Multiple-comparison and multiple-testing reference

Notations and abbreviations

 ν = d.f. for error for the comparison/contrast in question g = number of groups in the family k = span of current range K = number of comparisons or tests in family ξ = specified value of error rate 			CER comparisonwise error rate FER familywise [experimentwise] error rate		Exact Exact, under standard assumptions: normality, independence, homogeneity			
						FDR false discov	ery rate	
			SFER strong familywise error rate SCI simultaneous confidence		Multiply the standard error of a com- parison or contrast by the critical value to obtain a cutoff value for the comparison or contrast			
						c = specific	ieu value ol e.	
			Method	CONTROLS	Step- down	CRITICAL VALUE	Notes	
Bonferroni	SCI	no	Sig. level \mathcal{E}/K for each test	Table D.7 (for t tests). Somewhat conservative, but applicable to any multiple-testing situation				
HSD	SCI	no	$q_{\mathcal{E}}(g,\nu)/\sqrt{2}$	Table D.8. Exact method for testing all pairwise compar- isons when n s are equal. Approximate when n s unequal				
Scheffé	SCI	no	$\sqrt{(g-1)F_{\mathcal{E},g-1,\nu}}$	Exact method for exploring any and all possible con- trasts. As such, it is maximally conservative. No matter what procedure you use, you never need a critical value higher than this one.				
DSD	SCI	no	$d_{\mathcal{E}}(g-1,\nu)$	Table D.9. Limited family: control versus each treat- ment. There is also a one-sided version.				
REGWR	SFER	yes	$q_{\mathcal{E}^*}(k,\nu)/\sqrt{2}$	For $k = g, g - 1,$ Do not test sub-ranges unless enclosing range is significant. Use $\mathcal{E}^* = \mathcal{E}$ for $k = g$ or $g - 1$, else $\mathcal{E}^* = k\mathcal{E}/g$. Table D.8 is limited; use software				
Holm	SFER	yes	$p_{(j)} < \mathcal{E}/(K - j + 1)$ for all $j = 1, 2,, i$	Criterion for i th te ordered p values.	est where $p_{(1)} \le p_{(2)} \le \dots \le p_{(K)}$ are Perform tests in order $i = 1, 2, \dots, K$			
SNK	FDR	yes	$q_{\mathcal{E}}(k,\nu)/\sqrt{2}$	Table D.8. For $k = g, g - 1,$ Do not test sub-ranges unless enclosing range is significant. Exact method when <i>n</i> s are equal. Approximate when <i>n</i> s unequal				
Benjamini & Hochberg	FDR	yes	$p_{(j)} < j\mathcal{E}/K$ for some $j \ge i$	Criterion for <i>i</i> th test where $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(K)}$ are ordered <i>p</i> values. Perform tests in order $i = K, K - 1, \ldots$ Requires independent tests.				
Protected LSD	FER	no	$t_{\mathcal{E}/2,\nu}$	Perform all comparisons conditional on ANOVA F being significant at the \mathcal{E} level (Table D.5)				
LSD	CER	no	$t_{\mathcal{E}/2,\nu}$	Table D.3. This is j	just a standard <i>t</i> procedure			

Tables are in reference to: Oehlert, G.W. (2010). *A First Course in Design and Analysis of Experiments*, New York: W.H. Freeman and Company.