PRECISE LARGE DEVIATIONS FOR SUMS OF RANDOM VARIABLES WITH CONSISTENTLY VARYING TAILS

KAI W. NG,* ** University of Hong Kong
QIHE TANG,*** University of Amsterdam
JIA-AN YAN,**** Chinese Academy of Sciences, Beijing
HAILIANG YANG,* University of Hong Kong

Abstract

Let \(\{X_k, k \geq 1\} \) be a sequence of independent, identically distributed nonnegative random variables with common distribution function \(F \) and finite expectation \(\mu > 0 \). Under the assumption that the tail probability \(F(x) = 1 - F(x) \) is consistently varying as \(x \) tends to infinity, this paper investigates precise large deviations for both the partial sums \(S_n \) and the random sums \(S_{N(t)} \), where \(N(\cdot) \) is a counting process independent of the sequence \(\{X_k, k \geq 1\} \). The obtained results improve some related classical ones. Applications to a risk model with negatively associated claim occurrences and to a risk model with a doubly stochastic arrival process (extended Cox process) are proposed.

Keywords: Consistently varying tail; doubly stochastic process; heavy tail; Matuszewska index; negative association; precise large deviations; random sums

2000 Mathematics Subject Classification: Primary 60F10; 60F05; 60G50

1. Introduction

Throughout this paper, \(\{X_k, k \geq 1\} \) denotes a sequence of independent, identically distributed (i.i.d.) nonnegative random variables with common distribution function \(F(x) = 1 - F(x) = P(X \leq x) \) and finite expectation \(\mu \), where \(F(x) > 0 \) for all \(x \). For \(n \geq 1 \), we denote by \(S_n \) the \(n \)th partial sum of the sequence \(\{X_k, k \geq 1\} \). All limit relationships, unless otherwise stated, are as \(n \to \infty \) or \(t \to \infty \).

Mainstream research on precise large-deviation probabilities has been concentrated on the study of the asymptotics

\[
P(S_n - n\mu > x) \sim nF(x),
\]

which holds uniformly for some \(x \)-region \(T_n \). The uniformity in (1.1) is understood in the following sense:

\[
\lim_{n \to \infty} \sup_{x \in T_n} \left| \frac{P(S_n - n\mu > x)}{nF(x)} - 1 \right| = 0.
\]

Received 13 September 2001; revision received 11 August 2003.

* Postal address: Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong Kong.
** Email address: kaing@hku.hk
*** Postal address: Department of Quantitative Economics, University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands.
**** Postal address: Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, P. R. China.
Some earlier work on precise large deviations can be found in Nagaev (1969a), (1969b), (1969c) and Heyde (1967a), (1967b), (1968). A random variable is said to have regularly varying tail if its distribution function, \(F \), satisfies
\[
\lim_{x \to \infty} \frac{F(xy)}{F(x)} = y^{-\alpha} \quad \text{for any } y > 0
\]
for some \(\alpha > 1 \). We use \(\mathcal{R}_{-\alpha} \) to denote this class of random variables. Nagaev (1973), (1979) studied the asymptotics (1.1) for random variables with regularly varying tail. Cline and Hsing (1991) obtained (1.1) for a larger class, the so-called ERV (extended regularly varying) class, and a more flexible \(x \)-region \(T_n \). By definition, a distribution function \(F \) with a support on \([0, \infty)\) is in \(\text{ERV}(\alpha, \beta) \) for some \(\alpha, \beta \) with \(0 < \alpha \leq \beta < \infty \) if
\[
y^{-\beta} \leq \liminf_{x \to \infty} \frac{F(xy)}{F(x)} \leq \limsup_{x \to \infty} \frac{F(xy)}{F(x)} \leq y^{-\alpha} \quad \text{for any } y > 1.
\]
If we restrict ourselves to the case \(T_n = [\gamma n, \infty) \) for arbitrarily fixed \(\gamma > 0 \), we can restate their result as follows.

Proposition 1.1. (Cline and Hsing (1991).) If \(F \) belongs to the class \(\text{ERV}(\alpha, \beta) \) with \(1 < \alpha \leq \beta < \infty \), then (1.1) holds uniformly for the \(x \)-region \(T_n = [\gamma n, \infty) \) for \(\gamma > 0 \).

See also Section 1 of Klüppelberg and Mikosch (1997) for this result. A nice review of recent developments in precise large deviations is given in Mikosch and Nagaev (1998). Other reviews can be found in Nagaev (1979) and Rozovski (1993). See also the monographs Vinogradov (1994), Gnedenko and Korolev (1996) and Meerschaert and Scheffler (2001).

Recently, the precise large deviations for the randomly indexed sum (random sum),
\[
S_{N(t)} = \sum_{k=1}^{N(t)} X_k, \quad t \geq 0,
\]
have been investigated by many researchers such as Cline and Hsing (1991), Klüppelberg and Mikosch (1997), Mikosch and Nagaev (1998) and Tang et al. (2001), among many others. Here, the random index \(N(\cdot) \) is a nonnegative integer-valued process, independent of the sequence \(\{X_k, \ k \geq 1\} \). We always suppose that the mean function \(\lambda(t) = \mathbb{E}N(t) \) tends to \(\infty \) as \(t \to \infty \). The following proposition, which extends Proposition 1.1 to the case of random sums, is Theorem 3.1 of Klüppelberg and Mikosch (1997); see also Proposition 7.1 of Mikosch and Nagaev (1998) for a further extension.

