_p[X] = \inf \{ x \in \mathbb{R} \mid F_X(x) \geq p \} , \quad p \in (0, 1) , \quad (1)$$

where $F_X(x) = \Pr[X \leq x]$. We also introduce the risk measure $Q^+_p[X]$ which is defined by

$$Q^+_p[X] = \sup \{ x \in \mathbb{R} \mid F_X(x) \leq p \} , \quad p \in (0, 1) . \quad (2)$$

Note that only values of p corresponding to a horizontal segment of F_X lead to different values of $Q_p[X]$ and $Q^+_p[X]$.

Let X denote the aggregate claims of an insurance portfolio. The liabilities (provisions) for this portfolio are given by P. Assume the insurer establishes a solvency capital $K = Q_p[X] - P$ with p sufficiently large, e.g. $p = 0.99$. In this case, the capital can be interpreted as the ‘smallest’ capital such that the insurer becomes technically insolvent, i.e. claims exceed provisions and capital, with a (small) probability of at most $1 - p$:

$$K = \inf \{ L \mid \Pr[X > P + L] \leq 1 - p \} \quad (3)$$

Using the p-quantile risk measure for determining a solvency capital is meaningful in situations where the default event should be avoided, but the size of the shortfall is less important. For shareholders or management e.g., the quantile risk measure gives useful information since avoiding default is the primary concern, whereas the size of the shortfall is only secondary.

Expression (1) can also be used to define $Q_0[X]$ and $Q_1[X]$. For the latter quantile, we take the convention $\inf \emptyset = +\infty$. We find that $Q_0[X] = -\infty$. For a bounded random variable X, we have that $Q_1[X] = \max (X)$. Note that $Q_p[X]$ is often denoted by $F_X^{-1}(p)$. The quantile function $Q_p[X]$ is a non-decreasing and left-continuous function of p. In the

2 Some well-known risk measures

As a first example of a risk measure, consider the p-quantile risk measure, often called the ‘VaR’ (Value-at-Risk) at level p in the financial and actuarial literature. For any $p \in (0, 1)$, the p-quantile risk measure for a random variable X, which will be denoted by $Q_p[X]$, is defined by

$$Q_p[X] = \inf \{ x \in \mathbb{R} \mid F_X(x) \geq p \} , \quad p \in (0, 1) , \quad (1)$$

where $F_X(x) = \Pr[X \leq x]$. We also introduce the risk measure $Q^+_p[X]$ which is defined by

$$Q^+_p[X] = \sup \{ x \in \mathbb{R} \mid F_X(x) \leq p \} , \quad p \in (0, 1) . \quad (2)$$

Note that only values of p corresponding to a horizontal segment of F_X lead to different values of $Q_p[X]$ and $Q^+_p[X]$.

Let X denote the aggregate claims of an insurance portfolio. The liabilities (provisions) for this portfolio are given by P. Assume the insurer establishes a solvency capital $K = Q_p[X] - P$ with p sufficiently large, e.g. $p = 0.99$. In this case, the capital can be interpreted as the ‘smallest’ capital such that the insurer becomes technically insolvent, i.e. claims exceed provisions and capital, with a (small) probability of at most $1 - p$:

$$K = \inf \{ L \mid \Pr[X > P + L] \leq 1 - p \} \quad (3)$$

Using the p-quantile risk measure for determining a solvency capital is meaningful in situations where the default event should be avoided, but the size of the shortfall is less important. For shareholders or management e.g., the quantile risk measure gives useful information since avoiding default is the primary concern, whereas the size of the shortfall is only secondary.

Expression (1) can also be used to define $Q_0[X]$ and $Q_1[X]$. For the latter quantile, we take the convention $\inf \emptyset = +\infty$. We find that $Q_0[X] = -\infty$. For a bounded random variable X, we have that $Q_1[X] = \max (X)$. Note that $Q_p[X]$ is often denoted by $F_X^{-1}(p)$. The quantile function $Q_p[X]$ is a non-decreasing and left-continuous function of p. In the
sequel, we will often use the following equivalence relation which holds for all \(x \in \mathbb{R} \) and \(p \in [0, 1] \):

\[
Q_p [X] \leq x \iff p \leq F_X(x) .
\] (4)

Note that the equivalence relation (4) holds with equalities if \(F_X \) is continuous at this particular \(x \).

