Chapter 8 — continued

Chapter 8: Sampling distributions of estimators

Sections

8.1 Sampling distribution of a statistic

8.2 The Chi-square distributions

8.3 Joint Distribution of the sample mean and sample variance
e Skip: p. 476 - 478

8.4 The t distributions
e Skip: derivation of the pdf, p. 483 - 484

8.5 Confidence intervals

8.6 Bayesian Analysis of Samples from a Normal Distribution
8.7 Unbiased Estimators
8.8 Fisher Information

STA 611 (Lecture 16) Sampling Distributions October 30, 2014 1/13



Chapter 8 — continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Bayesian alternative to confidence intervals

@ Bayesian inference is the posterior distribution.

@ Reporting a whole distribution may not be what you (or your client)
want
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@ Reporting a whole distribution may not be what you (or your client)
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@ For point estimates we use Bayesian estimators
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Chapter 8 — continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Bayesian alternative to confidence intervals

@ Bayesian inference is the posterior distribution.

@ Reporting a whole distribution may not be what you (or your client)
want
@ For point estimates we use Bayesian estimators
e Minimize the expected loss

@ If we want an interval to go with the point estimator we simply use
quantiles of the posterior distribution

@ For example: We can find constants ¢; and ¢, so that
P(ci <0 <ciX=x) >

@ The interval (c1, ¢,) is called a 100~v% Credible interval for ¢
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Chapter 8 — continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Bayesian alternative to confidence intervals

@ Bayesian inference is the posterior distribution.

@ Reporting a whole distribution may not be what you (or your client)
want
@ For point estimates we use Bayesian estimators
e Minimize the expected loss

@ If we want an interval to go with the point estimator we simply use
quantiles of the posterior distribution

@ For example: We can find constants ¢; and ¢, so that
P(ci <0 <ciX=x) >

@ The interval (c1, ¢,) is called a 100~v% Credible interval for ¢

@ Note: The interpretation is very different from interpretation of
confidence intervals
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Chapter 8 — continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Bayesian Analysis for the normal distribution

Let Xy, ..., X, be a random sample for N(u, 0?)

In Chapter 7.3 we saw:
@ If o2 is known, the normal distribution is a conjugate prior for p

@ Theorem 7.3.3: If the prior is 1 ~ N(puo, 12) the posterior of 1 is
also normal with mean and variance

oo + nugyn o Jzyg
=5 "2 and vi = 2 2
o° + nyg o° + nuyg

@ We can obtain credible intervals for p from this N(p4, y12) posterior
distribution
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Chapter 8 — continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Bayesian Analysis for the normal distribution

Let Xi,..., X, be a random sample for N(u, o?)

In Chapter 7.3 we saw:
@ If u is known, the Inverse-Gamma distribution is a conjugate prior
for o2
@ Example 7.3.15: If the prior is 0® ~ IG(ayp, o) the posterior of 2
is also Inverse-Gamma with parameters
n 1 <
5 and Bi=p+45) (- p)’

i=1

a1:Oéo+

@ We can obtain credible intervals for o2 from this IG (o, 31)
posterior distribution

What if both 1 and o2 are unknown?
@ We need the joint posterior distribution of ; and o2
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Chapter 8 — continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Bayesian Analysis for the normal distribution

When both  and o2 are unknown

Def: Precision
The precision of a normal distribution is the reciprocal of the variance:
1

T=—
)

@ It is somewhat simpler to work with the precision than the variance
@ The pdf of the normal distribution is then written as

/2
o) = 7= xp (—grix )
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Chapter 8 — continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Normal-Gamma distribution

Def: Normal-Gamma distribution

Let 1 and 7 be random variables where p|7 has the normal distribution

with mean p and precision \g7 and 7 has the Gamma distribution:
plt ~ N(uo,1/Xor) and 7 ~ Gamma(ay, fo)

Then the joint distribution of 1 and 7 is called the Normal-Gamma
distribution with parameters 1o, \g, g and 3y. The pdf for this
distribution is