Assumption 1.1. As \(t \to \infty \),
\[
\frac{N(t)}{\lambda(t)} \xrightarrow{p} 1.
\]

Assumption 1.2. For some \(\varepsilon > 0 \) and any \(\delta > 0 \),
\[
\sum_{k>(1+\delta)\lambda(t)} (1+\varepsilon)^k \mathbb{P}(N(t) > k) = o(1).
\]

Proposition 1.2. If \(F \) belongs to the class \(\text{ERV}(\alpha, \beta) \) with \(1 < \alpha \leq \beta < \infty \) and \(N(t) \) satisfies Assumptions 1.1 and 1.2, then, for any \(\gamma > 0 \),
\[
\mathbb{P}(S_{N(t)} - \mu \lambda(t) > x) \sim \lambda(t) F(x) \quad \text{uniformly for } x \geq \gamma \lambda(t).
\]
As was verified by Klüppelberg and Mikosch (1997), the homogenous Poisson process satisfies both Assumptions 1.1 and 1.2. Some applications of Proposition 1.2 to insurance and finance can be found in Chapter 8 of Embrechts et al. (1997) and some of the above-mentioned references.

In this paper, we aim to extend the two propositions above. The rest of the paper is organized as follows. Section 2 presents some preliminaries and introduces another useful subexponential subclass, denoted by \(\mathcal{C} \), which consists of distribution functions with consistently varying tails. Some discussions of the Matuszewska index \(\gamma_F \) of a distribution function \(F \) with dominatedly varying tail are also given. In Section 3, we prove the large-deviation result (1.1) for \(T_n = [\gamma n, \infty) \) and for \(F \in \mathcal{C} \). In Section 4, we improve Proposition 1.2 in such a way that we not only extend the regularity of the claim-size distribution from ERV to \(\mathcal{C} \), but also weaken Assumptions 1.1 and 1.2 to the following single condition.

Assumption 1.3. For some \(p > \gamma_F \) and any \(\delta > 0 \),

\[
E N^p(t) 1_{(N(t)>(1+\delta)\lambda(t))} = O(\lambda(t)).
\]

This assumption is satisfied, for example, by the renewal counting process as verified in Lemma 3.5 of Tang et al. (2001). Two examples are proposed in the last section as applications. We consider the case where the i.i.d. sequence \(\{X_k, k \geq 1\} \) is associated with another sequence of Bernoulli variables which obey a certain kind of negative association, and the case where the counting process \(N(t), t \geq 0 \), is specified as a so-called doubly stochastic process.

2. Preliminaries

2.1. Heavy-tailed distributions

We are interested in heavy-tailed distributions. We say that a nonnegative random variable \(X \) (or its distribution function \(F \)) is heavy tailed if it has no finite exponential moments. The most important heavy-tailed subclass is the subexponential class \(\mathcal{S} \). By definition, a distribution function \(F \) with support on \([0, \infty)\) belongs to the class \(\mathcal{S} \) if

\[
\lim_{x \to \infty} \frac{F \ast n(x)}{F(x)} = n
\]

for any \(n \geq 2 \) (or, equivalently, for \(n = 2 \)), where \(F \ast n \) denotes the \(n \)-fold convolution of \(F \). There is another important heavy-tailed subclass, \(\mathcal{D} \), which is closely related to \(\mathcal{S} \). By definition, a distribution function \(F \) with support on \([0, \infty)\) belongs to the class \(\mathcal{D} \) (is said to be of dominatedly varying tail) if

\[
\limsup_{x \to \infty} \frac{F(xy)}{F(x)} < \infty
\]

for any \(y \in (0, 1) \) (or, equivalently, for \(y = \frac{1}{2} \)). For more details on heavy-tailed distributions please refer to Embrechts et al. (1997) and Meerschaert and Scheffler (2001).

Recently, Klüppelberg and Mikosch (1997) and Tang et al. (2001) considered large deviations for the random sums of random variables with distribution function belonging to the class ERV. In the present paper we will consider a slightly larger subclass of heavy-tailed distributions and name it as the class \(\mathcal{C} \) for short.
Definition 2.1. (The class C.) A distribution function F with support on $[0, \infty)$ belongs to C if
\[
\lim_{y \to 1} \liminf_{x \to \infty} \frac{F(xy)}{F(x)} = 1 \quad \text{or, equivalently,} \quad \lim_{y \to 1} \limsup_{x \to \infty} \frac{F(xy)}{F(x)} = 1.
\] Such a distribution function F is said to have a consistently varying tail.

The regularity property in (2.1) of the tail probability F was first introduced and named the ‘intermediate regular varying property’ by Cline (1994). Some closely related discussions of the class C can be found in Cline and Samorodnitsky (1994). Recently, Jelenković and Lazar (1999) used the regularity property in (2.1) when they considered some problems in queueing systems and applications. Schlegel (1998) also applied the regularity property in (2.1) to study asymptotic properties for ruin probabilities in perturbed risk models.

It is easy to check that, whenever $0 < \alpha \leq \gamma \leq \beta < \infty$, we have the following inclusion relationship:
\[
R_{-\gamma} \subset \text{ERV}(-\alpha, -\beta) \subset C \subset D \cap S.
\] See Subsection 4.3 of Jelenković and Lazar (1999) for the last inclusion. Cline and Samorodnitsky (1994, p. 87) constructed some examples to show that C is strictly larger than ERV and that $D \cap S$ is strictly larger than C. Related discussions can also be found in Cai and Tang (2004).

Obviously, if $F \in D$, then, for any $y > 0$, $F(xy)$ and $F(x)$ are of the same order as $x \to \infty$ in the sense that
\[
0 < \liminf_{x \to \infty} \frac{F(xy)}{F(x)} \leq \limsup_{x \to \infty} \frac{F(xy)}{F(x)} < \infty.
\] We denote this by $F(xy) \asymp F(x)$. Set
\[
\gamma(y) := \liminf_{x \to \infty} \frac{F(xy)}{F(x)} \quad \text{and} \quad \gamma_F := \inf \left\{ -\frac{\log \gamma(y)}{\log y} : y > 1 \right\}.
\]
In the terminology of Bingham et al. (1987), γ_F is called the upper Matuszewska index of the nonnegative and nondecreasing function $f(x) = (F(x))^{-1}$, $x \geq 0$. Without any danger of confusion, we simply call γ_F the Matuszewska index of the distribution function F. Clearly, if $F \in \text{ERV}(-\alpha, -\beta)$, then $\alpha \leq \gamma_F \leq \beta$. See Chapter 2.1 of Bingham et al. (1987) and Cline and Samorodnitsky (1994) for more details of the Matuszewska index.