A single quantile risk measure of a predetermined level \(p \) does not give any information about the thickness of the upper tail of the distribution function from \(Q_p [X] \) on. A regulator for instance is not only concerned with the frequency of default, but also about the severity of default. Also shareholders and management should be concerned with the question “how bad is bad?” when they want to evaluate the risks at hand in a consistent way. Therefore, one often uses another risk measure which is called the Tail Value-at-Risk (TVaR) at level \(p \). It is denoted by \(\text{TVaR}_p [X] \), and defined by

\[
\text{TVaR}_p [X] = \frac{1}{1-p} \int_p^1 Q_q [X] \, dq , \quad p \in (0, 1) .
\] (5)

It is the arithmetic average of the quantiles of \(X \), from \(p \) on. Note that the TVaR is always larger than the corresponding quantile. From (5) it follows immediately that the Tail Value-at-Risk is a non-decreasing function of \(p \).

Let \(X \) again denote the aggregate claims of an insurance portfolio over a given reference period and \(P \) the provision for that portfolio. Setting the capital equal to \(\text{TVaR}_p [X] - P \), we could define ‘bad times’ as those where \(X \) takes a value in the interval \([Q_p [X] , \, \text{TVaR}_p [X]]\). Hence, ‘bad times’ are those where the aggregate claims exceed the threshold \(Q_p [X] \), but not using up all available capital. The width of the interval is a ‘cushion’ that is used in case of ‘bad times’. For more details, see Overbeck (2000).

The Conditional Tail Expectation (CTE) at level \(p \) will be denoted by \(\text{CTE}_p [X] \). It is defined as

\[
\text{CTE}_p [X] = \mathbb{E}[X \mid X > Q_p [X]] , \quad p \in (0, 1) .
\] (6)

Loosely speaking, the conditional tail expectation at level \(p \) is equal to the mean of the top \((1 - p)\%\) losses. It can also been interpreted as the VaR at level \(p \) augmented by the average exceedance of the claims \(X \) over that quantile, given that such exceedance occurs.

The Expected Shortfall (ESF) at level \(p \) will be denoted by \(\text{ESF}_p [X] \), and is defined as

\[
\text{ESF}_p [X] = \mathbb{E} \left[(X - Q_p [X])^+ \right] , \quad p \in (0, 1) .
\] (7)

This risk measure can be interpreted as the expected value of the shortfall in case the capital is set equal to \(Q_p [X] - P \).

The following relations hold between the four risk measures defined above.

\[\text{Theorem 2.1 (Relation between Quantiles, TVaR, CTE and ESF). \ For } p \in (0, 1), \ \text{we have that} \]

\[
\text{TVaR}_p [X] = Q_p [X] + \frac{1}{1-p} \text{ESF}_p [X] ,
\] (8)

\[
\text{CTE}_p [X] = Q_p [X] + \frac{1}{1-F_X(Q_p [X])} \text{ESF}_p [X] .
\] (9)

\[
\text{CTE}_p [X] = \text{TVaR}_{F_X(Q_p [X])} [X] .
\] (10)

About the Tail Value-at-Risk, from Definition (5) we have the following elementary result, which will be applied later: if \(X \) has a finite expectation \(\mathbb{E}[X] \), then

\[
\lim_{p \downarrow 0} \text{TVaR}_p [X] = \mathbb{E}[X] .
\] (11)

Note that if \(F_X \) is continuous then

\[
\text{CTE}_p [X] = \text{TVaR}_p [X] , \quad p \in (0, 1) .
\] (12)

In the sequel, we will often use the following lemma, which expresses the quantiles of a function of a random variable in terms of the quantiles of the random variable.

\[\text{Lemma 2.2 (Quantiles of transformed random variables). \ Let } X \text{ be a real-valued random variable, and } 0 < p < 1. \ \text{For any non-decreasing and left continuous function } g, \ \text{it holds that} \]

\[
Q_p [g(X)] = g(Q_p [X]) .
\] (13)

On the other hand, for any non-increasing and right continuous function \(g \), one has

\[
Q_p [g(X)] = g(Q_{1-p} [X]) .
\] (14)

A proof of this result can be found e.g. in Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a). As an application of Lemma 2.2, we immediately find that

\[
\mathbb{E} \left[X \mid X < Q_p^+ [X] \right] = -\text{CTE}_{1-p} [-X]
\] (15)

holds for any \(p \in (0, 1) \).

