A note on max-sum equivalence

Jinzhu Lia,b, Qihe Tangb,∗

a School of Mathematical Science and LPMC, Nankai University, Tianjin 300071, PR China
b Department of Statistics and Actuarial Science, The University of Iowa, 241 Schaeffer Hall, Iowa City, IA 52242, USA

Article Info

Article history:
Received 1 April 2010
Received in revised form 15 July 2010
Accepted 21 July 2010
Available online 5 August 2010

MSC:
primary 60E05
secondary 62E20

Keywords:
Max-sum equivalence
Subexponentiality

Abstract

For finitely many independent real-valued random variables, if their maximum follows a subexponential distribution, then the tail probabilities of their sum and maximum are asymptotically equivalent.

© 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.spl.2010.07.015

1. Main result

Throughout this note, all limit relations hold as \(x \to \infty \) unless stated otherwise. The relation \(a(x) \sim b(x) \) means that the quotient of the two sides converges to 1. For a (cumulative) distribution function \(F \), write \(F_n = 1 - F \) as its decumulative distribution function.

Let \(X_1, \ldots, X_n \) be \(n \) independent real-valued random variables with distributions \(F_1, \ldots, F_n \), respectively. Denote by \(G_n \) the distribution of \(\max\{X_1, \ldots, X_n\} \) and by \(H_n \) the distribution of \(X_1 + \cdots + X_n \) (i.e. \(H_n = F_1 * \cdots * F_n \)). These random variables are said to be max-sum equivalent if \(H_n(x) \sim G_n(x) \). This is connected to the well-known principle of a single big jump in extreme value theory. See Embrechts and Goldie (1980), Cline (1986, 1987), Leslie (1989), and Geluk (2009) for interesting discussions on or related to max-sum equivalence.

The subexponential class, which is one of the most important classes of heavy-tailed distributions, naturally appears when studying max-sum equivalence. By definition, a distribution \(F \) on \([0, \infty)\) is subexponential, written as \(F \in \mathcal{S} \), if the relation

\[
F_n(x) \sim nF(x)
\]

holds for some (or, equivalently, for all) \(n = 2, 3, \ldots \), where \(F_n^{*} \) is the \(n \)-fold convolution of \(F \). More generally, a distribution \(F \) on \((-\infty, \infty)\) is still said to be subexponential if \(F(x)1_{(x>0)} \) is. In the latter case, relation (1) still holds.

Clearly, if the random variables \(X_1, \ldots, X_n \) are independent and identically distributed (i.i.d.) with common subexponential distribution, then they are max-sum equivalent. The goal of this note is to point out a sufficient condition for max-sum equivalence for the non-identical case.

∗ Corresponding author. Tel.: +1 319 335 0730; fax: +1 319 335 3017.
E-mail addresses: lijinzhunk@gmail.com (J. Li), qtang@stat.uiowa.edu (Q. Tang).

0167-7152/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.spl.2010.07.015
Theorem 1. Let X_1, \ldots, X_n be $n \geq 2$ independent real-valued random variables as given above. If $G_n \in \mathcal{S}$ then X_1, \ldots, X_n are max-sum equivalent, that is,

$$
\overline{H_n}(x) \sim \overline{G_n}(x) \sim \sum_{i=1}^{n} \overline{F_i}(x).
$$

The second relation in (2) automatically holds for distributions F_i with ultimate right tails. In addition, it is known that the class \mathcal{S} is closed under tail equivalence; see Theorem 3 of Teugels (1975) and Lemma A3.15 of Embrechts et al. (1997). Thus, the condition $G_n \in \mathcal{S}$ is easily verifiable in concrete cases.

