Losses Given Default in the Presence of Extreme Risks

Qihe Tang[a] and Zhongyi Yuan[b]

[a] Department of Statistics and Actuarial Science
University of Iowa

[b] Smeal College of Business
Pennsylvania State University

The 19th International Congress on Insurance: Mathematics and Economics (IME), University of Liverpool, June 24–26, 2015
1. Modeling Losses Given Default
 - A Classical Model
 - A New Model

2. Multivariate Regular Variation
 - Motivating Discussions
 - Definition
 - On the Limit Measure

3. The Main Result
 - Our Goal
 - A Heuristic Consideration
 - Approximating the Distribution of LGD
 - Numerical Studies

4. Concluding Remarks
Outline

1. Modeling Losses Given Default
 - A Classical Model
 - A New Model

2. Multivariate Regular Variation
 - Motivating Discussions
 - Definition
 - On the Limit Measure

3. The Main Result
 - Our Goal
 - A Heuristic Consideration
 - Approximating the Distribution of LGD
 - Numerical Studies

4. Concluding Remarks
A Classical Model for LGD

Consider a portfolio of d obligors subject to default (loans, bonds and other financial instruments).

Classical model for the LGD:

$$L = \sum_{i=1}^{d} e_i \delta_i \mathbf{1}(X_i > F_i(1-p))$$ (1)

- e_i: positive deterministic exposure
- $\delta_i \in (0, 1)$: percentage loss
- X_i: loss variable of obligor i
- $p \in (0, 1)$: exogenously given default probability
- $F_1(1-p), \ldots, F_d(1-p)$: individual default thresholds
A Classical Model for LGD

Consider a portfolio of \(d \) obligors subject to default (loans, bonds and other financial instruments).

Classical model for the LGD:

\[
L = \sum_{i=1}^{d} e_i \delta_i \mathbf{1}(X_i > F_i(1-p))
\]

- \(e_i \): positive deterministic exposure
- \(\delta_i \in (0, 1) \): percentage loss
- \(X_i \): loss variable of obligor \(i \)
- \(p \in (0, 1) \): exogenously given default probability
- \(F_1(1-p), \ldots, F_d(1-p) \): individual default thresholds

This threshold model descends from Merton’s seminal firm-value work (Merton (1974, JF)).
The constant percentage loss *ignores* the severity of default.
To remedy this, we introduce

- severity of default: the percentage by which the loss variable exceeds the default threshold, that is,

\[S_i = \left(\frac{X_i}{a_i} - 1 \right)_+ \]

- loss settlement function: a loss function \(G_i \) that is non-decreasing with \(G_i(s) = 0 \) for \(s \leq 0 \) and \(G(\infty) = 1 \)
Similar ideas of introducing a loss settlement function:

\[G(y) = \left(1 - e^{-\mu - \sigma y}\right)^+ \]
Similar ideas of introducing a loss settlement function:

- Pykhtin (2003, *RISK*) and Tasche (2004, *Working Paper*) employed such a loss settlement function and even suggested the following specific form:

\[G(y) = (1 - e^{-\mu - \sigma y})_+ . \]
Similar ideas of introducing a loss settlement function:

- Pykhtin (2003, *RISK*) and Tasche (2004, *Working Paper*) employed such a loss settlement function and even suggested the following specific form:

 \[G(y) = (1 - e^{-\mu - \sigma y})_+ . \]

- Schuermann (2004, *Credit Risk: Models and Management*) illustrated that the distribution of the recovery rate, and hence the loss function, contains two modes.
Our new model for the LGD:

\[L(p) = \sum_{i=1}^{d} e_i G_i \left(\frac{X_i}{F_i^{-}(1-p)} - 1 \right), \quad (2) \]

where the exposures are scaled such that

\[\sum_{i=1}^{d} e_i = 1. \]

Compare this new model (2) with the classical model (1).
1. Modeling Losses Given Default
 - A Classical Model
 - A New Model

2. Multivariate Regular Variation
 - Motivating Discussions
 - Definition
 - On the Limit Measure

3. The Main Result
 - Our Goal
 - A Heuristic Consideration
 - Approximating the Distribution of LGD
 - Numerical Studies

4. Concluding Remarks
Motivating Discussions

The prevalence of rare events nowadays intensifies the urgent need for quantitatively understanding and effectively managing extreme risks in the insurance and financial industry.
Motivating Discussions

The prevalence of rare events nowadays intensifies the urgent need for quantitatively understanding and effectively managing extreme risks in the insurance and financial industry.

The challenges arise from both modeling the enormous sizes of the losses and capturing their extreme dependence.
The prevalence of rare events nowadays intensifies the urgent need for quantitatively understanding and effectively managing extreme risks in the insurance and financial industry.