3 \ Risk measures and ordering of risks

Comparing random variables is the essence of the actuarial profession. Several ordering concepts, such as stochastic dominance and stop-loss order, have been introduced for that purpose in the actuarial literature, see e.g. Goovaerts, Kaas, Van Heerwaarden & Bauweinlickx (1990). Other applications of stochastic orders can be found in Shaked & Shanthikumar (1994).

\[\text{Definition 3.1 (Stochastic dominance, stop-loss and convex order). \ Consider two loss random variables } X \text{ and } Y. \ \text{If } X \text{ is said to precede } Y \text{ in the stochastic dominance sense, notation } X \leq_{sd} Y, \text{ if and only if the distribution function of } X \text{ always exceeds that of } Y: \]

\[
F_X (x) \geq F_Y (x) , \quad -\infty < x < +\infty ;
\] (16)
X is said to precede Y in the stop-loss order sense, notation $X \leq_{sl} Y$, if and only if X has lower stop-loss premiums than Y:

$$E[(X - d)_+] \leq E[(Y - d)_+] \text{, } -\infty < d < +\infty; \quad (17)$$

X is said to precede Y in the convex order sense, notation $X \leq_{cx} Y$, if and only if $X \leq_{sl} Y$ and in addition $E[X] = E[Y]$.

In the definitions of stop-loss order and convex order above, we tacitly assume that the expectations exist. In the following theorem it is stated that stochastic dominance can be characterized in terms of ordered quantiles. The proof is straightforward.

Theorem 3.2 (Stochastic dominance vs. ordered quantiles). For any random pair (X, Y) we have that X is smaller than Y in stochastic dominance sense if and only if their respective ordered quantiles are ordered:

$$X \leq_{sd} Y \iff Q_p[X] \leq Q_p[Y] \text{ for all } p \in (0, 1). \quad (18)$$

In the following theorem, we prove that stop-loss order can be characterized in terms of ordered TVaR’s.

Theorem 3.3 (Stop-loss order vs. ordered TVaR’s). For any random pair (X, Y) we have that $X \leq_{sl} Y$ if and only if their respective TVaR’s are ordered:

$$X \leq_{sl} Y \iff \text{TVaR}_p[X] \leq \text{TVaR}_p[Y] \text{ for all } p \in (0, 1). \quad (19)$$

Remark 3.4 (CTE does not preserve convex order). Recall the third item of Theorem 2.1. The identity $\text{TVaR}_{F_X(d)}[X] = \text{CTE}_{F_X(d)}[X]$ holds for any d such that $0 < F_X(d) < 1$. Hence along the same line as the proof of (b) above, we can obtain the implication that

$$X \leq_{sl} Y \implies \text{CTE}_p[X] \leq \text{CTE}_p[Y] \text{ for all } p \in (0, 1).$$

However, the other implication is not true, in general. Actually, we make a somewhat stronger statement below:

$$X \leq_{cx} Y \implies \text{CTE}_p[X] \leq \text{CTE}_p[Y] \text{ for all } p \in (0, 1). \quad (20)$$

A simple illustration for (20) is as follows: Let X and Y be two random variables where F_Y is uniform over $[0, 1]$, and F_X is given by

$$F_X(x) = \begin{cases}
 x & \text{if } 0 \leq x < 0.85, \\
 0.85 & \text{if } 0.85 \leq x < 0.9, \\
 0.95 & \text{if } 0.9 \leq x < 0.95, \\
 x & \text{if } 0.95 \leq x \leq 1.
\end{cases} \quad (21)$$

Clearly, $F_X(x) \leq F_Y(x)$ for $x < 0.9$, and $F_X(x) \geq F_Y(x)$ for $x \geq 0.9$. We have that $E[X] = E[Y] = 0.5$ and $X \leq_{sd} Y$, hence that $X \leq_{cx} Y$. However, we easily check that $\text{CTE}_{0.9}[X] > \text{CTE}_{0.9}[Y]$ since $\text{CTE}_{0.9}[X] = 0.975$ and $\text{CTE}_{0.9}[Y] = 0.95$.

4 Comonotonicity

4.1 Comonotonic bounds for sums of dependent random variables

A set S in R^n is said to be comonotonic, if, for all (y_1, y_2, \ldots, y_n) and (z_1, z_2, \ldots, z_n) in this set, $y_i < z_i$ for some i implies $y_j \leq z_j$ for all j. Notice that a comonotonic set is a ‘thin’ set, in the sense that it is contained in a one-dimensional subset of R^n. When the support of a random vector is a comonotonic set, the random vector itself and its joint distribution are called comonotonic.

It can be proven that an n-dimensional random vector $Y = (Y_1, Y_2, \ldots, Y_n)$ is comonotonic if and only if

$$Y \overset{d}{=} (F_{Y_1}^{-1}(U), F_{Y_2}^{-1}(U), \ldots, F_{Y_n}^{-1}(U)), \quad (22)$$

where d stands for ‘equality in distribution’, and U is a random variable that is uniformly distributed over the unit interval $(0, 1)$. In the remainder of this paper, the notation U will only be used to denote such a uniformly distributed random variable.