2.2. Lemmas

We shall need the following result in the proofs of Theorems 3.1 and 4.1.

Lemma 2.1. For a distribution function $F \in D$ with a finite expectation, $1 \leq \gamma_F < \infty$ and, as $x \to \infty$,
\[
x^{-\gamma} = o(F(x)) \quad \text{for any} \quad \gamma > \gamma_F.
\] Proof. This is a part of Lemma 3.5 of Tang and Tsitsiashvili (2003). For the sake of completeness, we copy here their proof with slight adjustments. From Proposition 2.2.1 of Bingham et al. (1987) we know that, for any $\rho > \gamma_F$, there are positive constants x_0 and B such that the inequality
\[
\frac{F(y)}{F(x)} \leq B \left(\frac{x}{y} \right)^\rho
\] holds.
holds whenever \(x \geq y \geq x_0 \). Hence, fixing the variable \(y \) in (2.4) leads to the result (2.3). From the inequality (2.1.9) in Theorem 2.1.8 of Bingham et al. (1987) we easily see that \(F \in \mathcal{D} \) if and only if \(\gamma_F < \infty \). Clearly, the result (2.3) implies that \(E X_+^\gamma = \infty \) for any \(\gamma > \gamma_F \). Hence, \(\gamma_F \geq 1 \) holds immediately. This completes the proof of Lemma 2.1.

Now we restate the inequality (2.4) as follows.

Lemma 2.2. For \(F \in \mathcal{D} \) and every \(\rho > \gamma_F \), there exist positive \(x_0 \) and \(B \) such that, for all \(\theta \in (0, 1] \) and all \(x \geq \theta^{-1} x_0 \),

\[
\frac{F(\theta x)}{F(x)} \leq B \theta^{-\rho}.
\] (2.5)

We remark that (2.5) holds even when \(\theta = \theta(x) \) tends to 0 as \(x \to \infty \). This inequality will play a key role in the proof of our Theorem 3.1.

Lemma 2.3 below is a reformulation of Lemma 3.2 of Tang et al. (2001); a similar result and related discussions can be found in Fuk and Nagaev (1971).

Lemma 2.3. Let \(\{ X_k, k \geq 1 \} \) be a sequence of i.i.d. nonnegative random variables with common distribution function \(F \) and finite expectation \(\mu \). Then, for all \(v > 0 \), \(x > 0 \) and \(n \geq 1 \),

\[
P(S_n > x) \leq n F\left(\frac{x}{v} \right) + \left(\frac{e\mu n}{x} \right)^v.
\] (2.6)

Lemmas 2.4 and 2.5 are reformulations of Lemmas 3.3 and 3.5 of Tang et al. (2001); we will need these two lemmas in the later part of this paper.

Lemma 2.4. Let \(\{ \zeta(t), t \geq 0 \} \) be a stochastic process with a common expectation \(E \zeta(t) = 1 \). If, for any fixed \(\delta > 0 \),

\[
E \zeta(t) I_{\{ \zeta(t) > 1+\delta \}} = o(1),
\]

then \(\zeta(t) \xrightarrow{p} 1 \).

Lemma 2.5. Suppose that \(\{ N(t), t \geq 0 \} \) is an ordinary renewal process which is driven by a sequence of i.i.d. nonnegative random variables \(\{ Y_n, n \geq 1 \} \) with common finite expectation. Then, for any positive constants \(\theta \) and \(p \),

\[
E N^p(t) I_{\{ N(t) > (1+\theta) E N(t) \}} = o(1).
\]

3. Large deviations for nonrandom sums

Now we are in a position to establish the first main result of this paper.

Theorem 3.1. Let \(\{ X_k, k \geq 1 \} \) be a sequence of i.i.d. nonnegative random variables with common distribution function \(F \in \mathcal{C} \) and finite expectation \(\mu \). Then, for any fixed \(\gamma > 0 \),

\[
P(S_n - n \mu > x) \sim n F(x) \quad \text{uniformly for } x \geq \gamma n.
\] (3.1)

Remark 3.1. The relation (3.1) is an accurate form of an inequality in Tang and Yan (2002). It is complementary to Theorem 2.1 of Cline and Hsing (1991). Compared with the latter, our result is focused on \(x \)-regions of the type \(T_n = [\gamma n, \infty) \) under the weaker condition that \(F \) has a consistently varying tail.
Proof. For any $\lambda > 1$,
\begin{align*}
P(S_n - n\mu > x) & \geq P\left(S_n - n\mu > x, \max_{1 \leq k \leq n} X_k > \lambda x \right) \\
& \geq \sum_{k=1}^{n} P(S_n - n\mu > x, X_k > \lambda x) - \sum_{1 \leq k < l \leq n} P(S_n - n\mu > x, X_k > \lambda x, X_l > \lambda x) \\
& \geq n P(S_{n-1} - n\mu > (1 - \lambda)x, S_n > \lambda x) - (n F(\lambda x))^2 \\
& = n F(\lambda x) (P(S_{n-1} - n\mu > (1 - \lambda)x) - n F(\lambda x)). \quad (3.2)
\end{align*}

Clearly, by the classical law of large numbers,
\begin{align*}
\lim_{n \to \infty} \inf_{x \geq \gamma n} P(S_{n-1} - n\mu > (1 - \lambda)x) = 1. \quad (3.3)
\end{align*}

Substituting (3.3) into (3.2) leads to
\begin{align*}
\lim_{n \to \infty} \inf_{x \geq \gamma n} \frac{P(S_n - n\mu > x)}{n F(\lambda x)} & \geq \lim_{n \to \infty} \inf_{x \geq \gamma n} \left(P(S_{n-1} - n\mu > (1 - \lambda)x) - n F(\lambda x) \right) \\
& \geq \lim_{x \to \infty} \inf_{x \geq \gamma n} (1 - n F(\lambda x)) = 1.
\end{align*}

