What is statistics?

• Statistics is the science of using data to make decisions and answer questions.

• Statistics involves
 – designing studies
 – collecting data
 – organizing and analyzing data
 – interpreting and reporting results

References:

On the previous day, extensive discussions of whether or not it would be safe to launch

- predicted temperature for launch time: 26-29°C
- no shuttle had ever been launched at temperature lower than 53°C
- engineers who designed rocket faxed to NASA a recommendation not to launch due to risk of O-ring failure at low temperatures
- NASA officials pointed out weaknesses of engineers’ evidence
- after lengthy discussion, managers of rocket-making company changed their minds and recommended launch

The engineers’ evidence

- history of serious but non-catastrophic O-ring damage during previous cool-weather launches
- physics of resiliency of rubber
- experimental data
What was missing from the engineers’ argument?

- quantification of the relationship between joint temperature and O-ring failure
- prediction of the probability of O-ring failure at 29°C, with assessment of degree of uncertainty

An appropriate statistical method: logistic regression

- Dalal et al. carried out such an analysis (after the fact) using data from the 23 shuttle launches prior to the Challenger
- found strong statistical evidence of a temperature effect on O-rings
- we will analyze these data later in the semester

Subjects, observations, and variables

In statistical studies, we generally choose a set of individuals or subjects on whom data is collected. We usually are interested in collecting a number of different kinds of information to describe each subject.

A variable is a particular characteristic that may take on different values for different subjects. For example,

- age
- gender
- diagnosis

are three variables that might be included in a study of length of hospital stays of hospital patients.

For analysis by a computer, a set of data collected for a study is often organized as a table with a row for each subject and a column for each variable:

<table>
<thead>
<tr>
<th>Pat id</th>
<th>age</th>
<th>sex</th>
<th>diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>25</td>
<td>F</td>
<td>hepatitis A</td>
</tr>
<tr>
<td>102</td>
<td>38</td>
<td>F</td>
<td>cirrhosis</td>
</tr>
<tr>
<td>103</td>
<td>76</td>
<td>M</td>
<td>hepatitis C</td>
</tr>
</tbody>
</table>

Each row in such a table, corresponding to the data for a single subject, is called an observation.
Types of variables

- Qualitative (textbook calls this “categorical”)
 - Nominal
 * values fall into unordered categories
 * numbers may be used to represent categories, but they are just labels
 * example: variable called “occupational area” coded as
 - 1 = education
 - 2 = business
 - 3 = service
 - 4 = industry
 - etc., etc.
 * special case: binary data, which can take on only 2 possible values
 - Ordinal
 * data representing ordered categories
 * example: variable called “prognosis” taking on possible values “poor,” “fair,” “good”

What data type is each of the following?

- a variable defined for each pre-Challenger shuttle launch as the answer to the question “Were any primary O-rings damaged during launch (yes/no)?”
- a variable defined for each pre-Challenger shuttle launch as the total number of primary O-rings that were damaged (out of the 6 primary O-rings in a shuttle)
- a variable defined as outdoor temperature in degrees F at launch time of each shuttle

The distribution of a variables tells what values it takes and how frequently it takes them.

Exploratory data analysis

- initial examination to discover main features of data
- should begin with examining each variable one at a time
- may proceed to examining relationships between variables
- should begin with graphs
- may continue with numerical summaries

Quantitative

- Discrete
 * both order and magnitude are important
 * numbers represent measurable quantities
 * possible values are restricted, often to be integers
 * example: count of number of homicides in Johnson County in 1998

- Continuous
 * numbers represent measurable quantities and are not restricted to a set of specified values
 * examples: temperature, blood pressure, annual profit
 * Special case: censored data
 - continuous data in which values for some subjects are not observable
 - some values are known only to be larger (or smaller) than some observed value
 - example: time-to-failure data
Describing binary, nominal, and ordinal data

- tables of frequencies and percents
- bar charts (also called bar graphs)
- pie charts

frequency distribution for nominal or ordinal data

- a set of classes or categories along with numerical counts of the number of members of each class

Example: Study of nutrition in breakfast cereals

Abstract:

This datafile contains nutritional information and grocery shelf location for 77 breakfast cereals. Data was obtained from the Data and Story Library http://lib.stat.cmu.edu/DASL/Stories/HealthyBreakfast.html