For any random vector $X = (X_1, X_2, \ldots, X_n)$, not necessarily comonotonic, we will call its comonotonic counterpart any random vector with the same marginal distributions and with the comonotonic dependency structure. The comonotonic counterpart of $X = (X_1, X_2, \ldots, X_n)$ will be denoted by $X^c = (X_1^c, X_2^c, \ldots, X_n^c)$. Note that

$$(X_1^c, X_2^c, \ldots, X_n^c) \overset{d}{=} (F_{X_1}^{-1}(U), F_{X_2}^{-1}(U), \ldots, F_{X_n}^{-1}(U)).$$

It can be proven that a random vector is comonotonic if and only if all its marginal distribution functions are non-decreasing functions (or all are non-increasing functions) of the same random variable. For other characterizations and more details about the concept of comonotonicity and its applications in actuarial science and finance, we refer to the overview papers by Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b).

A proof for the following theorem concerning convex order bounds for sums of dependent random variables is presented in Kaas, Dhaene & Goovaerts (2000).

Theorem 4.1 (Convex bounds for sums of random variables). For any random vector (X_1, X_2, \ldots, X_n) and any random variable A, we have that

$$\sum_{i=1}^{n} E[X_i | A] \leq_{cx} \sum_{i=1}^{n} X_i \leq_{cx} \sum_{i=1}^{n} F_{X_i}^{-1}(U). \quad (23)$$

The theorem above states that the least attractive random vector (X_1, \ldots, X_n) with given marginal distribution functions F_{X_i}, in the sense that the sum of its components is largest in the convex order, has the comonotonic joint distribution, which means that it has the joint distribution of $(F_{X_1}^{-1}(U), F_{X_2}^{-1}(U), \ldots, F_{X_n}^{-1}(U))$. The components of this random vector are maximally dependent, all components being non-decreasing functions of the same random variable.
Remark

For the case where the marginal distributions are not continuous and not the same, however, the CTE is, in general, not additive for comonotonic risks. Here we propose an illustration for this case.

Remark 4.4 (CTE is not additive for sums of comonotonic risks).
Consider the comonotonic random vector (X^c, Y^c), where X has a distribution F_X given by (21) and Y is uniformly distributed in $(0, 1)$. We find

\[
\text{CTE}_{0.9} [S^c] = \text{CTE}_{0.9} [X^c] + \text{CTE}_{0.9} [Y^c] - \left(\frac{1}{1 - 0.95} - \frac{1}{1 - 0.9} \right) \text{ESF}_{0.9} [X^c] < \text{CTE}_{0.9} [X^c] + \text{CTE}_{0.9} [Y^c].
\]

A risk measure ρ is said to be sub-additive if for any random variables X and Y, one has $\rho(X + Y) \leq \rho(X) + \rho(Y)$. Sub-additivity of a risk measure ρ immediately implies

\[
\rho \left(\sum_{i=1}^{n} X_i \right) \leq \sum_{i=1}^{n} \rho(X_i).
\]

A risk measure is said to preserve stop-loss order if for any X and Y, one has $X \leq_{sl} Y$ implies $\rho[X] \leq \rho[Y]$.

Theorem 4.5 (Sub-additivity of risk measures). Any risk measure that preserves stop-loss order and that is additive for comonotonic risks is sub-additive.

As a special case of Theorem 4.5, we find that TVaR is sub-additive:

\[
\text{TVaR}_p[X + Y] \leq \text{TVaR}_p[X] + \text{TVaR}_p[Y], \quad p \in (0, 1).
\]

In the following remark we show that CTE is not sub-additive.

Remark 4.6 (CTE is not sub-additive).
Let X be uniformly distributed in $(0, 1)$, and let Y be defined by

\[
Y = (0.95 - X)I_{(0 < X \leq 0.95)} + (1.95 - X)I_{(0.95 < X < 1)},
\]

where I_A denotes the indicator function which equals 1 if condition A holds and 0 otherwise. It is easy to see that Y is also uniformly distributed on $(0, 1)$ and

\[
X + Y = 0.95 I_{(0 < X \leq 0.95)} + 1.95 I_{(0.95 < X < 1)}.
\]

Eq. (28) indicates that $X + Y$ follows a discrete law with only two jumps:

\[
\Pr(X + Y = 0.95) = 1 - \Pr(X + Y = 1.95) = 0.95.
\]

For $p = 0.90$, by formula (9) one easily checks that $\text{CTE}_p[X + Y] = 1.95$, $\text{CTE}_p[X] = \text{CTE}_p[Y] = 0.95$, and hence $\text{CTE}_p[X + Y] > \text{CTE}_p[X] + \text{CTE}_p[Y].$

In the following remarks we show that both the quantile risk measure and ESF are not sub-additive.