Hence,
\begin{align*}
\lim_{n \to \infty} \inf_{x \geq \gamma n} \frac{P(S_n - n\mu > x)}{n F(\lambda x)} & \geq \left(\lim_{n \to \infty} \inf_{x \geq \gamma n} \frac{P(S_n - n\mu > x)}{n F(\lambda x)} \right) \lim_{x \to \infty} \frac{F(\lambda x)}{F(x)} \\
& \geq \lim_{x \to \infty} \frac{F(\lambda x)}{F(x)}.
\end{align*}

Since $F \in C$ and $\lambda > 1$ is arbitrary, we can conclude that
\begin{align*}
\lim_{n \to \infty} \inf_{x \geq \gamma n} \frac{P(S_n - n\mu > x)}{n F(x)} & \geq \lim_{X \to \infty} \lim_{x \to \infty} \frac{F(\lambda x)}{F(x)} = 1. \quad (3.4)
\end{align*}

Now we start to check the upper bound for (3.1). For any $\theta \in (0, 1)$, we define
\[\tilde{X}_k := X_k I_{(X_k \leq \theta x)} \quad \text{for } k \geq 1, \]
\[\tilde{S}_n := \sum_{k=1}^{n} \tilde{X}_k \]
and
\[\tilde{x} := x + n\mu. \]

By a standard truncation argument, we can show that
\begin{align*}
P(S_n - n\mu > x) & \leq P\left(\max_{1 \leq k \leq n} X_k > \theta x \right) + P\left(\max_{1 \leq k \leq n} X_k \leq \theta x, S_n - n\mu > x \right) \\
& \leq n F(\theta x) + P(\tilde{S}_n > \tilde{x}). \quad (3.5)
\end{align*}
Sums of random variables with consistently varying tails

We estimate the second term in (3.5). Let \(a = \max \{-\log(nF(\theta x)), 1\} \), which tends to \(\infty \) uniformly for \(x \geq \gamma n \). For arbitrarily fixed \(h > 0 \),

\[
\frac{P(\tilde{S}_n > \tilde{x})}{nF(\theta x)} \leq e^{-h\tilde{x}} E e^{b\tilde{x}} nF(\theta x) \leq e^{-h\tilde{x} + a} \left(\int_0^{\theta x} (e^{ht} - 1) F(dt) + 1 \right)^n \leq \exp \left\{ n \int_0^{\theta x} (e^{ht} - 1) F(dt) - h\tilde{x} + a \right\}.
\]

(3.6)

The value of \(h \) above will be specified later. For any fixed \(\tau > 1 \), we divide the integral on the right-hand side of (3.6) into two terms as

\[
\int_0^{\theta x} (e^{ht} - 1) F(dt) = \int_0^{\theta/\tau} F(dt) + \int_{\theta x/\tau}^{\theta x} (e^{ht} - 1) F(dt).
\]

(3.7)

Applying an elementary inequality, \(e^u - 1 \leq ue^u \), to the first term of the right-hand side of (3.7), we obtain that

\[
\int_0^{\theta x} (e^{ht} - 1) F(dt) \leq e^{h\theta x/\tau} \int_0^{\theta x/\tau} ht F(dt) + e^{h\theta x} F(\theta x/\tau) \leq h\mu e^{h\theta x/\tau} + e^{h\theta x} F(\theta x/\tau).
\]

(3.8)

Substituting (3.8) into (3.6) yields that, for all large \(n \),

\[
\frac{P(\tilde{S}_n > \tilde{x})}{nF(\theta x)} \leq \exp(nh\mu e^{h\theta x/\tau} + Bn\mu a + B - h\tilde{x} + a) \leq \exp(nh\mu e^{h\theta x/\tau} + Bn\mu a + B) = \exp(nh\mu e^{h\theta x/\tau} + B \theta x a \log a - h\tilde{x} + a).
\]

(3.9)

Here we have used the inequality (2.5) in the second step. Letting

\[
h = \frac{a - \rho \tau \log a}{\theta x}
\]

in (3.9), we obtain that, for all large \(n \),

\[
\frac{P(\tilde{S}_n > \tilde{x})}{nF(\theta x)} \leq \exp(nh\mu e^{(a - \rho \tau \log a)/\theta x} + B - h(x + n\mu) + a) \leq \exp(B - h\tilde{x} + a) \leq e^B \exp \left\{ o(\theta x) \frac{a - \rho \tau \log a}{\theta x} - a - \rho \tau \log a - a \right\} = e^B \exp(o(\theta x) + (1 - 1/\theta)a).
\]

Combining this with (3.5) gives

\[
\limsup_{n \to \infty} \sup_{x \geq \gamma n} \frac{P(\tilde{S}_n - n\mu > x)}{nF(\theta x)} \leq 1 + \limsup_{n \to \infty} \sup_{x \geq \gamma n} \frac{P(\tilde{S}_n > \tilde{x})}{nF(\theta x)} = 1.
\]
Similar to the above, by the fact that $F \in C$ and the arbitrariness of $\theta \in (0, 1)$ we obtain that
\[
\limsup_{n \to \infty} \sup_{x \geq \gamma n} \frac{P(S_n - n\mu > x)}{nF(x)} = \lim_{\theta \uparrow 1} \limsup_{n \to \infty} \sup_{x \geq \gamma n} \left(\frac{P(S_n - n\mu > x)}{nF(\theta x)} \frac{F(\theta x)}{F(x)}\right) \leq 1. \quad (3.10)
\]
The result (3.1) then follows from (3.4) and (3.10).

Remark 3.2. In the proof above, the treatment in (3.2) is similar to the proof of Theorem 4.1 of Mikosch and Nagaev (1998). The idea of the division in (3.7) is from Cline and Hsing (1991), but the method is different.

4. Large deviations for random sums

The following theorem is the second main result of this paper.

