
Chapter 8 – continued

Chapter 8: Sampling distributions of estimators
Sections

8.1 Sampling distribution of a statistic
8.2 The Chi-square distributions
8.3 Joint Distribution of the sample mean and sample variance

Skip: p. 476 - 478
8.4 The t distributions

Skip: derivation of the pdf, p. 483 - 484

8.5 Confidence intervals
8.6 Bayesian Analysis of Samples from a Normal Distribution
8.7 Unbiased Estimators
8.8 Fisher Information
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Chapter 8 – continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Bayesian alternative to confidence intervals

Bayesian inference is the posterior distribution.
Reporting a whole distribution may not be what you (or your client)
want

For point estimates we use Bayesian estimators
Minimize the expected loss

If we want an interval to go with the point estimator we simply use
quantiles of the posterior distribution
For example: We can find constants c1 and c2 so that

P(c1 < θ < c1|X = x) ≥ γ

The interval (c1, c2) is called a 100γ% Credible interval for θ
Note: The interpretation is very different from interpretation of
confidence intervals
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Chapter 8 – continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Bayesian Analysis for the normal distribution

Let X1, . . . ,Xn be a random sample for N(µ, σ2)

In Chapter 7.3 we saw:
If σ2 is known, the normal distribution is a conjugate prior for µ
Theorem 7.3.3: If the prior is µ ∼ N(µ0, ν

2
0) the posterior of µ is

also normal with mean and variance

µ1 =
σ2µ0 + nν2

0xn

σ2 + nν2
0

and ν2
1 =

σ2ν2
0

σ2 + nν2
0

We can obtain credible intervals for µ from this N(µ1, ν
2
1) posterior

distribution
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Chapter 8 – continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Bayesian Analysis for the normal distribution

Let X1, . . . ,Xn be a random sample for N(µ, σ2)

In Chapter 7.3 we saw:
If µ is known, the Inverse-Gamma distribution is a conjugate prior
for σ2

Example 7.3.15: If the prior is σ2 ∼ IG(α0, β0) the posterior of σ2

is also Inverse-Gamma with parameters

α1 = α0 +
n
2

and β1 = β +
1
2

n∑
i=1

(xi − µ)2

We can obtain credible intervals for σ2 from this IG(α1, β1)
posterior distribution

What if both µ and σ2 are unknown?
We need the joint posterior distribution of µ and σ2
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Chapter 8 – continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Bayesian Analysis for the normal distribution
When both µ and σ2 are unknown

Def: Precision
The precision of a normal distribution is the reciprocal of the variance:

τ =
1
σ2

It is somewhat simpler to work with the precision than the variance
The pdf of the normal distribution is then written as

f (x |µ, τ) =
τ1/2
√

2π
exp

(
−1

2
τ(x − µ)2

)
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Chapter 8 – continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Normal-Gamma distribution

Def: Normal-Gamma distribution
Let µ and τ be random variables where µ|τ has the normal distribution
with mean µ and precision λ0τ and τ has the Gamma distribution:

µ|τ ∼ N(µ0,1/λ0τ) and τ ∼ Gamma(α0, β0)

Then the joint distribution of µ and τ is called the Normal-Gamma
distribution with parameters µ0, λ0, α0 and β0. The pdf for this
distribution is

f (µ, τ |µ0, λ0, α0, β0) =
(λ0τ)1/2
√

2π
exp

(
−1

2
λ0τ(µ− µ0)2

)
×

βα0
0

Γ(α0)
τα0−1 exp (−β0τ)
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Chapter 8 – continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Pdf of the Normal-Gamma distribution
µ0 = 0, λ0 = 1, α0 = 0.5 and β0 = 0.5
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Chapter 8 – continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Bayesian Analysis for the normal distribution
When both µ and σ2 are unknown

Theorem 8.6.1: Conjugate prior for µ and τ

Let X1, . . . ,Xn be a random sample from N(µ,1/τ). The
Normal-Gamma distribution with parameters µ0, λ0, α0 and β0 is a
conjugate prior distribution for (µ, τ) and the posterior distribution has
(hyper)parameters

µ1 =
λ0µ0 + nxn

λ0 + n
, λ1 = λ0 + n

α1 = α0 +
1
2

and β1 = β0 +
1
2

s2
n +

nλ0(xn − µ0)2

2(λ0 + n)

where

xn =
1
n

n∑
i=1

xi and s2
n =

n∑
i=1

(xi − xn)2
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Chapter 8 – continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Bayesian Analysis for the normal distribution

To give credible intervals for µ and σ2 individually we need the
marginal posterior distributions
From the structure of the Normal-Gamma distribution we
immediately get the marginal for τ :

τ |X = x ∼ Gamma(α1, β1)

This distribution can be used to obtain credible intervals for τ , or
any function of τ .
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Chapter 8 – continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Marginal distribution of the mean

Theorem 8.6.2: The marginal distribution of µ

Let the joint distribution of µ and τ be the Normal-Gamma distribution
with parameters µ0, λ0, α0 and β0. Then

U =

(
λ0α0

β0

)1/2

(µ− µ0) ∼ t2α0

It is then easy to show that (Theorem 8.6.3):

E(µ) = µ0 (if α0 > 1/2) and

Var(µ) =
β0

λ0(α0 − 1)
(if α0 > 1)
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Chapter 8 – continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Marginal distribution of the mean

Say we have done a Bayesian Analysis and end up with the
Normal-Gamma posterior with parameters µ1, λ1, α1 and β1.
We can then calculate the marginal posterior means of µ and τ

E(µ|x) = µ1 (if α1 > 1/2) and E(τ |x) =
α1

β1

Can also obtain credible intervals for µ
Find quantiles c1 and c2 such that P(c1 < U < c2) = γ

Then

P

(
µ1 + c1

(
β1

λ1α1

)1/2

≤ µ ≤ µ1 + c2

(
β1

λ1α1

)1/2
∣∣∣∣∣x
)

= γ

E.g: for a 0.95% symmetric credible interval we set
c1 = −T−1

2α1
(0.975) and c2 = T−1

2α1
(0.975)
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Chapter 8 – continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Example – Hotdogs (Exercise 8.5.7 in the book)

Data on calorie content in 20 different beef hot dogs from Consumer
Reports (June 1986 issue):

186,181,176,149,184,190,158,139,175,148,
152,111,141,153,190,157,131,149,135,132

Assume that these numbers are observed values from a random
sample of twenty independent N(µ, σ2) random variables, where µ and
σ2 are unknown.

xn = 156.85 and s2
n =

n∑
i=1

(xi − xn)2 = 9740.55

Consider the Normal-Gamma prior for µ and τ with parameters
µ0 = 100, λ0 = 3, α0 = 2 and β0 = 2500.
Construct the apriori symmetric 95% credible interval for µ
Find the posterior symmetric 95% credible interval for µ
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Chapter 8 – continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Other priors

The usual improper prior for (µ, τ) is

p(µ, τ) =
1
τ
−∞ < µ∞, τ > 0

The posterior in this case is the Normal-Gamma distribution with
parameters

µ1 = x , λ1 = n, α1 = (n − 1)/2, β1 = s2
n/2

Credible intervals turn out to be the same as confidence intervals
(common for improper priors)

Other common options:
µ and τ independent (a priori) with µ ∼ N(µ0, ν

2
0) and

τ ∼ Gamma(α0, β0).
µ and τ will be dependent in the posterior.

τ ∼ Gamma(α0, β0) but improper for µ: p(µ) = 1
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