For the case where the marginal distributions are not continuous and not the same, however, the CTE is, in general, not additive for comonotonic risks. Here we propose an illustration for this case.

Remark 4.4 (CTE is not additive for sums of comonotonic risks).
Consider the comonotonic random vector (X^c, Y^c), where X has a distribution F_X given by (21) and Y is uniformly distributed in $(0, 1)$. We find

\[
\text{CTE}_{0.9} [S^c] = \text{CTE}_{0.9} [X^c] + \text{CTE}_{0.9} [Y^c] - \left(\frac{1}{1 - 0.95} - \frac{1}{1 - 0.9} \right) \text{ESF}_{0.9} [X^c] < \text{CTE}_{0.9} [X^c] + \text{CTE}_{0.9} [Y^c].
\]

A risk measure ρ is said to be sub-additive if for any random variables X and Y, one has $\rho(X + Y) \leq \rho(X) + \rho(Y)$. Sub-additivity of a risk measure ρ immediately implies

\[
\rho \left(\sum_{i=1}^{n} X_i \right) \leq \sum_{i=1}^{n} \rho(X_i).
\]

A risk measure is said to preserve stop-loss order if for any X and Y, one has $X \leq_{sl} Y$ implies $\rho[X] \leq \rho[Y]$.

Theorem 4.5 (Sub-additivity of risk measures). Any risk measure that preserves stop-loss order and that is additive for comonotonic risks is sub-additive.

As a special case of Theorem 4.5, we find that TVaR is sub-additive:

\[
\text{TVaR}_p[X + Y] \leq \text{TVaR}_p[X] + \text{TVaR}_p[Y], \quad p \in (0, 1).
\]

In the following remark we show that CTE is not sub-additive.

Remark 4.6 (CTE is not sub-additive).
Let X be uniformly distributed in $(0, 1)$, and let Y be defined by

\[
Y = (0.95 - X)I_{(0 < X \leq 0.95)} + (1.95 - X)I_{(0.95 < X < 1)},
\]

where I_A denotes the indicator function which equals 1 if condition A holds and 0 otherwise. It is easy to see that Y is also uniformly distributed on $(0, 1)$ and

\[
X + Y = 0.95 I_{(0 < X \leq 0.95)} + 1.95 I_{(0.95 < X < 1)}.
\]

Eq. (28) indicates that $X + Y$ follows a discrete law with only two jumps:

\[
\Pr(X + Y = 0.95) = 1 - \Pr(X + Y = 1.95) = 0.95.
\]

For $p = 0.90$, by formula (9) one easily checks that $\text{CTE}_p[X + Y] = 1.95$, $\text{CTE}_p[X] = \text{CTE}_p[Y] = 0.95$, and hence $\text{CTE}_p[X + Y] > \text{CTE}_p[X] + \text{CTE}_p[Y]$.
Remark 4.7 (VaR is not sub-additive).
Let X and Y be i.i.d. random variables which are Bernoulli (0.02) distributed. We immediately find that \(Q_{0.975}[X] = Q_{0.975}[Y] = 0 \). On the other hand, \(\Pr(X + Y = 0) = 0.9604 \), which implies that \(Q_{0.975}[X + Y] > 0 \). As another illustration of the fact that the quantile risk measure is not sub-additive, consider a bivariate normal random vector \((X, Y)\). One can easily prove that the distribution functions of \(X + Y \) and \(X^c + Y^c \) only cross once, in \((\mu_X + \mu_Y, 0.5)\). This implies that \(Q_p[X + Y] > Q_p[X] + Q_p[Y] \) if \(p < 0.5 \), whereas \(Q_p[X + Y] < Q_p[X] + Q_p[Y] \) if \(p > 0.5 \).

Remark 4.8 (ESF is not sub-additive).
Let X and Y be i.i.d. random variables which are Bernoulli (0.02) distributed. It is straightforward to prove that \(ESF_{0.99}[X] = 0 \), while \(ESF_{0.99}[X + Y] > 0 \).

Remark 4.9 (Translation-scale invariant distributions).
The distribution functions of the risks \(X_1, X_2, \ldots, X_n \) are said to belong to the same translation-scale invariant family of distributions if there exist a random variable \(Y \), positive real constants \(a_i \) and real constants \(b_i \) such that \(X_i \) has the same distribution as \(a_i Y + b_i \) for each \(i = 1, 2, \ldots, n \). Examples of translation-scale invariant families of distributions are normal distributions, or more generally, elliptical distributions with the same characteristic generator, see e.g. Valdez, Dhaene & Goovaerts (2003). Now assume that the risk measure \(\rho \) preserves stop-loss order and that \(\rho[aX + b] = a \rho[X] + b \) for any positive real number \(a \) and any real number \(b \). It is easy to prove that if the set of risks is restricted to a translation-scale invariant family, then the risk measure \(\rho \) is sub-additive in this family.