2. Remarks

Other important classes of heavy-tailed distributions include the class \mathcal{L} of long-tailed distributions, characterized by the relation $\overline{F}(x-y) \sim \overline{F}(x)$ for all real y, and the class \mathcal{D} of distributions with dominatedly varying tails, characterized by the relation $\overline{F}(xy) = 0(\overline{F}(x))$ for all $0 < y < 1$. It is well known that

$$
\mathcal{L} \cap \mathcal{D} \subset \mathcal{S} \subset \mathcal{L}.
$$

See page 50 of Embrechts et al. (1997) for these inclusions for the case with F supported on $[0, \infty)$. It is easy to see that they are still valid for the general case with F supported on $(-\infty, \infty)$. Note that for the general case, relation (1) only does not imply $F \in \mathcal{S}$; see, e.g., page 19 of Borovkov and Borovkov (2008) for a simple counterexample. However, this implication holds if restricted to the scope of $F \in \mathcal{L}$.

Lemma 1 of Embrechts and Goldie (1980) shows that if $G_2 \in \mathcal{L}$ and $H_2 \in \mathcal{S}$ then $\overline{H_2}(x) \sim \overline{F_1}(x) + \overline{F_2}(x)$. This result does not cover, and is not covered by, our Theorem 1.

Theorem 2.1 of Cai and Tang (2004) shows that if $F_1 \in \mathcal{L} \cap \mathcal{D}$ and $F_2 \in \mathcal{L} \cap \mathcal{D}$ then $\overline{H_2}(x) \sim \overline{F_1}(x) + \overline{F_2}(x)$. This corresponds to a special case of our Theorem 1.

Another similar result is Theorem 3 of Geluk and de Vries (2006), showing that relation (2) holds if $F_i \ast F_j \in \mathcal{S}$ for all $i, j = 1, \ldots, n$. Actually, their condition implies $G_n \in \mathcal{S}$ and, hence, their result also corresponds to a special case of our Theorem 1. To see this, first notice that their condition implies $F_i \in \mathcal{S}$ for all $i = 1, \ldots, n$ because of the closure of \mathcal{S} under the convolution root (see Theorem 2 of Embrechts et al. 1979). Write $K = n^{-1} \sum_{i=1}^{n} F_i$. Clearly, $\overline{G_n}(x) \sim n\overline{K}(x)$. Thus, $G_n \in \mathcal{S}$ if and only if $K \in \mathcal{S}$. The latter can be verified as follows. First, $K \in \mathcal{L}$ is immediate. Second, we have

$$
\overline{K^{2+}}(x) = \frac{1}{n^2} \left(\sum_{i=1}^{n} \overline{F_i^{2+}}(x) + 2 \sum_{1 \leq j < k \leq n} \overline{F_j F_k}(x) \right)
$$

$$
\sim \frac{2}{n^2} \left(\sum_{i=1}^{n} \overline{F_i}(x) + \sum_{1 \leq j < k \leq n} (\overline{F_j}(x) + \overline{F_k}(x)) \right)
$$

$$
= 2 \overline{\overline{K}}(x),
$$

where in the second step we used Theorem 2 of Embrechts and Goldie (1980).

3. Proof of Theorem 1

The following lemma will be used in the proof of Theorem 1:

Lemma 1. Let Y_1, \ldots, Y_n be $n \geq 2$ i.i.d. real-valued random variables with common distribution $G \in \mathcal{S}$. Then

$$
\lim_{c \to \infty} \lim_{x \to \infty} \frac{\Pr \left(\sum_{i=1}^{n} Y_i > x, Y_1 > c, Y_2 > c \right)}{\bar{G}(x)} = 0.
$$

Proof. For every $x \geq 0$ and $c \geq 0$, write

$$
\Pr \left(\sum_{i=1}^{n} Y_i > x, Y_1 > c, Y_2 > c \right) = \Pr \left(\sum_{i=1}^{n} Y_i > x \right) - 2 \Pr \left(\sum_{i=1}^{n} Y_i > x, Y_1 \leq c \right)
$$

$$
+ \Pr \left(\sum_{i=1}^{n} Y_i > x, Y_1 \leq c, Y_2 \leq c \right) = I_1(x) - 2I_2(x, c) + I_3(x, c).
$$