Variable Names

1. Name: Name of cereal
2. mfr: Manufacturer of cereal where A = American Home Food Products; G = General Mills; K = Kelloggs; N = Nabisco; P = Post; Q = Quaker Oats; R = Ralston Purina
3. type: cold or hot
4. calories: calories per serving
5. protein: grams of protein
6. fat: grams of fat
7. sodium: milligrams of sodium
8. fiber: grams of dietary fiber
9. carbo: grams of complex carbohydrates
10. sugars: grams of sugars
11. potass: milligrams of potassium
12. vitamins: vitamins and minerals - 0, 25, or 100, indicating the typical percentage of FDA recommended
13. shelf: display shelf (1, 2, or 3, counting from the floor)
14. weight: weight in ounces of one serving
15. cups: number of cups in one serving
16. rating: a rating of the cereals

```
The FREQ Procedure

Cumulative Cumulative
  type Frequency Percent Frequency Percent
---------- ----------- ------- ----------- -------
  Cold        74    96.10    74    96.10
  Hot         3     3.90     77   100.00

Cumulative Cumulative
  mfr Frequency Percent Frequency Percent
---------- ----------- ------- ----------- -------
American Home         1    1.30        1    1.30
General Mills        22   28.57     23    29.87
Kelloggs             23   29.87     46    59.74
Nabisco              6    7.79     52    67.53
Post                 9   11.69     61    79.22
Quaker Oats           8   10.39     69    89.61
Ralston Purina        8   10.39     77   100.00

Cumulative Cumulative
  shelf Frequency Percent Frequency Percent
----------- ------- ------- ----------- -------
Bottom     20   25.97    20    25.97
Middle    21   27.27    41    53.25
Top        36   46.75     77   100.00
```
A frequency distribution may be tabulated for a quantitative variable if the range of possible values for the variable is first divided into non-overlapping intervals.

<table>
<thead>
<tr>
<th>sodium</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-<80</td>
<td>14</td>
<td>18.18</td>
<td>14</td>
<td>18.18</td>
</tr>
<tr>
<td>80-<160</td>
<td>18</td>
<td>23.38</td>
<td>32</td>
<td>41.56</td>
</tr>
<tr>
<td>160-<240</td>
<td>33</td>
<td>42.86</td>
<td>65</td>
<td>84.42</td>
</tr>
<tr>
<td>240-320</td>
<td>12</td>
<td>15.58</td>
<td>77</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Relative frequency

- The relative frequency for a class is the percentage of the total number of observations that are in that class.
- It is computed as
 \[
 \text{Relative Frequency} = \frac{\text{number in class}}{\text{total number of observations}} \times 100
 \]
- Relative frequencies are particularly useful for comparing sets of data with different total numbers of observations
- SAS just calls this “Percent”

Cumulative relative frequency

- Cumulative relative frequency for a category of an ordinal variable is the percentage of the total number of observations that have a value less than or equal to the category value.
- Cumulative relative frequency for an interval of a continuous variable is the percentage of the total number of observations that have a value less than or equal to the upper limit of the interval.
- SAS calls this “cumulative percent.”
General Mills

The FREQ Procedure

<table>
<thead>
<tr>
<th>sodium</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-160</td>
<td>4</td>
<td>18.18</td>
<td>4</td>
<td>18.18</td>
</tr>
<tr>
<td>160-240</td>
<td>13</td>
<td>59.09</td>
<td>17</td>
<td>77.27</td>
</tr>
<tr>
<td>240-320</td>
<td>5</td>
<td>22.73</td>
<td>22</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Kellogg's

The FREQ Procedure

<table>
<thead>
<tr>
<th>sodium</th>
<th>Frequency</th>
<th>Percent</th>
<th>Cumulative Frequency</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-80</td>
<td>3</td>
<td>13.04</td>
<td>3</td>
<td>13.04</td>
</tr>
<tr>
<td>80-160</td>
<td>6</td>
<td>26.09</td>
<td>9</td>
<td>39.13</td>
</tr>
<tr>
<td>160-240</td>
<td>9</td>
<td>39.37</td>
<td>18</td>
<td>78.26</td>
</tr>
<tr>
<td>240-320</td>
<td>5</td>
<td>21.74</td>
<td>23</td>
<td>100.00</td>
</tr>
</tbody>
</table>