
8.1 Sampling distributions

- Distribution of the sample mean X
 (We will discuss now)
- Distribution of the sample proportion *p*̂
 (We will discuss later)

н., на село на

2 J.

- But won't my conclusion about the population depend on the specific sample chosen? (sample-to-sample variability leads to sampling variability).
- Yes, but if we've chosen a sample appropriately (randomly, for example), we can STILL make a statement about the population, with a certain Margin Of Error (MOE).

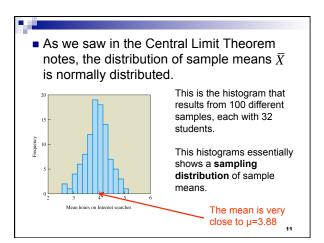
Population Sample

Population Parameter	Sample Statistic
Population mean µ	Sample mean \overline{X}
The mean house value for all houses in Iowa	The mean house value for a sample of n=200 houses in lowa
Population proportion p	Sample proportion \hat{p}
The proportion of all houses in lowa with lead paint.	The proportion of Iowa houses in a sample of n=200 with lead paint.

Sample-to-sample variability

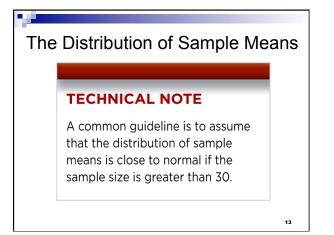
- The sampling error is the error introduced because a random sample is used to estimate a population parameter.
- We saw sample-to-sample variability when we explored the on-line applet called 'Sampling distribution of \overline{X} ' in the CLT notes.
- Sampling error does not include other sources of error, such as those due to biased sampling, bad survey questions, or recording mistakes.

Example: sample-to-sample variability


- Let's say we truly do know the information for all individuals in a specific population (not usually the case), just to show what we mean by the phrase 'sampling error'.
- Every student in a population of 400 students was asked how many hours they spend per week using a search engine on the Internet.

7

• V	We actually know µ in this case because																		
								•										•	
v	ve	ha	ave	е а	I C	en	su	IS.	ar	٦đ	u=	=3	.88	3					
	-				-	-		-,	-			-							
3.4	6.8	6.7	3.4	0.0	5.0	5.4	1.8	0.7	1.6	2.1	3.5	3.4	6.4	7.2	1.8	7.4	3.0	4.0	5.2
1.2	7.8	7.0	0.4	7.2	4.8	3.6	8.0	5.4	6.4	3.5	5.3	4.7	5.4	5.6	3.8	0.1	2.4	0.5	4.0
4.5	8.0	4.2	1.0	6.2	7.1	3.8	0.7	5.5	1.7	2.6	1.6	0.7	1.3	6.5	2.4	3.0	0.3	2.2	0.4
1.9	5.0	2.0	5.3	7.5	5.0	0.3	7.4	6.0	4.3	1.3	0.8	7.2	6.6	0.2	3.4	1.6	2.2	3.0	4.5
5.5	5.3	6.5	0.1	0.3	4.2	2.2	6.2	7.3	3.1	5.4	1.3	6.3	4.5	7.1	5.8	6.1	0.5	0.4	4.1
7.0	6.0	1.1	0.8	1.4	2.9	7.3	0.8	2.7	0.6	3.0	0.7	2.8	6.5	1.9	3.6	1.6	2.6	2.6	6.6
6.8	6.1	3.6	1.4	7.7	5.2	3.8	6.0	2.2	7.5	6.7	4.4	4.1	7.3	5.2	5.7	6.7	2.4	0.6	6.7
1.0	2.3	0.7	1.2	4.5	3.3	4.2	2.1	5.9	3.0	7.2	7.9	2.5	7.1	8.0	6.7	4.1	4.9	0.0	3.1
6.0	0.5	4.2	2.7	0.1	1.4	2.1	2.5	3.9	5.8	5.9	2.7	2.8	3.7	7.3	0.7	6.9	4.4	0.7	1.6
3.1	2.1	7.4	3.6	6.5	2.9	5.4	3.9	3.0	0.8	0.3	0.8	3.3	0.8	8.0	5.6	7.1	1.3	0.2	5.2
7.8	4.7	7.2	0.9	5.1	0.9	1.7	1.2	0.4	6.9	0.6	3.0	3.6	6.1	1.6	6.0	3.8	0.4	1.1	4.0
3.8	4.0	1.8	0.9	1.1	3.9	1.7	1.7	2.6	0.1	4.0	1.4	1.9	0.9	0.2	4.2	4.7	0.2	5.3	2.2
5.8	7.5	5.8	5.2	3.9	3.4	7.3	4.1	0.5	7.9	7.7	7.7	5.0	2.3	7.8	2.3	5.6	6.5	7.9	5.0
2.0	5.5	5.4	6.6	6.7	4.4	7.2	2.5	4.9	7.0	2.1	7.2	4.1	1.2	6.2	3.3	6.3	2.3	4.9	2.2
6.4	7.2	0.1	5.3	3.0	0.7	1.5	1.2	1.1	7.4	5.1	7.2	7.2	3.0	7.1	4.5	6.7	7.2	7.2	0.9
2.9	4.3	2.5	0.7	7.6	3.9	0.7	5.8	6.6	3.4	0.3	6.5	7.5	0.7	6.1	6.1	4.8	1.9	1.9	5.0
1.1	7.8	6.8	4.9	3.0	6.5	5.2	2.2	5.1	3.4	4.7	7.0	3.8	5.7	6.8	1.2	1.7	6.5	0.1	4.3
6.3	1.2	0.8	0.7	0.6	7.0	4.0	6.6	6.9	0.5	4.3	1.0	0.5	3.1	0.9	2.3	5.7	6.7	7.3	0.5
0.3	0.9	2.4	2.5	7.8	5.6	3.2	0.7	5.4	0.0	5.7	0.3	7.2	5.1	2.5	3.2	3.1	2.8	5.0	5.6
3.1	0.7	0.5	3.9	2.6	7.3	1.4	1.2	7.1	5.5	3.1	5.0	0.8	6.5	1.7	2.1	7.3	4.0	2.2	5.6
			A II	10	0 v	مايد	~~	Τŀ	Nic	ic t	ho	f11	n 0	nul	otic	_ _			8
				40		aiu	5 3.		115	่อเ	ne.	iuli	μu	pui	all	ווע.			


