Experiments and observational studies

• In an experiment, the investigator studies the effect of varying some factor that he/she controls.

• In an observational study, the investigator merely observes and records information on the subjects but does not manipulate any factors.

• It is very difficult to establish causation between one variable and another.
 – especially difficult based on observational studies

Koch’s postulates

• In 1890 the German microbiologist Robert Koch attempted to develop criteria for establishing whether a particular microorganism causes a particular disease

• not considered completely satisfactory today

• “... first, the organism is always found with the disease, in accord with the lesions and clinical stage observed; second, the organism is not found with any other disease; third, the organism, isolated from one who has the disease and cultured through several generations, reproduces the disease in a susceptible experimental animal. Even where an infectious disease cannot be transmitted to animals, the ‘regular’ and ‘exclusive’ presence of the organism proves a causal relationship.”

More formal criteria for judging whether an observed association is causal

• strength of the association

• dose-response relationship

• consistency of the association
 – Is the association observed in one study observed in other study populations, in studies using different methods, etc.

• temporally correct association

• specificity of the association
 – the alleged effect is rarely if ever observed without the alleged cause

• plausibility
Example: Female literacy and infant mortality

<table>
<thead>
<tr>
<th>Obs</th>
<th>infmort</th>
<th>femlit</th>
<th>country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>96</td>
<td>Argentina</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
<td>66</td>
<td>Bolivia</td>
</tr>
<tr>
<td>3</td>
<td>83</td>
<td>36</td>
<td>Brasil</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>95</td>
<td>Chile</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>90</td>
<td>Columbia</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>95</td>
<td>Costa</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>96</td>
<td>Cuba</td>
</tr>
<tr>
<td>8</td>
<td>43</td>
<td>81</td>
<td>Dominica</td>
</tr>
<tr>
<td>9</td>
<td>30</td>
<td>87</td>
<td>El</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>73</td>
<td>Ecuador</td>
</tr>
<tr>
<td>11</td>
<td>41</td>
<td>58</td>
<td>Guatemala</td>
</tr>
<tr>
<td>12</td>
<td>58</td>
<td>97</td>
<td>Guyana</td>
</tr>
<tr>
<td>13</td>
<td>91</td>
<td>41</td>
<td>Haiti</td>
</tr>
<tr>
<td>14</td>
<td>33</td>
<td>69</td>
<td>Honduras</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>89</td>
<td>Jamaica</td>
</tr>
<tr>
<td>16</td>
<td>28</td>
<td>87</td>
<td>Mexico</td>
</tr>
<tr>
<td>17</td>
<td>39</td>
<td>67</td>
<td>Nicaragua</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>90</td>
<td>Panama</td>
</tr>
<tr>
<td>19</td>
<td>27</td>
<td>90</td>
<td>Paraguay</td>
</tr>
<tr>
<td>20</td>
<td>43</td>
<td>83</td>
<td>Peru</td>
</tr>
<tr>
<td>21</td>
<td>28</td>
<td>91</td>
<td>Suriname</td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>97</td>
<td>Trinidad</td>
</tr>
<tr>
<td>23</td>
<td>16</td>
<td>98</td>
<td>Uruguay</td>
</tr>
<tr>
<td>24</td>
<td>21</td>
<td>90</td>
<td>Venezuela</td>
</tr>
</tbody>
</table>

The CORR Procedure
2 Variables: infmort femlit
Simple Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Sum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>infmort</td>
<td>24</td>
<td>33.58333</td>
<td>22.75181</td>
<td>806.00000</td>
<td>7.00000</td>
<td>91.00000</td>
</tr>
<tr>
<td>femlit</td>
<td>24</td>
<td>81.75000</td>
<td>17.41626</td>
<td>1962</td>
<td>36.00000</td>
<td>98.00000</td>
</tr>
</tbody>
</table>

Pearson Correlation Coefficients, N = 24
Prob > |r| under HO: Rho=0
infmort femlit
infmort 1.00000 -0.81421 <.0001
femlit -0.81421 1.00000 <.0001

Association does not by itself imply causation.
Confounding

Two variables (explanatory or lurking) are **confounded** when their effects on a response variable cannot be separated.

Populations and samples

- A **population** is the *entire set* of items about which we might wish to draw conclusions.
 - Example: I wish to find out the average income of families of current UI undergrads.
 - Example: A political pollster would like to know the Presidential preference of every registered voter in South Carolina.
 - Some populations we would like to study are hypothetical.
 - Example: all pregnant women who are infected with the HIV virus now and in the future
- A **sample** is the subset of the population that we can actually study (on which we can measure values of variables).

Bias

- The results of a study are **biased** if they are subject to systematic error.
 - i.e., there is something about the way the study is carried out such that, if we did many studies in this way, on average we’d get the wrong conclusions!
- One source of bias is if the sample is not *representative* of the entire population.
- The design of a study is **biased** if it systematically favors certain outcomes.
Kinds of sample designs

- simple random sample (SRS)
 - a sample of size \(n \) individuals chosen in such a way that every set of \(n \) individuals in the population has an equal chance to be the sample
 - the ideal
 - biased or unbiased?

- voluntary response sample
 - consists of people who choose themselves by responding to a general appeal
 - biased or unbiased?