5 Distortion risk measures

5.1 Definition, examples and properties
In this section we will consider the class of distortion risk measures, introduced by Wang (1996). The quantile risk measure and TVaR belong to this class. A number of the properties of these risk measures can be generalized to the class of distortion risk measures.

The expectation of \(X \), if it exists, can be written as

\[
E[X] = -\int_{-\infty}^{0} [1 - \Phi_X(x)] \, dx + \int_{0}^{\infty} \Phi_X(x) \, dx.
\] (29)

Wang (1996) defines a family of risk measures by using the concept of distortion function as introduced in Yaari’s dual theory of choice under risk, see also Wang & Young (1998). A distortion function is defined as a non-decreasing function \(g : [0, 1] \rightarrow [0, 1] \) such that \(g(0) = 0 \) and \(g(1) = 1 \). The distortion risk measure associated with distortion function \(g \) is denoted by \(\rho_{g} [\cdot] \) and is defined by

\[
\rho_{g}[X] = -\int_{-\infty}^{0} [1 - g(\Phi_X(x))] \, dx + \int_{0}^{\infty} g(\Phi_X(x)) \, dx,
\] (30)
for any random variable \(X \). Note that the distortion function \(g \) is assumed to be independent of the distribution function of the random variable \(X \). The distortion function \(g(q) = q \) corresponds to \(E[X] \). Note that if \(g(q) \geq q \) for all \(q \in [0,1] \), then \(\rho_{g}[X] \geq E[X] \). In particular this result holds in case \(g \) is a concave distortion function. Also note that \(g_1(q) \leq g_2(q) \) for all \(q \in [0,1] \) implies that \(\rho_{g_1}[X] \leq \rho_{g_2}[X] \).

One immediately finds that \(g(F_X(x)) \) is a non-increasing function of \(x \) with values in the interval \([0,1]\). However \(\rho_{g}[X] \) cannot always be considered as the expectation of \(X \) under a new probability measure, because \(g(F_X(x)) \) will not necessarily be right-continuous. For a general distortion function \(g \), the risk measure \(\rho_{g}[X] \) can be interpreted as a “distorted expectation” of \(X \), evaluated with a “distorted probability measure” in the sense of a Choquet-integral, see Denneberg (1994). Substituting \(g(F_X(x)) \) by \(\int_{0}^{\Phi_X(x)} dq(q) \) in (30) and reverting the order of the integrations, one finds that any distortion risk measure \(\rho_{g}[X] \) can be written as

\[
\rho_{g}[X] = \int_{0}^{1} Q_{1-q}[X] dq(q).
\] (31)

From (30), one can easily verify that the quantile \(Q_p[X], p \in (0, 1) \), corresponds to the distortion function

\[
g(x) = I_{(x \geq 1-p)}), \quad 0 \leq x \leq 1.
\] (32)

The risk measure TVaR\(_{p}[X], p \in (0, 1), \) corresponds to the distortion function

\[
g(x) = \min \left(\frac{x}{1-p}, 1 \right), \quad 0 \leq x \leq 1.
\] (33)

On the other hand, the risk measure ESF\(_{p}[X] \) is not a distortion risk measure. From (10) and the fact that TVaR\(_{p}[X], p \in (0, 1), \) corresponds to the distortion function given in (33), we find that CTE\(_{p}[X], p \in (0, 1), \) can be written in the form \(\rho_{g}[X] \) with \(g \) given by

\[
g(x) = \min \left(\frac{x}{1 - F_X(Q_p[X])}, 1 \right), \quad 0 \leq x \leq 1.
\] (34)

This function \(g \), however, depends on the distribution function of \(X \); hence we can not infer that CTE\(_{p}[\cdot] \) is a distortion risk measure. Actually, it can be shown that CTE is not a distortion risk measure.

