


freedom for our example:

Term levels df
temp 3 3� 1 = 2
LOAD(temp) 5 (5� 1)⇥ 3 = 12
fabric 4 4� 1 = 3
temp ⇤ fabric 3, 4 (3� 1)⇥ (4� 1) = 6
fabric ⇤ LOAD(temp) 4, 5, 3 (4� 1)⇥ (5� 1)⇥ 3 = 36

Note that these sum to 59, which is equal to N � 1; thus, all
degrees of freedom are accounted for.

You may follow the textbook’s convention of showing de-
grees of freedom as subscripts in the diagram:

temp3
2

|
5
4LOAD15

12

⇥ fabric4
3

The d.f. for an interaction is the product of the d.f. for the main
effects it comprises. In the diagram, note that both right-hand
scripts on LOAD can be obtained my multiplying the left scripts
by the right superscript (in this case, 3) of the factor above. This
will always be true.

4 Expected mean squares

Unrestricted case only We give rules only for the “un-
restricted model”—and that is the only case we will use
in this course. In reality, both the restricted and unre-
stricted “models” are different parameterizations of the
same model; so there is really little value in doing both.

As in the textbook, every model term t that consists
entirely of fixed effects has a corresponding fixed varia-
tion Q(t) that is equal to the sum of the squares of all
its effect values (including repeats), divided by the de-
grees of freedom for t. Every other term involves at least
one random factor, and there is a corresponding variance
component s2

t

for the variance of those effects.
If the degrees of freedom for the terms in the model

sum to less than N � 1, be sure to include a term for
RESIDUAL that accounts for these extra degrees of free-
dom.

You can obtain the expected mean squares in two
steps:

1. Find each term t’s “leading component”: If a fixed
effect, this is just Q(t); if it is a random effect, it
is s2

t

multiplied by the number of times each level
of that effect is repeated. (For terms that appear
in the diagram, the multiplier is N divided by the
right-hand superscript; for interactions, divide N

by each of the superscripts involved.)

2. For each term t, add the leading components of all
other random or mixed terms that contain every fac-
tor in t. (Note: RESIDUAL contains everything.)

Note that a Q() quantity can appear only as the leading
component of a fixed effect’s EMS.

Example 3 (Laundry) Here are the results of step 1, showing
only the leading components:

Source df EMS

temp 2 Q(t) + · · ·

LOAD(temp) 12 4s2
L(t) + · · ·

fabric 3 Q( f ) + · · ·

temp ⇤ fabric 6 Q(t f ) + · · ·

fabric ⇤ LOAD(temp) 36 s2
f L(t) + · · ·

The coefficient of s2
L(t) is 4 = 60/15 reflects the fact that there

are 4 observations in each load. Mechanically, the coefficient of
s2

f L(t) is 60/(4⇥ 15) = 1, reinforcing the point that this term
reflects individual observations: there is only one observation
at each combination of fabric and load within temperature.

To complete step 2, we simply add-in the leading compo-
nents of random effects that entirely contain the one in ques-
tion. For example, the terms containing temp are LOAD(temp),
temp*fabric, and fabric*LOAD(temp); however, temp*fabric is a
fixed effect, so only the first and third of these contributes to
the EMS for temp. The complete EMS table is

Source df EMS

temp 2 Q(t) + 4s2
L(t) + s2

LOAD(temp) 12 4s2
L(t) + s2

fabric 3 Q( f ) + s2

temp ⇤ fabric 6 Q(t f ) + s2

RESID = fabric*LOAD(temp) 36 s2

I got lazy and wrote s2 in place of s2
f L(t). Note that to improve

readability, it is advisable to add a new alignment point for
each new random effect, as shown. I also added a horizontal
rule to emphasize the distinction between the “between-load”
and “within-load” effects.

5 Means, comparisons, contrasts

To estimate a mean or some comparison or contrast
thereof, the main task is to figure out how to estimate the
variance of the quantity of interest. Then we can con-
struct CIs or tests using the usual normal-theory tech-
niques. For example, if q̂ is an estimator of some linear
function q of true model effects, and Var(q̂) = w, then a
(1� E) CI for q is q̂ ± tE/2,n

p
ŵ where ŵ is an estimate

of w having n d.f.
To understand how to do this, consider a formal

model for the Laundry example:

y

ijk

= µ + t
i

+ L
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ik
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where i, j, k are the subscripts for temp, LOAD, and fabric,
respectively. The ith temp mean is thus

ȳ

i•• = µ + t
i

+ L̄•(i) + f̄• + tf
i• + ē••(i)
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Only the random terms here contribute to the variance;
since (in the unrestricted model) the terms are indepen-
dent, it follows that