Theorem 4.1. Let $\{X_k, k \geq 1\}$ be a sequence of i.i.d. nonnegative random variables with finite expectation μ and common distribution function $F \in C$, independent of a nonnegative and integer-valued process $\{N(t), t \geq 0\}$. Assume that $N(\cdot)$ satisfies Assumption 1.3. Then the precise large-deviation result (1.4) holds.

Proof. By Lemma 2.4 with $\zeta(t) = N(t)/\lambda(t)$, we can easily see that Assumption 1.3 implies Assumption 1.1.

We write
\[
P(S_{N(t)} - \mu\lambda(t) > x) = \sum_{n=1}^{\infty} P(S_n - \mu\lambda(t) > x) P(N(t) = n)
\]
and divide the sum into three parts as
\[
\sum_{n < (1 - \delta)\lambda(t)} + \sum_{(1 - \delta)\lambda(t) \leq n \leq (1 + \delta)\lambda(t)} + \sum_{n > (1 + \delta)\lambda(t)} =: K_1 + K_2 + K_3, \quad (4.1)
\]
where $0 < \delta < \gamma/\mu$ is arbitrary. By the same approach as used in the proof of Lemma 4.2 of Klüppelberg and Mikosch (1997), we know that
\[
K_1 = o(\lambda(t)F(x)). \quad (4.2)
\]
Now we deal with K_2. By Assumption 1.1 and Theorem 3.1, we have
\[
K_2 \leq P(S_{[(1+\delta)\lambda(t)]} - \mu\lambda(t) > x) P((1 - \delta)\lambda(t) \leq N(t) \leq (1 + \delta)\lambda(t))
\sim P(S_{[(1+\delta)\lambda(t)]} - [(1 + \delta)\lambda(t)]\mu > x + \mu\lambda(t) - [(1 + \delta)\lambda(t)]\mu)
\sim (1 + \delta)\lambda(t)F((x + \mu\lambda(t) - [(1 + \delta)\lambda(t)]\mu))
\leq (1 + \delta)\lambda(t)F((1 - \delta\mu/\gamma)x).
\]
By the same treatment we obtain the corresponding asymptotic lower bound for K_2 as
\[(1 - \delta)\lambda(t)F((1 + \delta\mu/\gamma)x).
\]
Thus, it follows from (2.1) that
\[
\lim_{\delta \uparrow 0} \lim_{t \to \infty} \sup_{x \geq \gamma\lambda(t)} \left| \frac{K_2}{\lambda(t)F(x)} - 1 \right| = 0. \quad (4.3)
\]
Finally, we estimate K_3. Setting v in (2.6) equal to p, where $p > \gamma_F \geq 1$, we obtain that

$$K_3 \leq \sum_{n \geq (1+\delta)\lambda(t)} P(S_n > x) P(N(t) = n)$$

$$\leq \sum_{n \geq (1+\delta)\lambda(t)} \left(n\overline{F}(x/p) + (e^{n\mu}/x)^p\right) P(N(t) = n)$$

$$\leq \sum_{n \geq (1+\delta)\lambda(t)} \left(\overline{F}(x) E N(t) I_{(N(t)\geq(1+\delta)\lambda(t))} + x^{-p} E N^p(t) I_{(N(t)\geq(1+\delta)\lambda(t))}\right)$$

$$= o(\overline{F}(x) E N(t) I_{(N(t)\geq(1+\delta)\lambda(t))} + x^{-p} E N^p(t) I_{(N(t)\geq(1+\delta)\lambda(t))})$$

$$= o(\lambda(t) \overline{F}(x)). \quad (4.4)$$

where, in the last step, we have used Assumption 1.3 and Lemma 2.1. Substituting (4.2), (4.3) and (4.4) into (4.1), we know that (1.4) holds.

5. Applications of Theorem 4.1

In this section, we provide two examples of applications of Theorem 4.1. In these examples, our Assumption 1.3 is fulfilled, whereas the related assumptions in the literature are not.

5.1. Negatively associated claim occurrences

In the context of insurance risk theory, the claim sizes $X_k, k \geq 1$, are often assumed to be i.i.d. nonnegative random variables with common distribution function F. Their occurrence times $\sigma_k, k \geq 1$, constitute an ordinary renewal counting process

$$N(t) = \sup\{n : \sigma_n \leq t\}, \quad t \geq 0,$$

with $\lambda(t) = E N(t) < \infty$ for any $t \geq 0$. With $\sigma_0 = 0$, we can write the interarrival times as $\sigma_k = \sigma_k - \sigma_{k-1}$ for $k \geq 1$, which therefore form a sequence of i.i.d. nonnegative random variables. These are standard assumptions in the ordinary renewal model.

We consider the model of Denuit et al. (2002). In this model, the kth insurance policy, $k \geq 1$, is associated with a Bernoulli variable I_k. The variable I_k has a common expectation q, where $0 < q \leq 1$ and q is the claim-occurrence probability of the kth policy, $k \geq 1$. The total claim amount up to time t is then

$$S_1(t) = \sum_{k=1}^{N(t)} X_k I_k, \quad t \geq 0. \quad (5.1)$$

We assume that the three sequences $\{X_k, k \geq 1\}, \{Y_k, k \geq 1\}$ and $\{I_k, k \geq 1\}$ are mutually independent and that the sequence $\{I_k, k \geq 1\}$ is negatively associated. Therefore, $S_1(t)$ is a nonstandard random sum unless the parameter q is equal to 1. Generally speaking, a sequence $\{I_k, k \geq 1\}$ is said to be negatively associated (NA) if, for any disjoint finite subsets A and B of $\{1, 2, \ldots\}$ and any coordinatewise monotonically increasing functions f and g, the inequality

$$\text{cov}[f(I_i; i \in A), g(I_j; j \in B)] \leq 0$$

holds whenever the moment involved exists. For details of the notion of NA, please refer to Alam and Saxena (1981), Joag-Dev and Proschan (1983) and Shao (2000), among others.