W	e'll	tak	e a	sa	mp	le o	f n=	=32	stu	Jde	nts.
Sa	mpl	e 1									
	7.8 5.7 2.1		4.9 2.7 0.3		1.4	7.1	2.2 5.5 7.8				7.0 6.5
The stand								,		e the	e
We s from calle	a sa	mpl	e of	the e	entire						omes is

 We'll take another sample of n=32 students. 												
Sample 2												
	5.7	4.0 6.5 3.1	1.2	5.4	5.7	7.2						
The m	The mean of this sample is \overline{x} = 3.98.											
each	Now you have two sample means that don't agree with each other, and neither one agrees with the true population mean.											
$\bar{x}_1 = 4.17$ $\bar{x}_2 = 3.98$												
μ	1 = 3	.88										10

The Distribution of Sample Means

- The distribution of sample means is the distribution that results when we find the means of *all* possible samples of a given size n.
- Technically, this distribution is approximately normal, and the larger the sample size, the closer to normal it is.

The Distribution of Sample Means

As we saw earlier...

□ The mean of the distribution of sample means is equal to the population mean.

$$\mu_{\overline{x}} = \mu$$

□ The standard deviation of the distribution of sample means depends on the population standard deviation and the sample size.

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

The search-engine time example:

For a sample of size n=32,

$$\bar{X} \sim N(\mu_{\bar{x}} = 3.88, \sigma_{\bar{x}} = \frac{2.4}{\sqrt{32}})$$

We can use this distribution to compute probabilities regarding values of \bar{X} , which is the average time spent on a search-engine for a sample of size n=32.

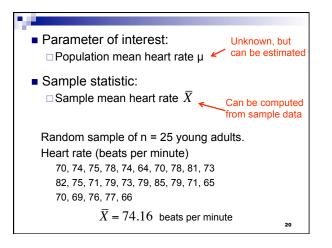
Exercise 1: Sampling farms

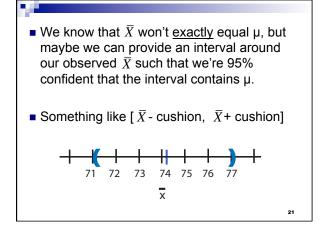
- Texas has roughly 225,000 farms. The actual mean farm size is μ = 582 acres and the standard deviation is σ = 150 acres.
 - A) For random samples of n = 100 farms, find the mean and standard deviation of the distribution of sample means.