_ (Ao7)12 1 RY:
f(M,T|Mo,>\o7aow30)—7m exp 2>\0T(M 10)

X r?30)7a01 exp (—fo7)
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Chapter 8 — continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Pdf of the Normal-Gamma distribution
o =0,X=1, ap =0.53ndﬁ0 =05
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Chapter 8 — continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Bayesian Analysis for the normal distribution
When both  and o2 are unknown

Theorem 8.6.1: Conjugate prior for 1 and

Let Xj,..., X, be a random sample from N(u,1/7). The
Normal-Gamma distribution with parameters g, \g, g and gy is a

conjugate prior distribution for (x, 7) and the posterior distribution has
(hyper)parameters

Aopo + NXnp
= A =X +n
4 pypy= 1 ot
nAo(Xn — 110)?

1 1
a1 =ag+ = and61:,80+§sﬁ+ 2(>\O+n)

2

where

1L _
Xn=— 2 xj and s5=> (X —Xn)
1=
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Chapter 8 — continued 8.6 Bayesian Analysis of Samples from a Normal Distributi

[ely}

Bayesian Analysis for the normal distribution

@ To give credible intervals for 1 and o2 individually we need the
marginal posterior distributions

@ From the structure of the Normal-Gamma distribution we
immediately get the marginal for 7:

7|X = X ~ Gamma(ay, 1)

This distribution can be used to obtain credible intervals for r, or
any function of .
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Chapter 8 — continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Marginal distribution of the mean

Theorem 8.6.2: The marginal distribution of p

Let the joint distribution of 1 and 7 be the Normal-Gamma distribution
with parameters pg, Ao, g and SBy. Then

)\oa0>1/2
U: B — Nta
( 5o (1 — p1o) ~ toa,

It is then easy to show that (Theorem 8.6.3):

E(u)=po (fag>1/2) and

Var() = 0

pw e (if ap > 1)
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Chapter 8 — continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Marginal distribution of the mean

@ Say we have done a Bayesian Analysis and end up with the
Normal-Gamma posterior with parameters 1, Ay, aq and ;.

@ We can then calculate the marginal posterior means of p and 7
E(ulx) =1 (far>1/2) and E(r]x) = %
)

Can also obtain credible intervals for
@ Find quantiles ¢y and ¢, such that P(ci < U < ) =«

@ Then
1/2 1/2
Pl pw+c b <pu<p+oe b X|=x
)\1041 )\10(1

@ E.g: for a 0.95% symmetric credible interval we set
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Chapter 8 — continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Example — Hotdogs (Exercise 8.5.7 in the book)

Data on calorie content in 20 different beef hot dogs from Consumer
Reports (June 1986 issue):

186, 181,176,149, 184,190, 158,139, 175, 148,
152,111,141,153,190, 157,131,149, 135,132

Assume that these numbers are observed values from a random
sample of twenty independent N(u, 2) random variables, where x and
o2 are unknown. .

Xn=156.85 and s; =) (x;—X,)* =9740.55
i=1
@ Consider the Normal-Gamma prior for 1 and 7 with parameters
Ho = 100, \p =3, 9 =2 and Bo = 2500.
@ Construct the apriori symmetric 95% credible interval for u
@ Find the posterior symmetric 95% credible interval for p
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Chapter 8 — continued 8.6 Bayesian Analysis of Samples from a Normal Distribution

Other priors

The usual improper prior for (u, ) is

’
Plu,7) =~ —o0<poo, 7>0

@ The posterior in this case is the Normal-Gamma distribution with
parameters

=%, A =n, a;=(n—1)/2, B =8s2/2

@ Credible intervals turn out to be the same as confidence intervals
(common for improper priors)
Other common options:
@ p and 7 independent (a priori) with s ~ N(yo,73) and
7 ~ Gamma(ayg, fp)-
e u and 7 will be dependent in the posterior.

@ 7 ~ Gamma(wg, ) but improper for p: p(p) = 1
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