By the definition of subexponentiality, $I_1(x) \sim n\overline{G}(x)$. Furthermore,
where in the last step we used $G \in \mathcal{L}$ and the dominated convergence theorem. Similarly,

$$I_3(x, c) = \int_0^c \int_0^c \Pr \left(\sum_{i=1}^{n-2} Y_i > x - y_1 - y_2 \right) G(dy_1) G(dy_2)$$

$$\sim (n-2)G(c)^2 \bar{G}(x),$$

which is understood as $I_3(x, c) = o(\bar{G}(x))$ in the case $n = 2$. Plugging these estimates into (3) yields the desired result. \square

Proof of Theorem 1. We only need to prove the first relation in (2). For every $x \geq 0$ and $0 \leq c \leq x/n$,

$$\bar{H}_n(x) = \Pr \left(\sum_{i=1}^{n} X_i > x, \bigcup_{j=1}^{n} (X_j > c) \right).$$

According to whether or not there is exactly only one $(X_j > c)$ occurring in the union, we split the probability on the right-hand side into two parts as

$$\bar{H}_n(x) = J_1(x, c) + J_2(x, c).$$

First we deal with $J_1(x, c)$. On the one hand, by $G_n \in \mathcal{L}$,

$$J_1(x, c) = \sum_{j=1}^{n} \Pr \left(\sum_{i=1}^{n} X_i > x, X_j > c, \bigcap_{k=1, k \neq j}^{n} (X_k \leq c) \right)$$

$$\leq \sum_{j=1}^{n} \bar{F}_j(x - (n-1)c)$$

$$\sim \frac{G_n(x)}{\bar{G}_n(x)}.$$

On the other hand, for arbitrarily fixed $d > 0$,

$$J_1(x, c) \geq \sum_{j=1}^{n} \Pr \left(\sum_{i=1}^{n} X_i > x, X_j > c, \bigcap_{k=1, k \neq j}^{n} (-d < X_k \leq c) \right)$$

$$\geq \sum_{j=1}^{n} \Pr \left(X_j > x + (n-1)d, \bigcap_{k=1, k \neq j}^{n} (-d < X_k \leq c) \right)$$

$$\geq \prod_{k=1}^{n} \Pr(-d < X_k \leq c) \sum_{j=1}^{n} \bar{F}_j(x + (n-1)d)$$

$$\sim \prod_{k=1}^{n} \Pr(-d < X_k \leq c) \bar{G}_n(x),$$

where in the last step we used $G_n \in \mathcal{L}$ again. By the arbitrariness of d, it follows that

$$\prod_{k=1}^{n} F_k(c) \leq \liminf_{x \to \infty} \frac{j_1(x, c)}{G_n(x)} \leq \limsup_{x \to \infty} \frac{j_1(x, c)}{G_n(x)} \leq 1. \quad (5)$$

Next we turn to $J_2(x, c)$. Introduce $Y = \max\{X_1, \ldots, X_n\}$, which is distributed by $G_n \in \mathcal{L}$, and let Y_1, \ldots, Y_n be i.i.d. copies of Y. Clearly,

$$J_2(x, c) = \Pr \left(\sum_{i=1}^{n} X_i > x, \bigcup_{1 \leq j < k \leq n} (X_j > c, X_k > c) \right)$$

$$\leq \sum_{1 \leq j < k \leq n} \Pr \left(\sum_{i=1}^{n} Y_i > x, Y_j > c, Y_k > c \right).$$
Thus, by Lemma 1,

$$\limsup_{c \to \infty} \limsup_{x \to \infty} \frac{J_2(x, c)}{G_n(x)} = 0.$$ \hspace{1cm} (6)

A simple combination of (4)–(6) gives the desired result. \hfill \Box

Acknowledgement

The authors are grateful to the referee for his/her useful comments.

References