16

Exercise 1: Sampling farms

□ B) What is the probability of selecting a random sample of 100 farms with a mean greater than 600 acres?


17


8.2 Estimating Population Means

- We use the sample mean \overline{X} as our estimate of the population mean μ .
- We should report some kind of 'confidence' about our estimate. Do we think it's pretty accurate? Or not so accurate.
- What sample size *n* do we need for a given level of **confidence** about our estimate.
 Larger n coincides with better estimate.

Example: Mean heart rate in young adults

- We wish to make a statement about the mean heart rate in all young adults. We randomly sample 25 young adults and record each person's heart rate.
 - Population: all young adults
 Sample: the 25 young adults chosen for the study

 We could report an interval like (72.0, 76.3) and say we're 95% sure the true population mean µ lies in this interval.

- How do we choose an appropriate 'cushion'? (or margin of error (MOE))
- How do we decide how 'likely' it is that the population mean µ falls into this interval?

22

95% Confidence Interval (CI) for a Population Mean μ

- The interval we have been describing is called a <u>confidence interval</u>.
- There a specific formula for computing the margin of error (MOE) in a CI and it is based on the fact that X
 is normally distributed.

23

24

When we make a confidence interval, we're not 100% sure that it contains the unknown value of the parameter of interest, i.e. μ,

 ⁴
 ⁵
 ⁶
 ⁷
 ⁸
 ⁹
 ¹⁰
 ¹¹
 ¹¹
 ¹²
 ¹¹
 ¹¹
 ¹²
 ¹¹
 ¹¹
 ¹²
 ¹¹
 ¹¹
 ¹¹
 ¹²
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹²
 ¹¹
 ¹

val will allow us to place a confidence level of parameter containment with our interval.

95% Confidence Interval (CI) for a Population Mean μ

The margin of error (MOE) for the 95% CI for µis

$$MOE = E \approx \frac{2s}{\sqrt{n}}$$

where *s* is the standard deviation of the sample (see slide 29), which is the estimate for the population standard deviation σ .

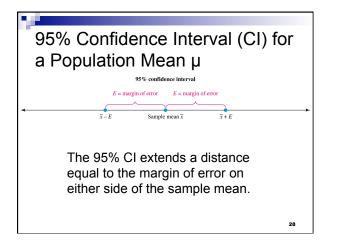
25

95% Confidence Interval (CI) for a Population Mean μ

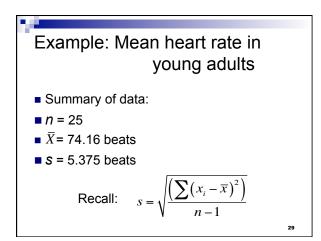
We find the 95% confidence interval by adding and subtracting the MOE from the sample mean X̄. That is, the 95% confidence interval ranges

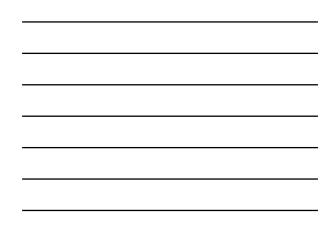
from (\overline{X} – margin of error) to (\overline{X} + margin of error).

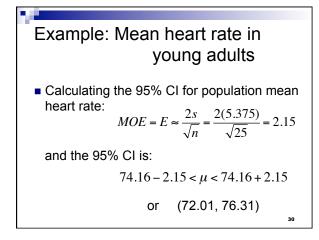
95% Confidence Interval (CI) for a Population Mean μ


 We can write this confidence interval more formally as

$$\overline{X} - E < \mu < \overline{X} + E$$


Or more briefly as


$$\overline{X} \pm E$$


27

Interpretation of the 95% Confidence Interval (CI) for a Population Mean μ

- We are 95% confident that this interval contains the true parameter value µ.
 - □ Note that a 95% CI **always** contains \overline{X} . In fact, it's right at the center of every 95% CI.
 - □ I might've missed the μ with this interval, but at least l've set it up so that's not very likely.

Interpretation of the 95% Confidence Interval (CI) for a Population Mean μ

- If I was to repeat this process 100 times (i.e. take a new sample, compute the CI, do again, etc.), then on average, 95 of those confidence intervals I created will contain µ.
 - See applet linked at our website: <u>http://statweb.calpoly.edu/chance/applets/</u> ConfSim/ConfSim.html