- convenience sample
 - consists of subjects who are easy to get
 - biased or unbiased?

- judgment sample
 - consists of subjects chosen by an expert to be representative of the population
 - biased or unbiased?

How simple random samples are drawn

- each member of the population is uniquely identified in some way
 - example: the population of interest is UI students; each has a unique ID number

- intuitive idea: the identifiers are put in a hat and drawn at random

- usually actually done by a computer

- can be done manually using a table of random digits
 - first assign a unique numeric label to each member of the population
 - use table of digits to select labels at random.

Example

- I wish to get an idea as to how well undergrad students in 22S:30 like the textbook. To do this, I want to administer a lengthy interview and I have time to do only 3. Therefore, I want to draw a simple random sample of size 3 from the population of 24 undergrad students in the class.
Begin by giving each student a unique numeric identifier.

1. Derek A
2. Kara
3. Courtney
4. Karen
5. Cory
6. Catherine
7. Katie H
8. Ryan
9. Jenna
10. Peter
11. Anne
12. Todd
13. Anthony
14. Katie McE
15. Kimbra
16. Phil

Use Table B in your book to find the first 3 of these identifiers that appear.

Table of random digits

- Each entry in the table is equally likely to be any of the 10 digits from 0 to 9 inclusive.
- The entries are “independent” of each other; i.e., knowledge of what digits are in one part of the table gives no information about the digits in any other part.

Using SAS to draw a simple random sample

options linesize = 79 ;
data students ;
input name $9. ;
datalines ;
Derek A
Kara
Courtney
Karen
Cory
Catherine
Katie H
Ryan
Jenna
Peter
Anne
Todd
Anthony
Katie McE
Kimbra
Phil
Derek N
Tuyet
Ben
Mitchell
Nicole
Cristina
Joanna
Jessica
;
proc print data = students ;
run ;

Output
Obs Name
1 Derek A
2 Kara
3 Courtney
4 Karen
5 Cory
6 Catherine
7 Katie H
8 Ryan
9 Jenna
10 Peter
11 Anne
12 Todd
13 Anthony
14 Katie McE
15 Kimbra
16 Phil
17 Derek N
18 Tuyet
19 Ben
20 Mitchell
21 Nicole

22 Cristina
23 Joanna
24 Jessica

Proc plan
proc plan seed = 72950 ;
factors a = 3 of 24 ;
run ;
The PLAN Procedure
Factor Select Levels Order
a 3 24 Random

----a---
1 24 7
Using the same seed will reproduce exactly the same “random” choice!

```sas
proc plan seed = 72950 ;
factors a = 3 of 24 ;
run ;
```

The PLAN Procedure

<table>
<thead>
<tr>
<th>Factor</th>
<th>Select</th>
<th>Levels</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3</td>
<td>24</td>
<td>Random</td>
</tr>
</tbody>
</table>

```
```

Using a different seed will produce a different set of choices.

```sas
proc plan seed = 32542 ;
factors a = 3 of 24 ;
run ;
```

Procedure PLAN

<table>
<thead>
<tr>
<th>Factor</th>
<th>Select</th>
<th>Levels</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3</td>
<td>24</td>
<td>Random</td>
</tr>
</tbody>
</table>

```
```

Drawing from a larger population

```sas
proc plan seed = 241 ;
factors a = 100 of 1000 ;
run ;
```

Procedure PLAN

<table>
<thead>
<tr>
<th>Factor</th>
<th>Select</th>
<th>Levels</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>100</td>
<td>1000</td>
<td>Random</td>
</tr>
</tbody>
</table>

```
```

Other statistical sampling designs

- Statistical sampling is based on chance.
- A probability sample gives each member of the population of interest a known chance of being selected.
- stratified random sampling
 - procedure
 * first divide the population into strata
 - groups of similar individuals
 * draw a simple random sample from each stratum
 * combine the SRSs to form the full sample
 - ensures that each stratum is represented in the overall sample
– Example: survey of class opinions on the textbook
 * I might divide the class into men and women and take a SRS within each gender

• Probability sampling methods other than SRSs require more complicated statistical analysis than do SRSs.
 – But meaningful results can be obtained because we know what population was actually sampled and exactly how it was done.
 – This contrasts with voluntary response samples, convenience samples, and judgment samples.

Other possible sources of bias in surveys

• Undercoverage
 – The list of individual items from which a sample is chosen is called the sampling frame.
 – Some segments of the population of interest are likely to be missed even with careful sampling methods because they are not included in the sampling frame.
 * Example: telephone surveys systematically miss the 6% of American households without phones.

• Nonresponse
 – Some members of the chosen sample cannot be contacted or refuse to answer.
 – This biases the results of the survey if the members who do not respond are different from the general population.
 – Example: in surveys that include questions about household income, families with unusually low or unusually high incomes are less likely to answer that question than are families with moderate income.

• Response bias
 – Respondents may lie, especially about sensitive subjects.
 – Attributes or behavior of interviewers can make this more likely.
Example: In a survey concerning roles of family members, a father might tend to respond differently to the question

“How many hours per week do you spend caring for your children on average?”

depending on the gender of the interviewer.

• Bias due to wording of questions
 – leading questions
 – confusing questions
 – questions involving undefined terms
 – Example: Do you eat 5 servings of fruits and vegetables per day?