The challenges arise from both modeling the enormous sizes of the losses and capturing their extreme dependence.

It turns out that both challenges may be dealt with in a unified framework called multivariate regular variation.
Definition

A random vector $\mathbf{X} = (X_1, \ldots, X_d)$ is said to have an MRV structure if there exists a non-degenerate limit measure ν such that, for some distribution function F and every ν-continuous set $A \subset [0, \infty)^d$ away from 0,

$$
\lim_{x \to \infty} \frac{1}{F(x)} \Pr (\mathbf{X} \in xA) = \nu (A).
$$
Multivariate Regular Variation

Definition

A random vector \(\mathbf{X} = (X_1, \ldots, X_d) \) is said to have an MRV structure if there exists a non-degenerate limit measure \(\nu \) such that, for some distribution function \(F \) and every \(\nu \)-continuous set \(A \subset [0, \infty)^d \) away from 0,

\[
\lim_{x \to \infty} \frac{1}{F(x)} \Pr(\mathbf{X} \in xA) = \nu(A).
\]

References:

- de Haan and Ferreira (2006, *Extreme Value Theory*)
- Resnick (2007, *Heavy-Tail Phenomena*)
Definition

A random vector $\mathbf{X} = (X_1, \ldots, X_d)$ is said to have an MRV structure if there exists a non-degenerate limit measure ν such that, for some distribution function F and every ν-continuous set $A \subset [0, \infty)^d$ away from 0,

$$\lim_{x \to \infty} \frac{1}{F(x)} \Pr (\mathbf{X} \in xA) = \nu (A).$$

References:

- de Haan and Ferreira (2006, *Extreme Value Theory*)
- Resnick (2007, *Heavy-Tail Phenomena*)

T. and Yuan (2013, *NAAJ*) showed various commonly-used examples including:

- linear combinations
- mixtures
- Archimedean copulas
The definition implies that the limit measure ν is **homogeneous**: for some index $\alpha \geq 0$,

$$\nu(tB) = t^{-\alpha} \nu(B) \quad \text{for all } B \in \mathcal{B}.$$

Hence, we write $X \in \text{MRV}_{-\alpha}$.
The limit measure ν carries all asymptotic dependence information of X in the upper-right tail:

$$\lim_{x \to \infty} \frac{1}{F(x)} \Pr \left(\bigcap_{i=1}^{d} (X_i > x) \right) = \nu(1, \infty).$$

Asymptotic dependence: $\nu(1, \infty) > 0$ means that X exhibits large joint movements. If ν is concentrated on a straight line, then the components of X are asymptotically fully dependent, of which comonotonicity is a special case.

Asymptotic independence: If $\nu(1, \infty) = 0$, then X does not exhibit large joint movements.
The limit measure ν carries all asymptotic dependence information of \mathbf{X} in the upper-right tail:

$$\lim_{x \to \infty} \frac{1}{F(x)} \Pr \left(\bigcap_{i=1}^{d} (X_i > x) \right) = \nu(1, \infty).$$

Asymptotic dependence:

- $\nu(1, \infty) > 0$ means that \mathbf{X} exhibits large joint movements.
- If ν is concentrated on a straight line, then the components of \mathbf{X} are asymptotically fully dependent, of which comonotonicity is a special case.
On the Limit Measure - Tail Dependence

The limit measure ν carries all asymptotic dependence information of X in the upper-right tail:

$$\lim_{x \to \infty} \frac{1}{F(x)} \Pr \left(\bigcap_{i=1}^{d} (X_i > x) \right) = \nu (1, \infty).$$

Asymptotic dependence:

- $\nu (1, \infty] > 0$ means that X exhibits large joint movements.
- If ν is concentrated on a straight line, then the components of X are asymptotically fully dependent, of which comonotonicity is a special case.

Asymptotic independence:

- If $\nu (1, \infty] = 0$, then X does not exhibit large joint movements.
Outline

1. Modeling Losses Given Default
 - A Classical Model
 - A New Model

2. Multivariate Regular Variation
 - Motivating Discussions
 - Definition
 - On the Limit Measure

3. The Main Result
 - Our Goal
 - A Heuristic Consideration
 - Approximating the Distribution of LGD
 - Numerical Studies

4. Concluding Remarks
Recall the LGD given in (2):

\[L(p) = \sum_{i=1}^{d} e_i G_i \left(\frac{X_i}{F_i^{-1}(1-p)} - 1 \right). \]

We study \(\Pr(L(p) > l) \) as \(p \downarrow 0 \) for arbitrarily fixed \(l \in (0, 1) \).
Our Goal

Recall the LGD given in (2):

\[L(p) = \sum_{i=1}^{d} e_i G_i \left(\frac{X_i}{F_i^{-}(1-p)} - 1 \right). \]

We study \(\Pr(L(p) > l) \) as \(p \downarrow 0 \) for arbitrarily fixed \(l \in (0, 1) \).