In this subsection, we will show that the precise large-deviation result obtained in Section 4 can be applied to the random sum $S_1(t)$ defined in (5.1). Write

$$N^*(t) = \sup\{n : \sigma_n \leq t \text{ and } I_n = 1\}, \quad t \geq 0,$$
which represents the number of claims that really occur in the interval \([0, t]\). Clearly,

\[
N^*(t) = \sum_{k=1}^{N(t)} I_k, \quad E N^*(t) = E \sum_{k=1}^{N(t)} I_k = q E N(t) = q \lambda(t), \quad t \geq 0.
\]

(5.2)

The random sum \(S_1(t)\) can be rewritten as

\[
S_1(t) = \sum_{k:1 \leq k \leq N(t), I_k = 1} X_k \overset{d}{=} \sum_{k=1}^{N^*(t)} X_k,
\]

(5.3)

where \(\overset{d}{=}\) denotes equality in distribution. We notice that the right-hand side of (5.3) is a standard random sum, i.e. that the random index \(N^*(t)\) is independent of the summands \(\{X_k, k \geq 1\}\).

Based on (5.3), in order to establish precise large deviations for the random sum \(S_1(t)\), it suffices to check Assumption 1.3 for the counting process \(N^*(t), t \geq 0\).

We introduce another i.i.d. sequence \(\{I^\perp_k, k \geq 1\}\), independent of the process \(\{N(t), t \geq 0\}\), such that \(I^\perp_1 \overset{d}{=} I_1\). For \(x > 0\) and \(p > 1\), we define a function as follows:

\[
f(u \mid x, p) = \begin{cases}
0, & u \leq \left(1 - \frac{1}{p}\right)x, \\
px^{p-1}\left(u - \left(1 - \frac{1}{p}\right)x\right), & \left(1 - \frac{1}{p}\right)x < u \leq x, \\
up, & u > x.
\end{cases}
\]

(5.4)

Clearly, the function \(f(u \mid x, p)\) is nonnegative, increasing and convex in \(u \in (-\infty, \infty)\) and, for any \(x > 0\) and \(p > 1\),

\[
u^p I_{(u > x)} \leq f(u \mid x, p) \leq u^p I_{(u > (1 - 1/p)x)}.
\]

(5.5)

By Theorem 1 of Shao (2000) we know that the inequality

\[
E g\left(\sum_{k=1}^{n} I_k\right) \leq E g\left(\sum_{k=1}^{n} I^\perp_k\right)
\]

holds for any \(n \geq 1\) and any convex function \(g\) on \((-\infty, \infty)\) whenever the expectation on the right-hand side exists. By this result and the inequalities in (5.5) we obtain that, for any positive \(\theta\) and \(p\),

\[
E(N^*(t))^p I_{(N^*(t) > (1+\theta) E N^*(t))} \leq E f\left(N^*(t)\right)\left[1 + \theta \right] E N^*(t), p
\]

\[
= E \left\{ E \left(f\left(\sum_{k=1}^{N(t)} I_k \right) \mid (1 + \theta) E N^*(t), p \right) \mid N(t) \right\}
\]

\[
\leq E \left\{ E \left(f\left(\sum_{k=1}^{N(t)} I^\perp_k \right) \mid (1 + \theta) E N^*(t), p \right) \mid N(t) \right\}
\]

\[
= E f\left(\sum_{k=1}^{N(t)} I^\perp_k \right) \mid (1 + \theta) E N^*(t), p
\]

\[
\leq E \left(\sum_{k=1}^{N(t)} I^\perp_k \right)^p I_{\left(\sum_{k=1}^{N(t)} I^\perp_k > (1 - 1/p)(1+\theta) E N^*(t)\right)}.
\]
For any $\theta > 0$, we choose $p > 1$ sufficiently large that
\[\theta(p) = \left(1 - \frac{1}{p} \right) (1 + \theta) - 1 > 0. \] (5.6)

This gives
\[E(N^*(t))^p 1_{(N^*(t) > (1 + \theta) E N^*(t))} \leq E(\tilde{N}(t))^p 1_{(\tilde{N}(t) > (1 + \theta(p)) E \tilde{N}(t))} \] (5.7)
with $\tilde{N}(t) = \sum_{k=1}^{N(t)} I_k^\perp$. We further introduce $\nu_0 = 0$ and
\[\nu_n = \inf\{k > \nu_{n-1} : I_k^\perp = 1\}, \quad \tilde{Y}_n = \sum_{k=\nu_{n-1}}^{\nu_n} Y_k, \quad n \geq 1. \]

It is not difficult to see that \{($(\nu_n - \nu_{n-1}), \tilde{Y}_n$), \(n \geq 1\}\) forms a sequence of i.i.d. random pairs, and that ν_1 is a geometric random variable with parameter $q \in (0, 1]$. Moreover,
\[\tilde{N}(t) = \sup\left\{ n : \sum_{k=1}^{n} \tilde{Y}_k \leq t \right\}, \quad t \geq 0, \]
which means that the process $[\tilde{N}(t), \ t \geq 0]$ is also an ordinary renewal counting process driven by the sequence of i.i.d. nonnegative random variables $\{\tilde{Y}_n, \ n \geq 1\}$. If we assume that the interarrival time Y_1 has a finite expectation, then
\[E \tilde{Y}_1 = E \sum_{k=1}^{\nu_1} Y_k = E \nu_1 E Y_1 = \frac{E Y_1}{q} < \infty. \]

Thus, by Lemma 2.5 we immediately obtain that the right-hand side of (5.7) equals $O(E \tilde{N}(t))$.

Then, it follows from this and (5.2) that, for any $\theta > 0$ and all large $p > 0$,
\[E(N^*(t))^p 1_{(N^*(t) > (1 + \theta) E N^*(t))} = O(E(\tilde{N}(t)) = O(E N^*(t)). \]

Hence, the counting process $N^*(t)$ satisfies Assumption 1.3.

Then, by (5.3) and Theorem 4.1, we know that, if the claim-size distribution F is in \mathcal{C} with a finite expectation, then, for any $\gamma > 0$ and all $x \geq \gamma \lambda(t)$,
\[P(S_1(t) - \mu q \lambda(t) > x) \sim P \left(\sum_{k=1}^{N(t)} X_k I_k - \mu E N^*(t) > x \right) \sim q \lambda(t) F(x). \] (5.8)

We summarize the above in the following proposition.