It is easy to prove that any distortion risk measure \(\rho_{g} \) obeys the following properties, see also Wang (1996):

- **Additivity for cocomonotonic risks:** For any distortion function \(g \) and all random variables \(X_{i} \)

 \[
 \rho_{g}[X_{1} + X_{2} + \cdots + X_{n}] = \sum_{i=1}^{n} \rho_{g}[X_{i}].
 \] (35)

- **Positive homogeneity:** For any distortion function \(g \), any random variable \(X \) and any non-negative constant \(a \), we have

 \[
 \rho_{g}[aX] = a \rho_{g}[X].
 \] (36)
- **Translation invariance**: For any distortion function g, any random variable X and any constant b, we have
 \[\rho_g [X + b] = \rho_g [X] + b. \]
 (37)

- **Monotonicity**: For any distortion function g and any two random variables X and Y where $X \leq Y$ with probability 1, we have
 \[\rho_g [X] \leq \rho_g [Y] \]
 (38)

The first property follows immediately from (31) and the additivity property of quantiles for comonotonic risks. The second and the third properties follow from (31) and Lemma 2.2. The fourth property follows from (31) and the fact that $X \leq Y$ with probability 1 implies that each quantile of Y exceeds the corresponding quantile of X. Note that in the literature it is often confused with currency independence, see Remark 3.5 in Goovaerts, Kaas, Dhaene & Tang (2003).

In the following theorem, stochastic dominance is characterized in terms of ordered distortion risk measures.

Theorem 5.1 (Stochastic dominance vs. ordered distortion risk measures). For any random pair (X, Y) we have that X is smaller than Y in stochastic dominance sense if and only if their respective ordered distortion risk measures are ordered:

\[X \leq_{sd} Y \Leftrightarrow \rho_g [X] \leq \rho_g [Y] \]
(39)

Proof. This follows immediately from (31) and Theorem 3.2. \qed

5.2 Concave distortion risk measures

A subclass of distortion functions that is often considered in the literature is the class of concave distortion functions. A distortion function g is said to be concave if for each q in $(0, 1)$, there exist real numbers a_q and b_q and a line $l(x) = a_q x + b_q$, such that $l(q) = g(q)$ and $l(q) \geq g(q)$ for all q in $(0, 1)$. A concave distortion function is necessarily continuous in $(0, 1]$. For convenience, we will always tacitly assume that a concave distortion function is also continuous at 0. A risk measure with a concave distortion function is then called a ‘concave distortion risk measure’.

For any concave distortion function g, we have that $g(F_X(x))$ is right-continuous, so that in this case the risk measure $\rho_g [X]$ can be interpreted as the expectation of X under a ‘distorted probability measure’. Note that the quantile risk measure is not a concave distortion risk measure whereas TVaR is a concave distortion risk measure.

In the following theorem, we show that stop-loss order can be characterized in terms of ordered concave distortion risk measures.

Theorem 5.2 (SL-order vs. ordered concave distortion risk measures). For any random pair (X, Y) we have that $X \leq_{sl} Y$ if and only if their respective concave distortion risk measures are ordered:

\[X \leq_{sl} Y \Leftrightarrow \rho_g [X] \leq \rho_g [Y] \]
(40)

for all concave distortion functions g.

Proofs for the theorem above can be found in Yaari (1987), Wang & Young (1998) or Dhaene, Wang, Young & Goovaerts (2000).

Concave distortion risk measures are subadditive, which mean that the risk measure for a sum of random variables is smaller than or equivalent to the sum of the risk measures.

- **Subadditivity**: For any concave distortion functions g, and any two random variables’ X and Y, we have
 \[\rho_g [X + Y] \leq \rho_g [X] + \rho_g [Y]. \]
 (41)

The proof follows immediately from Theorem 4.5, see also Wang & Dhaene (1998).

In Artzner (1999) and Artzner, Delbaen, Eber & Heath (1999) a risk measure satisfying the four axioms of subadditivity, monotonicity, positive homogeneity and translation invariance is called “coherent”. As we have proven, any concave distortion risk measure is coherent. As the quantile risk measure is not subadditive, it is not a “coherent” risk measure.

Note that the class of concave distortion risk measures is only a subset of the class of “coherent” risk measures, as is shown by the following example.

Example 5.3 (The Dutch risk measure).

For any random variable X, consider the risk measure

\[\rho [X] = E [X] + \theta E [(X - \alpha E [X])_+] \]
(42)

with $\alpha \geq 1$, $0 \leq \theta \leq 1$. We will call this risk measure the “Dutch risk measure”, because for non-negative random variables, it is called the “Dutch premium principle”, see Kaas, van Heerwaarden & Goovaerts (1994).

