8.1 Sampling distributions

- What we've already covered from 8.1... □ Distribution of the sample mean *X̄*
- What we're covering now in 8.1...
 Distribution of the sample proportion p̂

Estimating the population proportion p using the sample proportion \hat{p}

 Recall, we often want to make a statement about the population based on a random sample taken from a population of interest.

2

Population Sample

Population Parameter	Sample Statistic
Population mean µ	Sample mean \overline{X}
The mean house value for all houses in Iowa	The mean house value for a sample of n=200 houses in Iowa
Population proportion p	Sample proportion \hat{p}
The proportion of all houses in Iowa with lead paint.	The proportion of Iowa houses in a sample of n=200 with lead paint.
↑ Unknown, but estimated from —	▲ Calculated from sample

Population proportion *p*

- The parameter of interest when each subject (or observation) expresses one of two things...
 - \Box In favor of proposition? Yes or no.
 - □ Alive at age 100? Yes or no.
 - □ Piece of candy: Orange or Not orange?

Population proportion p Population The population proportion p of all university of lowa students who have exactly one sibling. Sample of 100 lowa students

The proportion of the sample who have

exactly one sibling.

 $\hat{p} = \frac{100}{100}$

5

Sample-to-sample variability

а.

 All the general concepts we learned about estimating μ using x̄ will apply when we

estimate p using the sample proportion \hat{p} .

• The **sampling error** is the error introduced because a random sample is used to estimate a population parameter... also applies to proportions.

What did we learn with \overline{X} ?

• Different samples will produce different sample proportions \hat{p} .

7

- There is variation from one sample proportion to the next.
- Can we model this variation?
 i.e. Does the p̂ statistic vary in a predictable way?

Exercise 1 (problem 8.1 #18):

- Suppose you know that the distribution of sample proportions of women employees is normal with a mean of p=0.42 and a standard deviation of 0.21. We take a sample and find the sample proportion $\hat{p} = 0.45$.
 - □ A) How many standard deviations is the sample proportion from the mean of the distribution of all sample proportions?

16

Exercise 1 (problem 8.1 #18):

- Suppose you know that the distribution of sample proportions of women employees is normal with a mean of p=0.42 and a standard deviation of 0.21. We take a sample and find the sample proportion $\hat{p} = 0.45$.
 - B) What is the probability that a second sample selected would have a proportion greater than 0.45?

18

• B)

Exercise 2:

2.4

Suppose the proportion of the population in favor of a new law is 0.60. If you take a sample of size n=500, what is the probability that your sample proportion is 0.55 or lower?

20