Proposition 5.1. Let $\{X_k, \ k \geq 1\}$ be a sequence of i.i.d. nonnegative random variables with finite expectation μ and common distribution function $F \in \mathcal{C}$, let $\{I_k, \ k \geq 1\}$ be an NA sequence of Bernoulli variables with common expectation $q \in (0, 1]$ and let $\{N(t), \ t \geq 0\}$ be an ordinary renewal counting process driven by a sequence of i.i.d. nonnegative random variables $\{Y_k, \ k \geq 1\}$ which have common finite expectation. Suppose that the sequences $\{X_k, \ k \geq 1\}$, $\{I_k, \ k \geq 1\}$ and the process $\{N(t), \ t \geq 0\}$ are mutually independent. Then, for any $\gamma > 0$ and all $x \geq \gamma \lambda(t)$,
\[P \left(\sum_{k=1}^{N(t)} X_k I_k - \mu q \lambda(t) > x \right) \sim q \lambda(t) F(x). \]
5.2. Doubly stochastic counting process

Let \(N_1(t), \ t \geq 0 \), be an ordinary renewal process which is generated by i.i.d. nonnegative random variables \(\{Y_k, k \geq 1\} \) with \(EY_1 = 1 \), and let \(\Lambda(t), \ t \geq 0 \), be another right-continuous nondecreasing process with \(\Lambda(0) = 0 \), independent of \(N_1(t) \), and \(P(\Lambda(t) < \infty) = 1 \) for any \(t \geq 0 \).

We now concentrate our interests on a doubly stochastic process \(N(t) \) which is defined as the composition of \(N_1(t) \) and \(\Lambda_1(t) \):

\[
N(t) = N_1(\Lambda(t)), \quad t \geq 0. \tag{5.9}
\]

When \(N_1(t), \ t \geq 0, \) is a homogeneous Poisson process with unit intensity, the doubly stochastic process (5.9) is called a Cox process. For an overview on Cox processes and their applications to actuarial and financial mathematics, we refer the reader to Grandell (1976) and Bening and Korolev (2002); see also Korolev (1999), (2001).

In this subsection we prove that the precise large-deviation result obtained in Theorem 4.1 can be applied to the compound process

\[
S_2(t) = \sum_{k=1}^{N(t)} X_k, \quad t \geq 0, \tag{5.10}
\]

where \(\{X_k, k \geq 1\} \) is a sequence of i.i.d. nonnegative random variables with common distribution function \(F \), independent of the doubly stochastic counting process \(N(t) \). Suppose that \(F \in \mathcal{C} \) has a finite expectation. According to Theorem 4.1, it suffices to check Assumption 1.3 for the doubly stochastic process \(N(t) \).

We assume that the inner stochastic process \(\Lambda_1(t) \) satisfies the conditions that \(\lambda^*(t) := E\Lambda(t) < \infty \) for any \(t \geq 0 \) but \(\lambda^*(t) \to \infty \), and that, for some \(p > \gamma_F \) and any \(\theta > 0 \),

\[
E\Lambda^p(1_{\Lambda(t) > (1+\theta)\lambda^*(t)}) = O(\lambda^*(t)), \tag{5.11}
\]

where \(\gamma_F \) denotes the Matuszewska index of the distribution function \(F \). Recall Lemma 2.1.

We know that \(\gamma_F \geq 1 \). By virtue of Lemma 2.4, the assumption (5.11) indicates that

\[
\frac{\Lambda(t)}{\lambda^*(t)} \xrightarrow{p} 1.
\]

Since, in the structure of \(N(t) = N_1(\Lambda(t)), \ t \geq 0 \), the ordinary renewal process \(N_1(t) \) is generated by the sequence \(\{Y_k, \ k \geq 1\} \), which is independent of the stochastic process \(\Lambda(t), \ t \geq 0 \), we have

\[
E(N(t) | \Lambda(t)) = E N_1(x)|_{x=\Lambda(t)}. \tag{5.12}
\]

Noting that \(E N_1(t) \sim t \), based on the understanding in (5.12), we obtain that

\[
\lambda(t) = E N(t) = E(E(N(t) | \Lambda(t))) \sim \lambda^*(t). \tag{5.13}
\]

Now we claim that

\[
\frac{E(N(t) | \Lambda(t))}{\Lambda(t)} \xrightarrow{p} 1. \tag{5.14}
\]

Here, in the case where \(\Lambda(t) = 0 \), we assume that the left-hand side of (5.14) equals 1. In fact, for arbitrarily given \(\varepsilon > 0 \), we can find an \(M > 0 \) large enough that, for \(t > M \),

\[
(1 - \varepsilon)t \leq E N_1(t) \leq (1 + \varepsilon)t.
\]
It follows from (5.12) that

\[
(1 - \epsilon)\Lambda(t) I_{\{\Lambda(t) > M\}} \leq E(N(t) | \Lambda(t)) \leq (1 + \epsilon)\Lambda(t) I_{\{\Lambda(t) > M\}}.
\]

Since \(\Lambda(t) \xrightarrow{p} \infty \), without loss of generality we assume that \(P(\Lambda(t) > 0) = 1 \) for all large \(t > 0 \) in proving (5.14). Hence, for all sufficiently large \(t > 0 \),

\[
\frac{E(N(t) | \Lambda(t))}{\Lambda(t)} = \frac{E(N(t) | \Lambda(t)) I_{\{\Lambda(t) > M\}} + E(N(t) | \Lambda(t)) I_{\{\Lambda(t) \leq M\}}}{\Lambda(t)}
\]

\[
\leq \frac{(1 + \epsilon)\Lambda(t) I_{\{\Lambda(t) > M\}} + E(N(t) | \Lambda(t)) I_{\{\Lambda(t) \leq M\}}}{\Lambda(t)}
\]

\[
\leq (1 + \epsilon) I_{\{\Lambda(t) > M\}} + \frac{E(N_1(M))}{\Lambda(t)} \xrightarrow{p} 1 + \epsilon.
\]

The corresponding lower bound can similarly be derived as

\[
\frac{E(N(t) | \Lambda(t))}{\Lambda(t)} \geq \frac{E(N(t) | \Lambda(t)) I_{\{\Lambda(t) > M\}} \geq (1 - \epsilon)\Lambda(t) I_{\{\Lambda(t) > M\}}}{\Lambda(t)} \xrightarrow{p} 1 - \epsilon.
\]

Since \(\epsilon > 0 \) is arbitrary, we obtain the claimed result (5.14) immediately.