- The default probability \(p \) being small means that the portfolio consists of assets of good credit quality.
- The extreme scenario \(p \downarrow 0 \) reflects the excessive prudence in regulation guidelines for investors.
- Certain frameworks, such as the Prudent Person Investment Principles (PPIP) required by EU Solvency II, require the investor to act prudently.
- However, the consideration of small \(p \) may cause standard simulation procedures to break down.
Intuitively, for $L(p) > l$ to happen, at least one of the obligors needs to experience a loss over its threshold, which has probability p.

Depending on the value of l, it may require multiple obligors to default, which under asymptotically dependent still has a probability of order p.

Thus, for the asymptotically dependent case, we expect that as $p \downarrow 0$ the probability $\Pr(L(p) > l)$ decays to 0 at rate p.
An Exploratory Numerical Study

- $d = 5$ obligors
- each loss X_i distributed by Pareto(α_i, θ_i)
- X possesses a Gumbel copula

$$C(u) = \exp \left\{ - \left(\sum_{i=1}^{5} (-\ln u_i)^r \right)^{1/r} \right\}$$

- each G_i specified to be a uniform distribution over $(0, y_G)$
- $\alpha = 2$, $\theta_i = i$, and $r = 5$
- p ranges from 0.001 to 0.05
- $l = 0.3$
- $N = 10^6$ simulations
Figure: The decaying rate of the estimated probability $\Pr(L(p) > l)$ as p approaches 0 (with $y_G = 3$ in (a) and $y_G = 10$ and (b)).
Approximating the Distribution of LGD

Theorem (T. and Yuan (2015, working))

Assume that $X \in \text{MRV}_{-\alpha}$ with limit measure ν, and that all the components of X are comparable in the sense that, for some $c_i > 0$,

$$\lim_{x \to \infty} \frac{F_i(x)}{F(x)} = c_i.$$

Then it holds for every $l \in (0, 1)$ that

$$\lim_{p \downarrow 0} \frac{\Pr (L(p) > l)}{p} = \nu \left(c^{1/\alpha} B_l \right),$$

where $B_l = \left\{ y \in [0, \infty]^d : \sum_{i=1}^d e_i G_i (y_i - 1) > l \right\}$.
To numerically check the accuracy of the asymptotic approximation provided by relation (3), we follow the modeling specifications before:

- $\alpha = 1$
- $r = 5$
- $\gamma_G = 2$
- ...
Example 1a: \(d = 3, \ l = 0.1, \ N = 10^5 \)
Example 1b: $d = 3, l = 0.1, N = 10^6$
Example 2a: $d = 3$, $l = 0.3$, $N = 10^5$
Example 2b: $d = 3, I = 0.3, N = 10^6$
Example 3a: $d = 3, \ l = 0.5, \ N = 10^5$
Example 3b: $d = 3$, $l = 0.5$, $N = 10^6$

Asymptotic approximation / empirical estimation

Qihe Tang (University of Iowa)
Losses Given Default with Extreme Risks
June 24, 2015 26 / 31
Example 4a: $d = 5$, $l = 0.1$, $N = 10^6$
Example 4b: \(d = 5, \ l = 0.3, \ N = 10^6 \)
Example 4c: $d = 5$, $l = 0.5$, $N = 10^6$
Outline

1. Modeling Losses Given Default
 - A Classical Model
 - A New Model

2. Multivariate Regular Variation
 - Motivating Discussions
 - Definition
 - On the Limit Measure

3. The Main Result
 - Our Goal
 - A Heuristic Consideration
 - Approximating the Distribution of LGD
 - Numerical Studies

4. Concluding Remarks
Concluding Remarks

- We proposed a new static model for the LGD which reflects the severity of default.

- We studied the limit distribution of the LGD as the default probability becomes small (meaning that the portfolio consists of assets of good credit quality).

- In the studies we applied the sophisticated concept of MRV from EVT.

- Our numerical studies show that the approximation for the distribution of the LGD is accurate at least for small portfolios.
Concluding Remarks

- We proposed a new static model for the LGD which reflects the severity of default.

- We studied the limit distribution of the LGD as the default probability becomes small (meaning that the portfolio consists of assets of good credit quality).

- In the studies we applied the sophisticated concept of MRV from EVT.

- Our numerical studies show that the approximation for the distribution of the LGD is accurate at least for small portfolios.

Thank You for Your Attention!!