In the sequel of this example we assume that the parameters α and θ are both equal to 1. In this case the Dutch risk measure is coherent. Indeed, the verifications of the properties of positive homogeneity, translation invariance and subadditivity are immediate. Finally, if $X \leq Y$ with probability 1, then $E[X] \leq E[Y]$, so that the property of monotonicity follows from

\[\rho [X] = E [\max (E [X], Y)] \leq E [\max (E [Y], Y)] = \rho [Y]. \]

Next, we will prove that the Dutch risk measure $\rho (\cdot)$ is in general not additive for comonotonic risks. Let (X_1^+, X_2^+) be a comonotonic random couple with Bernoulli marginal distributions: $P_{R_1} [X_1 = 1] = q_1$ with $0 < q_1 < q_2 < 1$ and $q_1 + q_2 > 1$. Then for some straightforward computations, we find

\[\rho [X_i] = q_i (2 - q_i), \quad i = 1, 2, \]

and

\[\rho [X_1^+ + X_2^+] = 2 q_1 + (1 - q_1) (q_1 + q_2), \]

from which we can conclude that the Dutch premium principle is in general not additive for comonotonic risks. Hence,
the Dutch risk measure (with parameters equal to 1) is an example of a risk measure that is coherent, although it is not a distortion risk measure. The example also illustrates the fact that coherent risk measures are not necessarily additive for comonotonic risks.

As we have seen, the quantile risk measure Q_p is not a concave distortion risk measure. The following theorem states that in the class of concave distortion risk measures, the one that leads to the minimal extra-capital compared to the quantile risk measure at probability level p is the TVaR risk measure at the same level p.

Theorem 5.4 (Characterization of TVaR). For any $0 < p < 1$ and for any random variable X one has

$$\text{TVaR}_p[X] = \min \{ \rho_g[X] \mid g \text{ is concave and } \rho_g \geq Q_p \}. \quad (43)$$

A result with a taste similar to our Theorem 5.4 is Proposition 5.2 in Artzner, Delbaen, Eber & Heath (1999), which says that

$$\text{VaR}_\alpha[X] = \inf \{ \rho[X] \mid \rho \text{ coherent and } \rho \geq \text{VaR}_\alpha \}$$

holds for each random variable X, see also Proposition 3.3 in Artzner (1999).

5.3 Risk measures for sums of dependent random variables

In this subsection, we will consider the problem of finding approximations for distorted expectations (such as quantiles and TVaR’s) of a sum $S = \sum_{i=1}^n X_i$ of which the marginal distributions of the random variables X_i are given, but the dependency structure between the X_i is unknown or too cumbersome to work with. In view of Theorem 4.1, we propose to approximate (the d.f. of) S by (the d.f. of) $S^c = \sum_{i=1}^n F_{X_i}^{-1}(U)$ or (the d.f. of) $S^l = \sum_{i=1}^n \mathbb{E}[X_i \mid \Lambda]$, and approximate $\rho_g[S]$ by $\rho_g[S^c]$ or by $\rho_g[S^l]$. Note that S^c is a comonotonic sum, hence from the additivity property for comonotonic risks we find

$$\rho_g[S^c] = \sum_{i=1}^n \rho_g[X_i]. \quad (44)$$

On the other hand, if the conditioning random variable Λ is such that all $\mathbb{E}[X_i \mid \Lambda]$ are non-decreasing functions of Λ (or all are non-increasing functions of Λ), then S^l is a comonotonic sum too. Hence, in this case

$$\rho_g[S^l] = \sum_{i=1}^n \rho_g[\mathbb{E}[X_i \mid \Lambda]]. \quad (45)$$

In case of a concave distortion function g, we find from Theorem 4.1 that $\rho_g[S^l]$ is a lower bound whereas $\rho_g[S^c]$ is an upper bound for $\rho_g[S]$: \[
\rho_g[S^l] \leq \rho_g[S] \leq \rho_g[S^c]. \quad (46)
\]

In particular, we have that

$$\text{TVaR}_p[S^l] \leq \text{TVaR}_p[S] \leq \text{TVaR}_p[S^c]. \quad (47)$$

Note that the quantiles of S^l, S and S^c are not necessarily ordered in the same way.

6 Final remarks

In this paper we examined and summarized properties of several well-known risk measures that can be used in the framework of setting capital requirements for a risky business. Special attention was given to the class of (concave) distortion risk measures. We considered the problem of how to evaluate risk measures for sums of non-independent random variables. Approximations for such sums, based on the concept of comonotonicity, were proposed. Several examples were provided to illustrate properties or to prove that certain properties do not hold. A problem that we did not consider in this paper is how to determine the optimal threshold for determining the required capital. This problem is considered in Examples 9 and 10 of Dhaene, Goovaerts & Kaas (2003).

ACKNOWLEDGEMENTS

Jan Dhaene, Marc Goovaerts, Steven Vanduffel and David Vyncke acknowledge the financial support of the Onderzoeksfonds K.U. Leuven (GOA/02: Actuariele, financiële en statistische aspecten van afhankelijkheden in verzekerings- en financiële portefeuilles). Qihe Tang acknowledges the support of the Dutch Organization for Scientific Research (NWO 42511013).

REFERENCES