For the \(p \) and \(\theta \) in (5.11), we arbitrarily choose \(\theta_1 \) and \(\theta_2 \) such that \(0 < \theta_2 < \theta_1 < \theta \). It follows from (5.13) that, for all sufficiently large \(t > 0 \),

\[
E N^P(t) I_{\{N(t) > (1 + \theta)\lambda^*(t)\}}
\]

\[
= E(E(N^P(t) I_{\{N(t) > (1 + \theta)\lambda^*(t)\}} | \Lambda(t)))
\]

\[
\leq E(E(N^P(t) I_{\{N(t) > (1 + \theta_1)\lambda^*(t)\}} I_{\{\Lambda(t) > (1 + \theta_2)\lambda^*(t)\}} + I_{\{\Lambda(t) \leq (1 + \theta_2)\lambda^*(t)\}} | \Lambda(t)))
\]

\[
:= J_1 + J_2.
\]

(5.15)

Recall that the ordinary renewal process \(N_1(t) \) is generated by the sequence \(\{Y_k, k \geq 1\} \).

Both of the following relations are immediate consequences of Lemma 2.5: for any \(p > 0, \theta > 0 \),

\[
E N^P_1(t) = O(t^p), \quad C(p, \theta) := \sup_{t \geq 0} \{E N^P_1(t) I_{\{N_1(t) > (1 + \theta)E N_1(t)\}}\} < \infty.
\]

(5.16)

We will need these two relations in the following steps.

Now we continue to check Assumption 1.3 for the doubly stochastic process \(N(t) \). By (5.16), we can find some constant \(C > 0 \) such that, for all large \(t > 0 \),

\[
J_1 = E(E(N^P(t) I_{\{N(t) > (1 + \theta_1)\lambda^*(t)\}} I_{\{\Lambda(t) > (1 + \theta_2)\lambda^*(t)\}} | \Lambda(t)))
\]

\[
\leq E(E(N^P(t) I_{\{\Lambda(t) > (1 + \theta_2)\lambda^*(t)\}} | \Lambda(t)))
\]

\[
= E(I_{\{\Lambda(t) > (1 + \theta_2)\lambda^*(t)\}} E(N^P_1(\Lambda(t)) | \Lambda(t)))
\]

\[
\leq CE \lambda^P(t) I_{\{\Lambda(t) > (1 + \theta_2)\lambda^*(t)\}} = O(\lambda^P(t)),
\]

(5.17)

where, in the last step, we used the assumption (5.11) and the result (5.13). As for \(J_2 \), with \(\theta_3 = (1 + \theta_1)/(1 + \theta_2) - 1 > 0 \), we have

\[
J_2 = E(E(N^P(t) I_{\{N(t) > (1 + \theta_1)\lambda^*(t)\}} I_{\{\Lambda(t) \leq (1 + \theta_2)\lambda^*(t)\}} | \Lambda(t)))
\]

\[
\leq E(E(N^P(t) I_{\{N(t) > (1 + \theta_1)\lambda^*(t)\}} | \Lambda(t))).
\]
Similar to (5.12), we have
\[E(N^p(t) \mathbf{1}_{(N(t)>(1+\theta)\Lambda(t))} | \Lambda(t)) = E(N^p_1(x) \mathbf{1}_{(N_1(x)>(1+\theta)x)} | x=\Lambda(t)). \]

From this and the second relation in (5.16) we know that
\[\sup_{t \geq 0} J_2 < \infty. \] (5.18)

Substituting (5.17) and (5.18) into (5.15), we finally obtain that
\[E N^p(t) \mathbf{1}_{(N(t)>(1+\theta)\lambda(t))} \leq J_1 + J_2 = O(\lambda(t)). \]

This means that the doubly stochastic process \(N(t) \) satisfies Assumption 1.3.

We summarize this in the following proposition.

Proposition 5.2. Let \(\{X_k, k \geq 1\} \) be a sequence of i.i.d. nonnegative random variables with common distribution function \(F \in C \) and finite expectation \(\mu \), and let \(\{N(t), t \geq 0\} \) be a doubly stochastic process defined by (5.9) with \(\{\Lambda(t), t \geq 0\} \) satisfying (5.11). If the sequence \(\{X_k, k \geq 1\} \) and the process \(\{N(t), t \geq 0\} \) are mutually independent, then the random sum (5.10) satisfies the precise large deviations result: for any \(\gamma > 0 \),
\[P(S_2(t) - \mu_\lambda^*(t) > x) \sim \lambda_\lambda^*(t) \bar{F}(x) \] uniformly for \(x \geq \gamma \lambda^*(t) \).

Acknowledgements

The authors would like to express their gratitude to an anonymous referee for his/her constructive comments on the previous versions of this paper. The proof of Proposition 5.1 benefited considerably from the discussions of Rob Kaas with the second author. This research was conducted while the second and the third authors were visiting the Department of Statistics and Actuarial Science of the University of Hong Kong, and was supported by the Research Grants Council of HKSAR (project HKU 7139/01H), the Dutch Organization for Scientific Research (project NWO 42511013), the Ministry of Science and Technology of China (973 project on Mathematics) and the Knowledge Innovation Program of the Chinese Academy of Sciences.

References

Sums of random variables with consistently varying tails