Var(ȳ

i••) = Var(L̄•(i)) + Var(ē••(i))

Now, for each i, L̄•(i) is the average of the 5 indepen-
dent LOAD effects for that temperature; so Var(L̄•(i)) =
s2

L(t)/5. Similarly, there are 20 independent f*L(t) effects
at each temperature, so Var(ē••(i)) = s2/20. It follows
that Var(ȳ

i••) = s2
L(t)/5 + s2/20. An unbiased estimate

of this quantity is MS

L(t)/20 (refer to the EMS table),
with 12 d.f.; and a 95% CI for µ

i•• is

ȳ

i•• ± t.025,12

q
MS

L(t)/20

Similarly, if we are computing a contrast of temperature
means

se(w({ȳ

i••})) =
q

(MS

L(t)/20) · Â w

2
i

In the special case of comparing two means, w includes
a 1, a �1, and the rest are zero, so that Â w

2
i

= 2 and this
standard error is

q
MS

L(t)/10.
The above approach can be used successfully to fig-

ure out variances for other means and contrasts, and in
other experiments. But here’s another notation that you
may find friendlier. First of all, we need only to keep
track of the random and mixed effects—LOAD(temp)
and fabric*LOAD(temp) in the laundry example. To save
writing, let’s call them just L(t) and f*L(t) from now on.
For a temp mean, the contributions of these effects can be
denoted

L•(t) and f•*L•(t)

to represent the dots in the subscripts of the formal
model. As before, we then observe that there are 5 loads
and 20 f*L(t) effects in each temp mean, so these are the
divisors for their respective variances.

In general, it is helpful to name every factor in the
residual error component (including REP for replica-
tions, if applicable). The dots tell us which superscripts
in the diagram (use the left ones in nested factors) to mul-
tiply together to obtain the divisor. For the temp means,
L•(t) gets a divisor of 5, the superscript for LOAD, and
f•*L•(t) gets a divisor of 4⇥ 5 = 20.

Let’s do the other means using this approach. For the
fabric means, the contributions of the random effects are

L•(t•) and f*L•(t•)

Each mean involves all 15 L(t) effects, and 15 f*L(t) ef-
fects; so the variance of a fabric mean is

Var(fabric mean) = (s2
L(t) + s2)/15

This must be estimated using a combination of mean
squares, and a Satterthwaite d.f. formula. An interest-
ing thing happens when we compare or contrast the

fabric means though: Given contrast coefficients w,
w({L•(t•)}) reduces to zero, because it is constant across
fabrics; thus, the variance of the contrast is simply

Var(w({fabric})) = (s2/15) · Â w

2
f

which can be estimated using (MS

E

/15) · Â
f

w

2
f

. These
results make sense intuitively: the variations among
dryer loads contribute to the uncertainty of estimating
fabric means. However, when comparing or contrasting
these means, these are within-LOAD contrasts and thus
the variations among loads don’t play a role.

Finally, consider the mean at each combination of
temp and fabric. The random quantities involved are

L•(t) and f*L•(t)

These means involve 5 loads and 5 f*L(t) effects; thus,

Var(temp*fabric mean) = (s2
L(t) + s2)/5

If we want to estimate a contrast of these cell means,
think of w = {w

t f

} as being doubly subscripted because
we need to keep track of temperature and fabric combi-
nations. The L•(t) effects are constant for all fabrics, so
what matters there are the marginal contrast coefficients
w

t+ = Â
f

w

t f

. The variance of the contrast is

Var(w({t*f})) =
s2

L(t)

5
· Â

t

w

2
t+ +

s2

5
· Â

t

Â
f

w

2
t f

Most commonly, we want to do pairwise comparisons
within a row or column of the table of cell means, so
that one w

t f

= 1, one w

t f

= �1, and the rest are zero.
Note that if the comparison is within a row (temp is held
fixed), the w

t+ values are all zero, whereas if it is within
a column (fabric is held fixed), we obtain a w

t+ = 1 and
another w

t+ = �1. Thus,

Var(t*f diff) =

8
<

:
2s2/5 same temp

2(s2
L(t) + s2)/5 otherwise

Referring to the EMS table, we can estimate the first
quantity using 2⇥ MS

E

/5, with 36 d.f. For comparisons
involving different temperatures,

dVar =
MS

L(t) + 3⇥ MS

E

10

d f =
(MS

L(t) + 3⇥ MS

E

)2

MS

2
L(t)

12
+

9⇥ MS

2
E

36

Again, these results make intuitive sense: compar-
isons at the same temperature are within-LOAD com-
parisons, whereas comparisons at different temperatures
are between-LOAD, and hence more variable.
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